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ABSTRACT 

 

This paper presents a study into the use of Gaussian Process Latent Variable Models 

(GP-LVM) and Probabilistic Principal Component Analysis (PPCA) for detection of 

defects on wind turbine bearings using Acoustic Emission (AE) data. The results 

presented have been taken from an experimental rig with a seeded defect, to attempt to 

replicate an AE burst generated from a developing crack. Some of the results for both 

models are presented and compared, and it is shown that the GP-LVM, which is a 

nonlinear extension of PPCA, outperforms it in distinguishing AE bursts generated from 

a defect over those generated by other mechanisms.    

 

 

INTRODUCTION 

 

    The wind turbine industry has struggled with gearbox reliability since its early days. 

The study presented here focuses on fault detection on planetary bearings for high speed 

drivetrains in gearboxes. There is a clear advantage in pursuing a monitoring strategy in 

drivetrains, as failures are known to cause significant downtime resulting in prohibitive 

costs.  Of the various drivetrain components, the planetary bearings have a notoriously 

high failure rate and there is a tendency for these bearings to fail much below their 

prescribed fatigue life. It is thought that this could possibly be because of overload 

events that put stresses outside the design limits of the bearings. While there are on-

going efforts to try and advance the understanding and modelling of these loads a sound 

monitoring strategy is clearly required in order to reduce the downtime of wind turbines.   
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Figure 1 a) Typical planetary bearing arrangement in a wind turbine gearbox. Note the direction of rotation 

indicated by the blue arrows and the radial load by the red arrows. b) Zoom-in to inner raceway, 

highlighting the loaded zone in red. 
 

    The results presented here are from an experimental study from a rig designed to 

replicate the operational conditions of a wind turbine planetary bearing. The 

arrangement during operation of this type of gearbox is shown in  

 

Figure 1. The experimental rig is representative of the real-life setup, and contains an 

inner bearing housed inside an outer support bearing. The key point from a reliability 

perspective is that the inner raceway of a planet bearing has a constant radial load, which 

means there is a relatively high stress concentration at this point, leading to poor 

reliability. It has been found in practice that once a defect from these inner raceways is 

detected through vibration monitoring it is already too late. AE monitoring is therefore 

desirable to identify the early onset of a crack. Using AE techniques for this application 

has been successfully studied and developed in [1] using large seeded defects (of 100-

200 𝜇𝑚 ) and placing sensors on the inner raceway. However, it is not practical to place 

sensors directly on the planet bearings as these are constantly rotating. We thus wish to 

investigate the feasibility of performing AE monitoring by placing sensors on the outer 

casing of the experimental rig. In order to generate AE from a realistic defect, a defect 

of approximately 5𝜇𝑚 width has also been scribed on the inner raceway of the inner 

bearing using a cubic boron nitride grit.  

 

Acoustic Emission Data Acquisition 

 

    Acoustic Emissions, when used within a Structural Health Monitoring (SHM) or 

Non-Destructive Testing (NDT) context, are high frequency stress waves that propagate 

through a material. These waves can be generated by a number of different mechanisms 

including stress, plastic deformation, friction and corrosion. A change in the internal 

structure of a solid will tend to generate AE waves, and monitoring these waves has 

been shown to be a successful method for detecting the early onset of cracks in various 

applications.  The AE data for this study has been gathered with a National Instruments 

cDAQ data acquisition system on an experimental rig. The transducers used were 

Physical Acoustics NANO-30 and MICRO-30D. All data has been collected at 1MHz. 

Several channels have been gathered at various locations around the rig, but for 

conciseness and for the purpose of this study detecting from a single sensor, placed on 

the bearing housing at the bottom of the rig is demonstrated.   

a) b) 



 

 

Figure 2 a) Typical AE 3-second response to a faulty bearing with a 5𝜇𝑚 defect from the bearing housing, 

note the data is clipped to 1V in this case. b) zoom-in showing some more details of spurious and fault-

generated AE bursts c) zoom-in to a single burst generated by a fault.  

 

 

    Although the opening of a crack, as well as its exposure to stress will lead to the 

propagation of acoustic waves through a material, the key challenge when trying to use 

these to reliably identify a crack, in particular within a large gearbox, is that there are 

many other processes generating AE such as friction, roller impact and debris. This 

study therefore, attempts to detect waves that have travelled through two layers of 

rollers, and two thick outer casing layers. The use of periodicity of the bursts has been 

successfully used for detection of defects within the inner raceway [1], but in order to 

monitor from the outside, where the waves will be severely attenuated and not all of 

them may make it to the sensor, different approaches have to be considered.  

Figure 2 shows an example AE response from a damaged bearing measured at the 

bearing housing. This illustrates the point that the AE response to a defect may be 

accompanied by numerous other AE generating mechanisms. An approach is presented 

here based on hit extraction, with a discussion on how GP-LVMs and PPCA could be 

used to try to separate AE bursts belonging to a regular process to those belonging to a 

defect.    The following sections give an overview of these models and discuss some of 

the results from the experimental rig. 
 

 

GAUSSIAN PROCESS LATENT VARIABLE MODELS 

 

    It is outside the scope of this paper to fully discuss GP-LVMs, but the general 

concepts are laid out here. The interested reader is referred to [2]. Latent Variable 

models perform unsupervised learning. The general idea is to represent a data set 𝐘 

containing a large number of dimensions or variables, as a function of a new set 𝐗, 

which will typically be of lower dimension.  The hidden, or latent, variables 𝐗 are said 

to generate 𝐘. The goal of this class of models is thus to find the latent variables, and to 

do so a suitable map from 𝐗 to 𝐘 (or vice-versa) must be found.  If this map is a linear 

function, it is referred to as Principal Component Analysis (PCA) or Factor Analysis 

[3]. These have been used extensively within the SHM and condition monitoring 

community as dimensionality reduction techniques for data exploration, PCA has also 

proven useful for tasks such as normalising out environmental effects in SHM data [4].  



The next section will briefly discuss the background of Probabilistic PCA (PPCA), 

which will help the unfamiliar reader better grasp the concept of the GP-LVM.  

 

Probabilistic PCA 

 

   The goal in traditional PCA is to find a reduced set of variables that explain most of 

the variability in the observed data space 𝐘. This is typically achieved using an eigen-

decomposition of the covariance structure of the dataset 𝐘.  The resulting mapping from 

𝐘 to 𝐗 is such that the eigenvectors with the highest eigenvalues provide a mapping 

which aims to capture most of the variability in the data. PCA is used for data 

visualisation by taking sufficient eigenvalues so that a high percentage of the variance 

in the data is captured. This approach to visualising AE data has been investigated and 

proven to be useful, for example, for identifying cracks in aircraft landing gears [5].  

      PCA can be modelled as a Linear Gaussian Model, and doing so brings several 

benefits. The extension is simple, and involves modelling the uncertainty over the 

observation process as Gaussian:    

 

 𝐘 = C𝐗 + 𝜖 (1) 

                                                                 

where 𝐘 and 𝐗 are the observed and latent variables respectively, C is a matrix providing 

the linear map between 𝐗 and 𝐘 and 𝜖 is an observation noise term, which is modelled 

as Gaussian with zero mean and a covariance R. If this covariance is constrained to be 

of the form 𝜎2I  (a matrix with the same variance along the diagonals) then this model 

is equivalent to PCA. The key point in this study is the probabilistic interpretation of 

this model, which can be brought by a simple formulation of its marginal likelihood. 

For PCA, this is relatively straightforward and can be shown [3] to be: 

 

 P(𝐘|C, σ2) = 𝑁(𝜇 |CC⊺ + σ2I) (2) 

which is Gaussian distributed with mean 𝜇 and covariance CC⊺ + 𝜎2I.  Equation (2) 

describes the probability of any observed data point given the latent variable model. The 

training phase for Probabilistic PCA is achieved using the Expectation Maximization 

(EM) algorithm, which is an iterative optimisation scheme that maximises the likelihood 

of the model.   

 

From PCA to GP-LVMs 

 

      Probabilistic PCA is a simple yet very useful model, with its simplicity coming from 

the fact that the map from X to Y is linear, and the observation noise is modelled as 

Gaussian. These are, however, two obvious limitations. There exist nonlinear extensions 

of PCA, with the Autoencoder, based on Neural Network Regression being one of the 

most notable ones. Autoencoders have been successfully applied in SHM contexts [6], 

but have the general disadvantage of long training times, large number of training points 

required, a tendency to over-fit data and most importantly in this case, they are not 

probabilistic.  

 

      Gaussian Process Regression (GPR) [7] is a non-parametric regression technique, 

which means no model form is required a-priori to model the data. This is a major 



advantage. A Gaussian Process (GP) is defined as a probability distribution over 

functions, and regression is performed by conditioning those functions that pass close 

to the observed data points using simple Bayesian relationships [7]. The probability 

distribution of these functions is specified by a covariance function, also often called 

the kernel.  The task of the covariance function is to encode the relationship between 

input and output points and it does so by specifying how all points in the output space 

𝐘 vary together, as a function of how points in the input space 𝐗 vary together. This is 

shown in Equation (3) for a squared exponential kernel: 

 

                                       𝑐𝑜𝑣 (𝑓(𝑥𝑖), 𝑓(𝑥𝑗)) =  𝑘(𝑥𝑖, 𝑥𝑗) =   σf
2 exp (− 

|𝑥𝑖−𝑥𝑗|
2

2𝑙
) (3) 

 

 

 

where 𝑓(𝑥𝑖) is an output corresponding to input 𝑥𝑖, 𝑙 is a length-scale parameter, and 

σf
2 is a noise variance parameter. The squared exponential is a popular choice of kernel 

amongst the GP community, although many more exist; investigating the different 

choices is outside the scope of this paper. The covariance function is used to build a 

covariance matrix, denoted as 𝐾(𝑿, 𝑿′), which is simply an evaluation of the 

covariance function for all points in 𝐗 and an alternate set denoted by 𝐗′. The key 

advantage of the GP is that predictions are probabilistic, so that given a set of training 

inputs 𝐗, test inputs 𝐗∗ and a covariance function, one can formulate a  predictive 

distribution: 

 

 

where 𝑓∗ is the mean of the predictions, cov(𝑓∗) is the variance, or uncertainty around 

those predictions. 

      The idea behind GP-LVMs is rather simple; instead of using a linear map between 

the latent variables 𝐗 and the observed variables 𝐘, as is done in PCA using Equation 1 

(which is essentially a linear regression problem), a GP is used – therefore gaining a 

naturally probabilistic approach to the regression problem. This idea was developed in 

[2],  originally with dimensionality reduction in mind. Different optimisation schemes 

can be used for this – a scaled conjugate gradient was used in this study for the 

optimisation of the GP-LVM latent variables, and EM was used for optimisation of 

PPCA parameters. 

 

Density Estimation using PPCA and GPLVMs 

 

      The approach presented here is to first learn a latent variable model using AE data 

from an undamaged bearing, and then when a new data point is presented, evaluate the 

likelihood ℒ, of the new data point, which can be interpreted as the probability density 

of the data point belonging to the model. It is in fact more practical to work with the 

negative log likelihood. For a new (multivariate) data point 𝐲, for PPCA, this is  

 

                                              𝑓∗  =  𝐾(𝑋∗, 𝑋)[𝐾(𝑋, 𝑋) + 𝜎𝑛
2𝐼 ]−1 𝐲           

 
                                     cov(𝑓∗) = 𝐾(𝑋∗, 𝑋)[𝐾(𝑋, 𝑋) +  𝜎𝑛

2𝐼]−1 𝐾(𝑋, 𝑋∗)   

 (4) 

 

(5) 

 



                                       −log ℒ =  ln |2𝜋 S|  + (𝐲 − 𝝁)⊺S−1(𝐲 − 𝝁)  (6) 

,where S = (CC⊺ + σ2I), as specified in Equation  2, 𝝁 is simply the mean vector of the 

(baseline) data, and 𝐲 is a column vector.  For the GP-LVM, the density is given by [2]: 

 

                                     −log ℒ =  
𝐷𝑁

2
ln 2𝜋 +

𝐷

2
ln |K| +

1

2
𝑡𝑟(K−1𝐲⊺𝐲)  (7) 

 

where, K is the covariance matrix built using 𝐗 from the training set,  𝐷 is the dimension 

of the latent space,  N is the number of points and 𝑡𝑟(𝑥) denotes the trace operator. It is 

the evaluation of these two functions that we wish to perform on training, testing and 

damaged data points.  The data sets used for training and testing both correspond to 

undamaged data. 

 

 

APPLICATION TO FAULT DETECTION 

 

      This section discusses the use of GP-LVM and Probabilistic PCA models for fault 

detection from AE data on the experimental wind turbine bearing rig. The data gathering 

and the rig setup have been discussed in a previous section, so the focus of this section 

is on the data pre-processing, the application of the PPCA and GP-LVM as density 

estimators, and discussion of the results. The results shown here have been taken from 

a single sensor on the outer casing of the bearing test rig. Each time series was pre-

processed to extract basic multivariate features from the AE response. Different hits 

were extracted by thresholding the complex Continuous Wavelet Transform (CWT) of 

the raw time histories, at a scale corresponding to approximately 150 kHz.  The features 

chosen to then represent each hit were maximum amplitude, power, energy, duration, 

rise time (to max amplitude) and decay time.  In order to get an accurate estimate of the 

onset of the signal, an Akaike Information Criteria (AIC) [8] detection scheme was used 

as described in [9].   

 
Figure 3 - Negative log marginal likelihood for both a) PPCA and b) GP-LVM, evaluated for training 

(black) and testing (blue) points from AE hits of undamaged bearing as well as data points from a damaged 

baring (red). The horizontal lines mark the 99.9th percentile of the training data. 
 

a) 

b) 



     The general approach for performing fault detection using these models is to train 

them using a set of data from an undamaged bearing, test their generalisation 

performance using a different set of data still from an undamaged bearing, and finally 

test their ability to highlight defects from a damaged bearing. The measure of 

discordancy used here has been the model likelihoods for both PPCA and GP-LVM as 

described in Equations 6 and 7.  Figure 3 shows the negative likelihood evaluated for 

both models using hit data extracted from the training set, the testing set, and damaged 

set.  

     Note that both training and testing sets contain hits extracted from 15 seconds worth 

of AE data, each. The damaged set contains 30 seconds worth of data. The threshold 

shown in Figure 3 represents the 99.9th percentile of the training data, and we define an 

outlier here as an exceedance of that threshold.  

 

 

Discussion of Results 

 

      Note that the success or otherwise of these models is dictated largely by the features 

used to train them. In this study we have selected rather simple features extracted from 

the time domain of each hit. Significant domain knowledge has therefore been used in 

the hit extraction process simplifying the task of the density estimator. It would be 

desirable, and left as further work to investigate this approach using richer features. 

      It is evident that a GP-LVM outperforms PPCA in detecting outliers on damaged 

data. However, it also has more false positives in the test data set. To put these results 

in greater context, one would expect for these tests 15 outlying points per second, as this 

is the roller pass rate over the defect.  The GP-LVM is clearly detecting more. This 

could be over-fitting from the model, from genuine secondary AE bursts from the 

defect, or from defects away from the loaded zone. In the inner raceway bearing used 

for this test, there are two more seeded defects, significantly away from the loaded zone. 

These sometimes also generate AE responses.  

      It is likely that the GP-LVM is over-fitting in this case. One can observe in Figure 3 

b) that the training points are very concentrated compared to the damaged data, for the 

case of GP-LVM. PPCA on the other hand would appear to have outliers within the 

training set. Investigating these by hand shows that the outliers within the PPCA training 

set are hits so close to each other that they have been extracted as a single hit. This is in 

fact, a genuine outlier. This highlights that although the GP-LVM is able to capture 

more complexity within the training set, in doing so it assigns a high density even to 

outliers. 

 

 
TABLE I – Comparative summary between PPCA and GP-LVM for outlier detection from AE data. 

 Total Exceedances Exceedances per 

second 

Percentage of Hits 

 PPCA GP-LVM PPCA GP-LVM PPCA GP-LVM 

Training 1 1 0.07 0.07 0.14% 0.14% 

Testing 2 0 0.27 5.3 0.44% 8.83% 

Damaged* 88 3 5.8 39.7 2.02% 13.86% 

 



The result of this is the GP-LVM being sensitive to data from a damaged condition, but 

also being so sensitive that it marks many false positives. This is evident in Table I.  

      Note carefully that the comparative results in Table I give a comparison using the 

99.9th percentile of the training data as a threshold for an outlier. A sensitivity analysis 

of a threshold setting is outside the scope of this paper. However, it is worth noting that 

in the case of PPCA, which captures outliers within the training set, a much lower 

threshold is required for it to highlight all the damaged points. In the case of the GP-

LVM, a threshold that is much further away from the training points is required since 

the training points are very tightly distributed while the outliers are separated 

significantly.  

 

 

CONCLUSIONS 

 

      The GP-LVM was not originally designed to perform density estimation, it was 

designed as a tool for data exploration through dimensionality reduction. It has been 

shown here that it can successfully detect the AE bursts originating from a 5 𝜇𝑚 defect 

scribed on an inner raceway, by monitoring outside, on the bearing housing. A 

comparison between the density estimation from a GP-LVM and PPCA has been 

presented, showing that the GP-LVM can discriminate better between different sources 

of data compared with its linear counterpart - PPCA. Its sensitivity however also causes 

the GP-LVM to flag more false positives. There are several aspects that require further 

investigation, including sensitivity to threshold settings, features used, use of 

localisation, analysis of data collected from an in-service gearbox and extensions of 

these models that better model the density.  
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