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Pole-placement Predictive Functional Control for

over-damped systems with real poles

Abstract

This paper gives new insight and design proposals for Predictive Functional
Control (PFC) algorithms. Common practice and indeed a requirement of
PFC is to select a coincidence horizon greater than one for high-order systems
and for the link between the design parameters and the desired dynamic to
be weak. Here the proposal is to use parallel first-order models to form
an independent prediction model and show that with these it is possible
both to use a coincidence horizon of one and moreover to obtain precisely
the desired closed-loop dynamics. It is shown through analysis that the use
of a coincidence horizon of one greatly simplifies coding, tuning, constraint
handling and implementation. The paper derives the key results for high-
order and non-minimum phase processes and also demonstrates the flexibility
and potential industrial utility of the proposal.
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1. Introduction

Predictive functional Control (PFC) has been very successful in industry
(e.g. [1, 2]) and yet surprisingly received very little interest in the academic
literature [3, 10, 11, 15]. A likely reason for this is that researchers in predic-
tive control have focussed on proofs of issues such as guarantees of stability
[6, 18] and feasibility, robust stability [4], parametric methods [7] and more
recently robust feasibility in the presence of bounded disturbances [9]. It
should be noted that PFC techniques are much simpler to code and imple-
ment than conventional predictive control methods [3, 8, 15] and thus PFC
is best viewed as an alternative to PID or other low level control law where
the cost per control law is necessarily small but nevertheless one may desire
attributes such as systematic constraint handling. PFC allows systematic as
opposed to ad hoc constraint handling and thus is often preferred to PID
approaches for scenarios where constraint handling is challenging. Clearly
comparisons with conventional predictive control such as Dynamic Matrix
Control are not appropriate as those, by definition, can give better perfor-
mance, but of course at much higher cost.

A main selling point of PFC is that the design is done by choosing a target
behaviour (equivalently closed-loop pole/time constant). If there is a strong
link between the user choice and the behaviour that results, this is an intuitive
and easy design technique, as compared to say PID. Moreover, PFC has a
critical advantage over PID approaches, that is, constraint handling can be
embedded systematically and with minimum coding/computation. However,
the literature has given little attention to theoretical a priori guarantees
of stability, feasibility or robustness for PFC; of course some results do exist
[12, 17] and industrial users always do practical assessments. This paper seeks
to redress the balance slightly by demonstrating some useful new theoretical
results for PFC which also extend the efficacy of tuning of the approach.

1.1. Background on PFC

A conventional PFC has two tuning parameters: the position of the coin-
cidence point in the future (the coincidence horizon) and the desired settling
time t95%, also called TRBF. It is implicitly assumed that the closed-loop
response will become approximately first-order with the target settling time,
although in fact this can only be assured if the coincidence horizon is one.

For higher-order aperiodic processes it is common to recommend the co-
incidence point to be near to the inflection point of the process step response
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[11], which is the place of maximum value of the impulse response. The idea
is based on the fact that at this point, the manipulated variable change has
maximum effect. However, in such a case the actual settling time will often
not match the desired settling time t95 so tuning becomes more challenging
as the direct link between designer choice and effect is lost. One reason is
that in case of higher-order processes, the closed-loop response will not ap-
proximate a first-order response closely and hence the relation to the settling
time is not straightforward [16].

1.2. Paper contributions

This paper will propose an alternative way to tune PFC for systems with
real poles. It will be shown that within the proposed PFC design, the closed-
loop poles can be selected as free parameters and this is a major advance
on conventional PFC where only the slowest closed-loop pole is selected by
defining the settling time and even that requires some trial and error and
has no guarantee of what is achievable. It is interesting to note that the
proposed method, in the unconstrained case, has some equivalence with pole
placement design, but a critical point is that it is still based on prediction and
allows systematic constraint handling which is not the case for pole-placement
designs! It is also noteworthy that the proposed PFC method works with a
coincidence horizon of just one, which is contrary to the conventional advice
with classical PFC and also enables a significant reduction in computing
complexity.

Section 2 gives some background on PFC concepts, a conventional law
and demonstrates the tuning challenges. Section 3 introduces the proposed
pole placement PFC approach for second-order systems along with some
analysis of the properties. Section 4 then generalises the approach to higher-
order models and emphasises the additional degrees of freedom which enable
more flexible tuning. The paper finishes with numerous examples which
demonstrate the attributes of the proposed algorithm and how these compare
with conventional PFC.

2. Background information on PFC

2.1. Target behaviour

PFC is based on the assumption that it is realistic to achieve closed-loop
behaviour close to a first-order system with a delay τ (or h samples), time
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constant Tr and unit gain, for example:

r∗(s) =
e−sτ

Trs+ 1
r(s); r∗(z) =

z−h(1− λ)

1− λz−1
r(z) (1)

where r(s) and r∗(s) are Laplace representations of the reference signal and
reference trajectory respectively and r(z) and r∗(z) the corresponding z-
transform representations. In the following the reference signal is take to
be a step of amplitude r. A typical desired step response, with no delay, is
plotted in figure 1 where the pole is set at λ = 0.8 and the sample period is
T = 1. Equivalently, industrial users use the notation of target closed-loop
response time (CLTR), that is about 3 time constants, where λ = e−T/Tr

with T the sample period and Tr = CLTR/3.

2.2. Coincidence point and degrees of freedom

Assuming the desired closed-loop behaviour is ’known’ (as illustrated in
figure 1), then the objective is for output predictions yp(k+i|k) (the predicted
value of yp at sample k + i with prediction made at sample k) to follow this
target exactly. Assuming a non-zero initial condition of yp(k), a first-order
response with a known asymptotic value r and decay rate λ can be written
down explicitly as follows:

yp(k + i|k) = r − [r − yp(k)]λ
i; i > 0 (2)

PFC is not able to make all future predicted output values satisfy (2) and
so instead chooses a single sample instant in the future, the so called co-
incidence horizon ny, and ensures that the output prediction matches the
target response (2) at that point only (as illustrated in figure 1 for ny = 5).
Consequently the PFC control law reduces to (conceptually), enforcing the
single equality:

yp(k + ny|k) = r − [r − yp(k)]λ
ny (3)

In order to manipulate the predictions, some degrees of freedom (d.o.f.)
are needed and these are conventionally the values of the future inputs,
u(k), u(k + 1), · · ·. Within PFC, the coding and computation requirements
are deliberately very simple and thus, the predicted future input is taken to
be a constant, that is:

u(k) = u(k + 1|k) = u(k + 2|k) = · · · (4)

Thus the only d.o.f. is the proposed value u(k).
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Remark 1. The target behaviour (2) and control law requirement (3) can be
coded by inspection. Where the system has a delay ’h’, the target behaviour
should be modified slightly to:

yp(k + ny + h|k) = r − [r − yp(k + h|k)]λny−h.

The reader will note that both output terms are based on values h samples
further ahead.

A potential weakness of PFC is the simplicity of control law (3). The
user needs to be sure that matching a single point implies the rest of the
response is also closely matched to the target behaviour. It has been shown
[11, 16] that this is the case for first-order systems only. Hence this paper
proposes a modified PFC algorithm, such that the result can be extended
to some higher-order systems where common understanding is that the best
value for ny can only be found by trial and error (and indeed that assumes
a good choice exists). It is notable that for non-minimum phase systems it
is intuitively obvious that ny must be greater than the time of the inverse
response part but how much greater is not obvious. This paper shows how
such a requirement can be avoided thus enabling more systematic tuning.

2.3. Independent prediction model, dead-time, disturbance estimation and
offset free tracking

Within PFC it is conventional to use an independent model for prediction
as these are known to have low sensitivity to measurement noise. This means
running a model Gm in parallel with the process Gp (see figure 2). The
difference d = yp−ym between the model output ym and process output yp is
used as an estimate for the system disturbance and in fact can also be used
to account for parameter uncertainty. Replacing process output predictions
(which are not known explicitly) with unbiased model output predictions,
the PFC control (3) law is restated as:

r − [r − yp(k)]λ
ny = yp(k + ny|k) = ym(k + ny|k) + d(k) (5)

An alternative and equivalent representation of this which is slightly easier
to code is:

[r − yp(k)](1− λny) = ym(k + ny|k)− ym(k) (6)

or in the case of non-zero dead-times of h samples:

[r − yp(k + h|k)](1− λny) = ym(k + ny|k)− ym(k) (7)
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where one can also substitute for known values using yp(k + h|k) ≈ yp(k) +
[ym(k)− ym(k − h)] where ym(k) is the non-delayed model output.

Remark 2. Equation (7) shows how PFC handles dead-time processes. It
can seen that the right hand side is independent of the dead time so that the
model dependent part of the PFC algorithm is valid for any dead time.

Remark 3. Readers may like to observe that the use of either (6) or (7)
ensures offset free tracking in the closed-loop, for any steady disturbance.
This result is standard in the literature, assuming the closed-loop is stable,
and is based on the observation that the predictions are unbiased in the steady-
state and thus the predicted error converging to zero also implies the actual
error must converge to zero. The result carries across throughout this paper
due to the use of the same prediction structure.

2.4. PFC for 1st-order models

A first-order model Gm is presented in discrete-time as:

ym(k) =
bz−1

1 + az−1
u(k) = Gm(z)u(k) (8)

The predicted model output ny steps ahead assuming a constant future u(k)
is:

ym(k + ny|k) = (−a)nyym(k) +Km[1− (−a)ny ]u(k); Km =
b

1 + a
(9)

Substituting this into control law (6) gives:

[r − yp(k)](1− λny) = (−a)nyym(k) +Km[1− (−a)ny ]u(k)− ym(k) (10)

This can be re-arranged to give the control law:

u(k) =
[r − yp(k)](1− λny) + [1− (−a)ny ]ym(k)

Km[1− (−a)ny ]
(11)

Remark 4. Earlier work [16] showed that for first-order processes a coin-
cidence horizon of ny = 1 ensures that the closed-loop dynamic is precisely
as desired, that is, the closed-loop pole is exactly λ. The key steps are given
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here for completeness. Assuming nominal case ym = yp = y, the control law
is summarised as:

u(k) =
r(1− λ) + (1 + a− 1 + λ)y(k)

Km(1 + a)
=

r(1− λ) + (λ+ a)y(k)

b
(12)

Subsituting the u(k) from (12) into the process model (8) one finds the closed-
loop dynamic is given from:

y(k) =
bz−1

1 + az−1

[r(1− λ) + (λ+ a)y(k)]

b
(13)

or
(1 + az−1 − (a+ λ)z−1)
︸ ︷︷ ︸

Closed−loop pole polynomial

y(k) = z−1(1− λ)r (14)

The closed-loop pole is therefore defined as: pole = −a+ (a+ λ) = λ, hence,
one achieves the desired pole exactly if ny = 1.

2.5. PFC for higher-order models having real roots

For higher-order systems it is recommended to use coincidence horizons
larger than one [11, 16] due to the inherent lag in the response. However, one
cannot easily write down a simple expression for the ny step ahead prediction
[13]. In order to maintain simple coding, PFC overcomes the complexity of
prediction algebra by using partial fractions to express a model as a sum of
first-order models [3, 5, 11] and hence:

Gm(z) =
b1z

−1

1 + a1z−1
︸ ︷︷ ︸

G1

+ · · ·+
bnz

−1

1 + anz−1
︸ ︷︷ ︸

Gn

+ · · · (15)

It is noted that in practice multiple poles can be handled as different poles
lying near to each other.

Theorem 1. Assuming the future input is constant, the predictions for mod-
els expressed in the form of (15) are trivial and can be written down explicitly.

Proof: The model output can be constructed as:

ym(k) = G1(z)u(k) + · · ·+Gn(z)u(k) = y(1)m + · · ·+ y(n)m (16)
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An equivalent block diagram is indicated in figure 3. The theorem result then
follows immediately from the constructions of the predictions for a single
model y

(i)
m (k + 1) + aiy

(i)
m (k) = biu(k) are:

y(i)m (k + ny|k) = (−ai)
nyy(i)m (k) +Ki[1− (−ai)

ny ]u(k); Ki =
bi

1 + ai
(17)

and ym(k + ny|k) = y
(1)
m (k + ny|k) + y

(2)
m (k + ny|k) + · · ·. �

Corollary 1. For a coincidence horizon ny = 1, the predictions are:

ym(k + 1|k) = −a1y
(1)
m (k)− · · · − any

(n)
m + (

n∑

i

bi)u(k) (18)

The use of such prediction models shows clearly how the complexity and
use of PFC is distinguished from more complex strategies such as DMC and
is summarised in the following theorem.

Theorem 2. A PFC algorithm for a higher-order model using a coincidence
horizon of ny and a target pole of λ can be defined explicitly without compli-
cated coding.

Proof: The prediction of (17) is substituted directly into control law (6) to
determine the desired input signal.

(1− λny)(r − yp(k)) =
∑

i[(−ai)
nyy

(i)
m (k) +Ki[1− (−ai)

ny ]uk − y
(i)
m (k)]

(19)
Rearrange to determine the input as:

u(k) =
(1− λny)(r − yp(k)) +

∑

i[1− (−ai)
ny ]y

(i)
m (k)

∑

i Ki(1− (−ai)ny)
(20)

It is clear that the terms in this law are simple to compute. �

Corollary 2. For a coincidence horizon ny = 1, the PFC law reduces to:

u(k) =
(r − yp(k))(1− λ) +

∑

i(1 + ai)y
(i)
m (k)

∑

i bi
(21)

Remark 5. Using parallel forms for prediction requires the partial fraction
expansion to be computed. However, for cases with say 2 to 3 poles, this
is trivial and this minor extra computation is dwarfed by the gains in the
simplification of the prediction algebra.
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2.6. The efficacy of λ as a tuning parameter with conventional PFC

It was shown in section 2.4 that for a first-order model and a choice of
ny = 1, then the expected closed loop pole is precisely λ. However, one
can equally show [16] that for higher choices of ny, the closed-loop is not
equal to λ and this alone demonstrates that PFC tuning parameters have a
weak connection with the behaviour that results. Moreover, with 2nd-order
models tuning and coding is not as straightforward and some trial and error
is required; indeed there is no guarantee that there exists a suitable choice
of ny such a given λ will be achieved in the closed loop and as such tuning
of PFC becomes less systematic than desirable. A point of specific note is
that almost always one needs to use ny > 1 and implicitly this forces the
behaviour towards open-loop dynamics [16].

It is worthwhile giving some examples of this. Consider two systems
H1, H3 and determine the closed-loop poles for different choices of λ, ny and
plot the slowest pole in figures 4 and 5 respectively.

H1 =
0.02(4z−2 − z−1)

(1− 0.5z−1)(1− 0.9z−1)
; H3 =

10−4(3.3239z−1 + 0.313z−2 − 3.009z−3)

(1− 0.98z−1)(1− 0.967z−1)(1− 0.951z−1)
(22)

It is immediately clear that the actual dominant closed-loop pole is well
linked to the choice of λ only if ny is small. What is less clear is that for these
cases a choice of ny < 10 may lead to significantly over active input signals
(or even instability) and have output responses which are far from ideal.
Consequently, for processes with significant lag, conventional PFC can only
deliver relatively slow closed-loop dynamics with potentially poor linkage to
the choice of the desired closed-loop pole λ.

2.7. Summary

The background on PFC has established a few core insights which will
be used as the foundations of the proposal in this paper.

• With first-order models, the use of a horizon of one ensures a strong
link between the tuning parameter λ and the closed-loop behaviour
which results.

• With higher-order models, there is not expected to be a strong link
between the tuning parameters and closed-loop behaviour and thus
tuning is less systematic, especially if small values of ny cannot be
used, such as with non-minimum phase or lagged processes [16].
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• Using parallel independent models (figure 3) allows for much simpler
prediction algebra and thus simpler coding than using a higher-order
model for prediction.

3. Easy tuning by using a coincidence horizon of one with 2nd-

order models

There is potential to improve the tuning of PFC for higher-order models
and ideally to enable a stronger link between the tuning parameter λ and the
resulting closed-loop dynamics. This section uses the special case of an over-
damped second-order process to show how a small change in the PFC control
law can achieve this while not increasing complexity or affecting constraint
handling facilities. Specifically, the core concept is to exploit results for first-
order models for which the control law (12) can be written down explicitly
and for which one can fix the closed-loop pole precisely with ny = 1.

Remark 6. For the purposes of closed-loop pole analysis this section will
consider the nominal case of ym = yp and d(k) = 0. This is useful because it
indicates the efficacy of the tuning method; a formal sensitivity analysis con-
stitutes future work although the examples demonstrate that good robustness
is expected.

3.1. Independent PFC designs with two parallel paths

The concept used here is to design separate PFC control laws for each
independent model in figure 3 and then use a linear combination of these as
the actual control law applied to the system. For now the focus is on models
with two poles.

Lemma 3. The contribution to the model output steady-states of each par-
allel model can be captured with variables γ1, γ2, γ1 + γ2 = 1 so that:

lim
k→∞

ym = r ⇒

{

limk→∞ y
(1)
m = γ1r

limk→∞ y
(2)
m = γ2r

(23)

Proof: Equation (23) is obvious as limk→∞(y
(1)
m +y

(2)
m ) = r. Moreover, γ can

be determined by using the model steady-state gains so that:

g1 =
b1

1 + a1
; g2 =

b2
1 + a2

; γ1 =
g1

g1 + g2
; γ2 = 1− γ1 (24)

Readers may note there is no need for g1 > 0, g2 > 0 nor indeed for γi > 0. �
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Corollary 3. A number of simple corollaries fall out from dividing the target
between the two parallel paths:

1. Equivalent to meeting the target of ym → r, one can aim for separate
targets for each independent model:

y(1)m → γ1r = r(1), y(2)m → γ2r = r(2), (25)

2. The impact of the disturbance estimate on the required model predictions
can be divided between the subsystems using the steady-state gains so
that:

y(1)m → r(1) − γ1d(k); y(2)m → r(2) − γ2d(k) (26)

3. The ’process output’ can be divided in an equivalent ratio so that yp =

y
(1)
p + y

(2)
p and:

y(1)p (k) = y(1)m (k) + γ1d(k), y(2)p (k) = y(2)m (k) + γ2d(k). (27)

Lemma 4. Assume for now that each subsystem has an independent input
and the disturbance is shared between the subsystems as above, then PFC laws
(5) with a coincidence horizon ny = 1 for each parallel subsystem are defined
as:

b1u
(1)(k) = r(1)(1− λ) + λy

(1)
p (k)− γ1d(k) + a1y

(1)
m (k)

b2u
(2)(k) = r(2)(1− λ) + λy

(2)
p (k)− γ2d(k) + a2y

(2)
m (k)

(28)

Proof: This follows directly from the standard PFC law for 1st-order systems
assuming the disturbance and measurement are divided between the parallel
loops in ratios γ1, γ2. �

If one were able to apply just u(1) to path 1 and u(2) to path 2, then the
model would of course reach the desired steady-state and with the desired
time constant. However, the obvious inconsistency is that the actual process
has a single input and the independent model formulation of figure 3 assumes
that the same input enters both parallel paths. Consequently, the main role
of the control laws in (28) is to identify ideal choices; knowledge of these
ideal choices can be used to find a compromise which balances the needs of
both loops.
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3.2. Proposed control law and nominal analysis

Algorithm 1. Determine u(1), u(2) using the control law definitions of (28)
and then form the actual PFC system input as a linear combination of these
two.

u(k) = βu(1)(k) + (1− β)u(2)(k); (29)

The rationale for the choice of β will become clear next.

Lemma 5. For the nominal case, the control laws of (28) can be expressed
in z-transforms as follows:

u(1)(z) = γ1
1−λ
b1

r(z) + (λ+a1)
b1

y
(1)
m (z)

u(2)(z) = γ2
1−λ
b2

r(z) + (λ+a2)
b2

y
(2)
m (z)

(30)

Proof: First replace y
(1)
p (k) = y

(1)
m (k), y

(2)
p (k) = y

(2)
m (k) and d = 0, hence:

biu
(i)(k) = (1− λ)r(i) + λy(i)m (k) + aiy

(i)
m (k) (31)

Rearranging this one finds:

biu
(i)(k) = (λ+ ai)y

(i)
m + (1− λ)r(i) (32)

From which, with r(1) = γ1r and using a similar statement for loop 2, the
result is obvious. �

Corollary 4. The proposed PFC control law combining (29) and (30) is
given as:

u(z) = β
(λ+ a1)

b1
y(1)m (z) + (1− β)

(λ+ a2)

b2
y(2)m (z) +Kr(z) (33)

where K = (1− λ)(βγ1/b1 + (1− β)γ2/b2).

The following theorem now summarises a key analytical result and con-
tribution of this paper.

Theorem 6. The proposed PFC law of (33) achieves the target closed-loop
pole of λ and thus is an effective design tool for achieving the desired closed-
loop dynamics, irrespective of the choice of β.

12



Proof: The first thing to note is that, direct from figure 3, one can deduce
the following z-transform relationships:

y(i)m (z) =
biz

−1

1 + aiz−1
u(z) (34)

Substitute from (34) into (33) and one finds:

u(z) = β
(λ+ a1)

b1

b1z
−1

1 + a1z−1
u(z) + (1− β)

(λ+ a2)

b2

b2z
−1

1 + a2z−1
u(z) +Kr(z)

(35)
Next, combine all terms containing u(z):

pc(z)u(z) = a(z)Kr(z)
pc(z) = [(1 + a1z

−1)(1 + a2z
−1)− β(1 + a2z

−1)(λ+ a1)z
−1

−(1− β)(1 + a1z
−1)(λ+ a2)z

−1]
a(z) = (1 + a1z

−1)(1 + a2z
−1)

(36)

Validate the closed-loop pole polynomial has a root at λ by showing that
pc(λ) = 0. �

3.3. Exploiting the flexibility in β

The previous section proved that the proposed control law guarantees
that one of the closed-loop poles will be at λ. This section investigates
how alternative choices for β impact on the remaining poles and thus gives
some insights into how this parameter could be chosen. The key result is
summarised in the following theorem.

Theorem 7. The root of p(z) given in (36) which is not at λ, is independent
of the choice of λ and depends solely on the model parameters and the choice
of β.

Proof: Assume that the 2nd root is given as δ, then:

pc(z) = (1− λz−1)(1− δz−1) = 1− (λ+ δ)z−1 + λδz−2 (37)

Using eqn.(36) to define the coefficients of p(z) and match up the coefficients
of z−1, z−2 with (37).

a1 + a2 − β(λ+ a1)− (1− β)(λ+ a2) = −λ− δ
a1a2 − βa2(λ+ a1)− (1− β)a1(λ+ a2) = λδ

(38)
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Eliminating and simplifying these both reduce to:

(1− β)a1 + βa2 = −δ (39)

That is, δ has an explicit dependence upon β; conceptually δ is a linear
combination of the open-loop poles and one can define β from a desired δ or
vice versa. �

Remark 7. In practice the choice of δ will be such that λ is the dominant
closed-loop pole.

3.4. Interim Summary

This section has shown how a slight change to the formulation of PFC
has enabled the tuning parameter of λ to be more reliable in that one can
guarantee this mode exists in the closed-loop dynamics, which is not the
case for a conventional PFC algorithm. Of course, the designer still needs to
engage in a full design which considers trade-offs between the target closed-
loop dynamic and other criteria such as input activity.

4. Generalisation to higher-order models: Pole placement PFC

The previous section used a second-order example to demonstrate a sim-
ple principle, that a PFC approach could be used to give precise closed-loop
poles akin to a pole placement design while retaining core PFC properties
which enable systematic constraint handling. This section shows how this
approach can be extended to higher-order examples.

Lemma 8. For multiple models in parallel such as in figure 3, the contribu-
tion to the overall model G output steady-states of each parallel model can be
captured with variables γi, so that:

lim
k→∞

ym = r ⇒

{

limk→∞ y
(i)
m = γir

γi = Gi(1)/G(1)
(40)

The proof is obvious. Note that
∑

i γi = 1 as
∑

i Gi(1) = G(1).

Algorithm 2. [Pole placement PFC] The proposed PFC control law (nom-
inal case) combining (29) and (30) for multiple parallel models is given as:

u(k) =
∑

i

βi
(λ+ a1)

b1
y(i)m (k) +Kr (41)

for suitable K and βi variables to be chosen subject to
∑

i βi = 1.
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Lemma 9. The closed-loop pole polynomial for Algorithm 2 is given from:

pc(z) = 1−
∑

i

βi(λ+ ai)z
−1

1 + aiz−1
(42)

Proof: Substitute the independent model equations y
(i)
m = [biz

−1/(1+aiz
−1)]u(k)

into the control law of (33). Hence:

u(z) =
∑

i

βi
(λ+ ai)

bi

biz
−1

1 + aiz−i
u(z) +Kr(z) (43)

The definition of the closed-loop pole polynomial is now obvious. �

Corollary 5. The closed-loop pole polynomial of (42) has at least one root
at λ as long as

∑

i βi = 1. This follows easily by substituting z = λ:

pc(λ) = 1−
∑

i

βi(λ+ ai)

λ+ ai
= 1−

∑

βi (44)

Hence pc(λ) = 0 if 1 =
∑

i βi.

Theorem 10. The degrees of freedom within βi are sufficient to place all the
poles of pc(z).

Proof: Let the desired poles be ρi, i = 1, 2, ... and let ρ1 = λ. Then, these
are closed-loop poles iff pc(z) can be expanded as follows:

1−
∑

i

βi
(λ+ ai)

bi

biz
−1

1 + aiz−i
=

∏

i

1− ρiz
−1

1 + aiz−1
= 1 +

∑

i

ηiz
−1

1 + aiz−1
(45)

Using a cover-up rule to determine suitable values for ηi gives:

ηj =

∏

i(−aj − ρi)
∏

i,i ̸=j(−aj + ai)
= −βj(ρ1 + aj) (46)

The key point here is that values of ηi can always be computed and there is
a simple dependence of βi upon ρi, that is one can choose ρi and then find
the required βi. �

Corollary 6. If a desired pole ρi is specified as equal to an open-loop pole
−ai , then this implies βi = 0 . This is obvious from (46) and also makes good
intuitive sense - the corresponding open-loop dynamic is in effect uncontrolled
if the independent model output y

(i)
m plays no part in the control law.
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5. Numerical examples

This section gives some simulation examples of the proposed pole place-
ment PFC law [denoted PP-PFC] (33) and compare with conventional PFC
[denoted CPFC]. These examples demonstrate that:

• the closed-loop dynamic of PP-PFC is directly affected by the choice
of λ whereas this is difficult with CPFC.

• the PP-PFC method is robust to non-zero disturbances and some pa-
rameter uncertainty.

• the PP-PFC method allows systematic constraint handling.

• the PP-PFC method can deal with non-minimum phase processes easily
with ny = 1 (CPFC is far less flexible).

5.1. Illustrations of the impact of λ on closed-loop behaviour

This section will consider second and third-order examples H2, H3 respec-
tively.

H2 =
0.1z−1 + 0.4z−2

(1− 0.5z−1)(1− 0.9z−1)
; H3 =

10−4(3.3239z−1 + 0.313z−2 − 3.009z−3)

(1− 0.98z−1)(1− 0.967z−1)(1− 0.951z−1)
(47)

The figures will compare the closed-loop behaviour with the conventional
PFC control law of (20) with the proposed pole placement PFC law of (41).
The simulations include an additive output disturbance (around sample 31
in figure 6) to demonstrate that both methods are robust to disturbances.

5.1.1. Example H2

A challenging scenario would be a substantial speed up of the process to
give a closed-loop pole at ρ = 0.3. With CPFC a search of various possible
tuning parameters demonstrates that although one can speed the process up,
the actual closed-loop poles cannot be selected precisely, even with trial and
error search over λ, ny as seen in section 2 and here:

{λ = 0.3, ny = 2} ⇒ ρ1,2 = 0.25, 0.06
{λ = 0.3, ny = 3} ⇒ ρ1,2 = 0.42± j0.16
{λ = 0.2, ny = 3} ⇒ ρ1,2 = 0.42± j0.018

(48)
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Clearly however PP-PFC can deliver the desired pole precisely - in this case
the user choices are:

ρ1,2 = 0.3, 0.3; a1 = 0.9, a2 = 0.5, β1 = 1.5, β2 = −0.5 (49)

The closed-loop simulations are given in figure 6 and demonstrate that al-
though the responses are similar, PP-PFC has given behaviour much closer
to the target dynamic. A further demonstration of the efficacy of PP-PFC
is given in figure 7 which shows that the algorithm reliably gives the desired
dynamic as ρ1 = ρ2 = ρ are changed.

5.1.2. Example H3

In this case the aim is to place a closed-loop pole at ρ = 0.8, that is to
roughly double the speed. With CPFC a search of various possible tuning
parameters demonstrates that although one can speed the process up, the
dominant closed-loop poles cannot be selected precisely, even with trial and
error search over λ, ny as seen in section 2 and here:

{λ = 0.8, ny = 1} ⇒ ρ1,2,3 = 0.8, 0.9, 0.999
{λ = 0.8, ny = 3} ⇒ ρ1,2,3 = 0.5, 0.8, 0.9
{λ = 0.8, ny = 8} ⇒ ρ1,2,3 = 0.87± j0.1, 0.91

(50)

Clearly however PP-PFC can deliver the desired three equal poles precisely.
The closed-loop simulations are given in figure 8 and demonstrate that al-
though the responses are similar, PP-PFC has given behaviour much closer
to the target dynamic. Clearly nothing is for free and the speed up is paid
for by a relatively aggressive input.

5.2. Dealing with parameter uncertainty

This section demonstrates that the PP-PFC algorithm is robust to some
parameter uncertainty - a detailed sensitivity analysis forms future work.
Take system H2 as the system model Gm and the real process Gp as follows:

Gp =
0.12z−1 + 0.37z−2

(1− 0.4z−1)(1− 0.92z−1)
(51)

The closed loop behaviour for two choices of λ are given in figures 9 and 10;
a disturbance d is also added at sample 40. The figures show clearly that the
large difference between the model output ym and actual process output yp
does not affect the offset free tracking property. These figures demonstrate
clearly the robust behaviour of the algorithm and the continuing efficacy of
λ as a tuning parameter.
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5.3. Non-minimum phase systems and delays

The proposed PP-PFC technique works for non-minimum phase systems
(here H4(z) given in (52)) whereas a CPFC approach requires ny ≫ 1 and λ
is less effective. Figure 11 shows the closed-loop PP-PFC behaviour matches
the target pole λ despite the request for a significant speed up. CPFC has
to use a large coincidence horizon for this case and hence can only be used
to obtain poles close to the open-loop dynamics.

H4 =
−0.2z−1 + 0.6z−2

(1− 0.5z−1)(1− 0.9z−1)
(52)

For completeness, it is noted that non-zero delays can be included in a stan-
dard fashion as indicated in eq.(7). Figure 12 gives the same example as
figure 11 but where model H4 now has a dead-time of 4 samples. It is noted
that the proposed PP-PFC algorithm is equally effective.

5.4. Constraint handling

A major reason for preferring PFC to PID, even with low-order systems
where achievable closed-loop behaviour may be similar, is the constraint han-
dling facility which is cumbersome to code and test with PID but elementary
with PFC.

The proposed control law for PP-PFC given in (41) has a simple facility
for including constraint handling summarised as follows:

1. Test whether the proposed input satisfies input absolute and rate con-
straints. If not, modify u(k) to ensure both using saturation.

2. To ensure satisfaction of output/state constraints one must form the
implied predictions of (16) over a sensible but large horizon and modify
u(k) as required to ensure satisfaction. This reduces to a simple for
loop which ensures, for example, that maxi yp(k + i|k) is within limits;
as yp has a linear dependence on u(k) this is easy to do.

Figure 13 shows the PP-PFC algorithm successfully integrates input con-
straints of −2 < u(k) < 2 and continues to deliver good performance for
system H3.

Remark 8. It is non-trivial to guarantee the satisfaction of state constraints
in general, especially in the presence of disturbances and parameter uncer-
tainty and algorithms for achieving this have substantial coding requirements
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and complexity and thus are inconsistent with the context of a PFC approach.
Nevertheless, the PFC approach guarantees recursive feasibility of state con-
straints for the nominal case which is still a strong result.

6. Summary of coding requirements and applications on hardware

For completeness this section looks at how the PP-PFC algorithm would
be coded and demonstrates efficacy on real hardware.

The coding complexity of the proposed algorithm is simple compared to
common alternatives, and can be implemented in just a few (5 to 10) lines
of code.
OFFLINE COMPUTATIONS

1. Find partial fraction expansion of (15); this is trivial using the cover-up
rule1.

2. Choose desired values for ρi and use (46) to determine βi.

3. Determine parameters γi as in (40).

ONLINE COMPUTATIONS (each sample)

1. Update model states: y
(i)
m (k + 1) = −aiy

(i)
m (k) + biu(k).

2. Update d(k) estimate using: d(k) = yp(k)−
∑

i y
(i)
m (k).

3. Calculate u(k) using (41).

4. Ensure u(k) satisfies any relevant constraints before implementing.

7. Real time experiment

7.1. Description of the pilot plant

This section illustrates the efficacy of the proposed method on a hot air
blower pilot plant (AMIRA LTR-701) (see figure 14). The air is sucked in
through a radial fan and flows through a throttle valve for heating. The air
is heated and then flows through a tube. The input signal is the heating
power and the output signal is the temperature at the end of the tube. The
signals ranges are 0 to 10 V DC or 4 to 20 mA.

The temperature change of the tube is neglected. Then the air tem-
perature ϑ(t) depends on the heating powerP (t), the mass flow ṁL(t), the

1We exclude discussion of systems with repeated poles for brevity. In practice, following
an identification, real systems can always be modelled with slightly different poles anyway.
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stationary air mass M in the tube, and the specific heat capacity of air cpL
according to

ṁ(t)cp∆ϑ(t) +Mcp
dϑ(t)

dt
= P (t) (53)

This equation represents a proportional first-order model without time delay
as

d∆ϑ(s)

P (s)
=

K

1 + sT
(54)

The proportional gain K and the time constant T depend on the flow

K =
1

ṁ(t)cp
; T =

M

ṁ(t)
(55)

The linearized model was assumed for small changes around an operating
point.

7.2. Process identification

As the parameters of the model above cannot be determined precisely,
the model structure is used alongside a standard identification algorithm to
identify representative model parameters between the manipulated variable
of the heater uT and the temperature signal yT at the end of the tube were
identified at a sampling time of 2s. The flow of the air was kept constant by
the manipulated variable of the radial fan with uF = 3V , and the heating
power uT was changed stepwise from 1 to 3 V. The step-response of the
process is plotted in figure 15.

No dead time was observed during the identification process. The identi-
fied model parameters using the least squares method of the measured data
filtered by a low-pass filter with time constant Tf = 10s were

ym(z) =

[
0.23z−1

1− 0.71z−1
+

0.0186z−1

1− 0.986z−1

]

u(z) (56)

7.3. Real-time control

The proposed PFC is designed uses poles ρ1,2 = 0.98, 0.9. For the real-
time control (figure 16), the reference is changed stepwise from 2.9V to 6V
and a disturbance was introduced around 1300s by increasing the flow rate
substantially between 3 and 7 V. The proposed PFC control law has been
effective at obtaining the desired response characteristics and has robust
behaviour.
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8. Conclusions and future work.

Although PFC is successful in many scenarios, the underlying requirement
of making a higher-order system take on output predictions close to a first-
order system can give rise to inconsistencies where there are significant lag
or non-minimum phase characteristics and thus tuning by trial and error is
difficult and indeed the achievable results are limited.

This paper has proposed a novel PFC law which exploits the individual
dynamics making up the system model and thus is able to use a coincidence
horizon of just one. The proposed PP-PFC approach is effective and sim-
ple to tune on high-order systems with simple poles, even though this is
in contradiction to the normal guidance of large coincidence horizons being
essential. This result is significant because of two main factors:

1. The use of a coincidence horizon of one means that the coding and
prediction is trivial; implementation requires just 5 to 10 simple in-
structions.

2. Control tuning for conventional PFC requires trial and error and often
cannot deliver the desired dynamics due to the limited flexibility of the
approach. Conversely, the proposed pole placement PFC algorithm has
more flexibility with no overall increase in coding complexity, combined
with a more intuitive design procedure, as no trial and error is required.

3. It is notable that the proposed approach is able to deal with non-
minimum phase characteristics much better than CPFC and thus has
far more flexibility in tuning the resultant closed loop.

The proposed approach retains the important attributes of robustness to
uncertainty and in particular systematic constraint handling and thus is more
flexible than the obvious alternatives of PID or pole-placement for which
systematic constraint handling is much more difficult. Efficacy has been
demonstrated on numerous examples and laboratory hardware. It would be
interesting to pursue in more detail a study of the sensitivity of this proposed
approach and how it compares to alternatives such as conventional PFC
and PID and this constitutes immediate future work although the authors
are cautious about putting too much reliance on the multitude of robust
approaches in the more general MPC literature as these methods largely
conflict with the requirement for computational simplicity required for low
level control.

Future work will consider the extension of this concept to systems with
more demanding dynamics. Preliminary work indicates that the extensions
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to deal with complex poles are straightforward with almost no changes to the
work in this paper. However, more careful consideration is needed to deal
with open-loop unstable systems as a simple internal model cannot be used in
this case. For example, conventional PFC requires changes in the underlying
loop structure and prediction models to cater for unstable open-loop plants.
Within the broader MPC literature ideas such as prestabilisation [14, 17] are
commonplace. There us also minor interest in what happens when targets
take the form of ramps rather than steps; again this requires a significant
change in the underlying approach as the use of two integrators within the
loop is now implicit in order to achieve no offset and this radically changes
the performance that is achievable, as is well known from the mainstream
literature.

Finally there is a need to consider the extent to which one can exploit
the additional flexibility available within the choice of the other closed-loop
poles; as these positions come from simple linear combinations of existing
poles it is expected that a common sense default will be possible.
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Figure 4: Relationship between tuning parameters and closed-loop poles for conventional
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PFC on third-order model H3.
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Figure 6: Simulation of model H2 with a target pole of λ = 0.3 using CPFC (ny = 3) and
PP-PFC (ρ1 = ρ2 = λ).
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Figure 7: Simulation of model H2 with PP-PFC using different double target poles.
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Figure 8: Simulation of model H3 with a target pole of λ = 0.8 using CPFC (ny = 8) and
PP-PFC (ρ1 = ρ2 = λ).
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Figure 9: Simulation of model H2 and with parameter uncertainty (real process given in
(51)) and a double target pole of ρ = 0.5.
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Figure 10: Simulation of model H2 and with parameter uncertainty (real process given in
(51)) and a double target pole of ρ = 0.9.
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Figure 11: Simulation of non-minimum phase system H4 with a double target pole of
ρ = 0.4.
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Figure 12: Simulation of non-minimum phase system H4 with a double target pole of
ρ = 0.4 and the addition of a significant dead-time to the process.

10 15 20 25 30 35 40 45 50
0

0.2

0.4

0.6

0.8

1

Samples

PFC RESPONSES with ρ = 0.8

 

 

10 15 20 25 30 35 40 45 50
−2

−1

0

1

2

Samples

 

 

r
y(CPFC)
y(PP−PFC)

u(CPFC)
u(PP−PFC)

Figure 13: Simulation of system H3 with input constraints and a triple target pole of
ρ = 0.8.
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Figure 14: Hot air blower AMIRA LTR-701.
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Figure 15: Pilot plant identification
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Figure 16: Temperature control
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