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 9 

Abstract 10 

 11 

Ground penetrating radar (GPR) surveys have proven useful for locating clandestine 12 

graves in a number of forensic searches.  There has been extensive research into 13 

the geophysical monitoring of simulated clandestine graves in different burial 14 

scenarios and ground conditions.  Whilst these studies have been used to suggest 15 

optimum dominant radar frequencies, the data themselves have not been 16 

quantitatively analysed.  This study uses a common-offset configuration of 17 

semblance analysis both to characterise velocity trends from GPR diffraction 18 

hyperbolae and, since the magnitude of a semblance response is proportional to 19 

signal-to-noise ratio, to provide an objective measure of the strength of a GPR 20 

response.  2D GPR profiles were acquired over a simulated clandestine burial, with a 21 

wrapped-pig cadaver monitored at three-month intervals between 2008-2013 with 22 
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2 

 

GPR antennas of three different centre-frequencies (110, 225 and 450 MHz).  The 1 

GPR response to the cadaver was a strong diffraction hyperbola.  Semblance 2 

analysis of profiles show little sensitivity to changes attributable to decomposition, 3 

and only a subtle influence of seasonality: velocity increases (0.01-0.02 m/ns) are 4 

observed in summer, associated with a decrease (5-10%) in peak semblance 5 

magnitude, SM, and potentially in the reflectivity of the grave.  The lowest-frequency 6 

antennas consistently give the highest signal-to-noise ratio although the grave was 7 

nonetheless detectable by all frequencies trialled.  Whilst GPR analysis cannot 8 

currently provide a quantitative diagnostic proxy for time-since-burial, the 9 

consistency of responses suggests that graves may remain detectable beyond five 10 

years since creation.  Furthermore, there is little seasonal influence on the 11 

detectability of a grave.    12 

 13 

 14 

 15 

 16 

 17 

 18 

 19 

 20 

 21 

 22 



3 

 

Graphical Abstract 1 

 2 

 3 

 4 

 5 

 6 

 7 

 8 

 9 



4 

 

Highlights (max. 85 characters) 1 

 Analysis of 2D GPR profiles acquired over simulated clandestine graves, with 2 

antenna frequencies of 110-900 MHz. 3 

 Semblance analysis configured for analysis of diffraction hyperbolae in common 4 

offset data.  5 

 Grave with wrapped-pig cadaver produces a consistent diffraction hyperbola, 6 

strongest in 110 MHz record. 7 

 No long-term trend observed through the GPR record, suggesting wrapped 8 

burials may remain visible for longer than 5 years after burial. 9 

 Subtle seasonality in GPR response, with semblance suggesting increased 10 

velocity and lower reflectivity during summer. 11 

 12 

 13 
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1. Introduction 1 

 2 

There are numerous and varied methods employed by forensic search teams to 3 

detect the clandestine burial of murder victims (Pringle et al., 2012a; Parker et al., 4 

2010).  Current best practice suggests a phased approach, which moves from large-5 

scale remote sensing methods (Kalacska et al., 2009) through to initial ground 6 

reconnaissance (Ruffell and McKinley, 2014) and control studies before full searches 7 

are initiated (Harrison and Donnelly, 2009; Larsen et al., 2011).  These full searches 8 

have themselves involved a variety of methods including, for example, forensic 9 

geomorphology (Ruffell and McKinley, 2014), forensic botany (Aquila et al., 2014) 10 

and entomology (Amendt et al., 2007), scent-trained search dogs (Lasseter et al., 11 

2003), physical probing (Ruffell, 2005a), thanatochemistry (Vass, 2012) and near-12 

surface geophysics (see e.g. France et al., 1992; Powell, 2004; Nobes, 2000; 13 

Cheetham, 2005; Pringle and Jervis, 2009). 14 

 15 

Near-surface geophysics appeals in forensic searches principally because of survey 16 

efficiency and non-invasiveness.  Ground penetrating radar is arguably the most 17 

commonly used near-surface geophysical technique for clandestine grave detection 18 

(see e.g. Mellet, 1992; Calkin et al., 1995; Davenport, 2001; Ruffell, 2005b; Schultz, 19 

2007; Billinger, 2009; Novo et al., 2011; Ruffell et al., 2014), and Nobes (2000) 20 

deploys the technique alongside electromagnetic prospection methods.  Forensic 21 

burials differ strongly from historical and/or archaeological graves (e.g. Fiedler et al., 22 

2009; Hansen et al., 2014).  Archaeological examples can be difficult, though not 23 

impossible, to detect due to limited skeletal remains and processes of soil 24 
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compaction (Vaughan, 1986); however, archaeological graves can be associated 1 

with monumental and/or ceremonial features, which are more readily detected.  2 

While the clandestine burial lacks any monumental features, organic remains are 3 

often present and the burial is typically shallow.  As such, while archaeological 4 

survey methodologies may be replicated in forensic searches, the style and 5 

composition of the grave and its contents vary between the two settings.    6 

   7 

Several recent GPR control studies use animal remains as a proxy for human 8 

remains in constructed graves, which are then repeatedly surveyed over extensive 9 

time periods (see e.g. France et al., 1992; Buck, 2003; Schultz et al., 2006; Schultz, 10 

2007; Pringle et al., 2008; Schultz, 2008; Schultz and Martin, 2011; Pringle et al., 11 

2012b; Schultz and Martin, 2012).  These studies aim to determine optimal antenna 12 

centre-frequencies for numerous variables, including different time periods post-13 

burial, varied burial styles, different soil types and local depositional environments.  14 

However, the assessment of GPR results has largely been visual, qualitative and/or 15 

subjective (Pringle et al., 2012b).  This contrasts with a recent example of resistivity 16 

analysis, in which an objective and quantitative approach to characterising electrical 17 

responses was developed (Jervis and Pringle, 2014).    18 

 19 

In this study, we develop a semblance-based method to objectify the assessment of 20 

a time-lapse archive of GPR observations from a simulated clandestine burial site.  21 

Semblance analysis, familiar for applications to data in the common midpoint (CMP) 22 

domain, is adapted for application to profiles of common offset GPR data.  We 23 

demonstrate using synthetic data that the peak magnitude of the semblance 24 
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response can be used as an indicator of signal-to-noise ratio, which in turn is 1 

suggestive of the underlying reflectivity of the target.  We then consider the 2 

implications of semblance responses for the interpretation of real data.  We observe 3 

a small seasonality in the peak semblance magnitude, likely related to soil moisture 4 

fluctuations but having only a minor impact on target detectability.  A forensic search 5 

team could therefore anticipate that the GPR response to a burial will be constant 6 

throughout the year, and the results of the survey will be largely unaffected by local 7 

variations in soil condition. 8 

 9 

2. Methods 10 

Here, we describe the existing archive of pre-recorded GPR data, and describe our 11 

use of semblance analysis as a quantitative assessment tool. 12 

2.1. Study background 13 

This study focuses on the GPR archive of time-lapse geophysical observations 14 

acquired at a test site, where buried pig cadavers were used as a proxy for 15 

clandestine graves (Pringle et al. 2012b).  The site is former garden land in the 16 

campus of Keele University (Staffordshire, UK) and is deemed typical of a semi-rural 17 

environment in the UK.  The soil at the site is predominantly sandy loam, above the 18 

local water table, with fragments of shallow sandstone bedrock present at depths 19 

below ground level exceeding 0.5 m.  Three graves were dug at an interval of 20 

approximately 4 m, to a depth of 0.5 m (representing a clandestine grave 21 

construction halted when encountering hard rock fragments).  A pig cadaver 22 

weighing approximately 80 kg was placed in two graves before backfilling; the third 23 
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grave was left empty and backfilled as a control.  One pig cadaver was left naked 1 

(termed the ‘naked-pig grave’) and the second was wrapped in a porous tarpaulin 2 

(termed the ‘wrapped-pig grave’) (Jervis et al., 2009), to simulate two common 3 

conditions of murder victims.  The study site remained dedicated as such throughout 4 

the study period and was subject to no change for its duration excepting natural 5 

processes.  Extended discussion of the construction of the test site, and of the full 6 

suite of geophysical archives, is given in Jervis et al. (2009), Pringle et al. (2012b) 7 

and Jervis and Pringle (2014).  In this analysis, we consider only the GPR profiles 8 

acquired over the wrapped-pig grave. 9 

 10 

2.3 GPR survey data collection and basic processing 11 

GPR profiles were repeatedly collected over the five year monitoring period, at 12 

intervals of approximately 3 months.  Sensors&Software PulseEKKO1000™ 13 

equipment was used to collect 2D common offset (CO) profiles, using antenna sets 14 

of 110 MHz, 225 MHz, and 450 MHz centre-frequency (acquisition parameters listed 15 

in Table 1).  Throughout, vertical stacking was set to 32.  Data were processed in 16 

Sandmeier ReflexW© software, using sequential ‘dewow’ and Ormsby bandpass 17 

filters, static corrections to align time-zero within each trace, and a gain function 18 

based on the energy decay curve within each trace (Table 2).  No form of migration 19 

is applied since this would collapse the diffraction hyperbolae which are the key 20 

focus of our analysis.  Additionally, there is no topographic variation across the site 21 

hence static corrections are constant for each profile. 22 

 23 
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Representative time-lapse profiles acquired over the wrapped-pig grave are shown 1 

in Figure 1, the full suite of which is later supplied to semblance analysis for 2 

additional characterisation.  The response to the wrapped-pig burial was a diffraction 3 

hyperbola, typically prominent throughout the survey period for all antenna 4 

frequencies acquired.    5 

 6 

Table 1.  Acquisition and relevant processing parameters for GPR profiles used in 7 

this study. 8 

Centre-
frequency 
(MHz) 

Spatial 
sampling 
interval (m) 

Temporal 
sampling 
interval (ns) 

Antenna 
separation (m) 

110 0.20 0.8 1.00 

225 0.10 0.4 0.50 

450 0.05 0.2 0.25 

900 0.025 0.1 0.17 

 9 
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 1 

Fig. 1. Representative GPR 2D profiles, from 110, 225 and 450 MHz records over 2 

the wrapped-pig grave, acquired 12, 24, 36, 48 and 60 months after the creation of 3 

the graves.  All profiles were 5 m wide.  After Pringle et al. (2012b). 4 

 5 

 6 

 7 

 8 



11 

 

2.4 Semblance as a measure of data quality 1 

 2 

Semblance is commonly applied in seismic and GPR velocity analysis routines (see, 3 

e.g., Yilmaz, 2001; Porsani et al., 2006; Fomel and Landa, 2014), which seek to 4 

derive a subsurface velocity distribution from travel-time relationships in a dataset.  5 

Typically, semblance analysis is applied to reflection hyperbola in the common 6 

midpoint (CMP) domain, where the travel-time, t(x), of energy reflected from the 7 

horizontal base of homogeneous, isotropic, overburden is approximated by the 8 

‘normal moveout’ (NMO) equation:  9 

t(x)2 = t02 + (x2 / VST
2),      (Eq. 1) 10 

where x is the source-receiver offset, t0 is the travel-time to that base at x = 0, and 11 

VST is termed ‘stacking velocity’, a near-offset approximation to root-mean-square 12 

velocity VRMS.  For the case of a single overburden layer, VRMS is equivalent to 13 

interval velocity, VINT, the propagation velocity within any one interval of the 14 

subsurface.  The semblance statistic then provides a measure of the coherency of 15 

energy along trial trajectories defined by the substitution of trial pairs of VST and t0 16 

into Equation (1). 17 

 18 

However, the data considered in this study were profiles of common offset (CO) data 19 

and the responses to be analysed in semblance analysis were diffraction, rather than 20 

reflection, hyperbolae.  As such, the NMO equation was reconfigured for diffraction 21 

trajectories in the CO profile, such that travel-time, t(x), was approximated as: 22 

 t(x)2 = t(x0)2 + (4(x-x0)2/vST
2),     (Eq. 2)  23 
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with x redefined as the position along a profile, x0 as the surface position vertically 1 

above the diffracting target and t(x0) as the travel-time to the target when antennas 2 

are positioned at x0 (see Ristic et al., 2009).  By substituting trial x0, t(x0) and VST 3 

values into Equation (2), semblance is therefore measured along trajectories 4 

corresponding to diffraction hyperbolae in the GPR profile. 5 

 6 

In addition to the objective definition of a subsurface velocity distribution from 7 

diffraction hyperbolae (as opposed to subjective curve-fitting), the semblance 8 

statistic could also provide an objective measure of data quality in terms of velocity 9 

resolution and signal-to-noise ratio (SNR).  Assuming that the only changes within a 10 

time-lapse dataset are related to subsurface processes, and not environmental ones 11 

(e.g., ambient noise level), the changing semblance response could provide a proxy 12 

for the evolving reflectivity of the target and/or its detectability against background 13 

noise levels.  14 

 15 

The relationship between signal-to-noise ratio and semblance-derived parameters 16 

was explored for synthetic GPR data (Fig. 2a), simulated using GprMax (see 17 

Giannopoulos, 2005).  Specifically, synthetic data were used to investigate how 18 

variations in SNR are manifested in the peak magnitude and the velocity resolution 19 

expressed by a semblance response.  The simulation represented the GPR 20 

response over a point diffractor, located at a depth of 0.7 m within a homogeneous 21 

layer of constant interval velocity of 0.12 m/ns; the GPR pulse was approximated by 22 

a 500 MHz Ricker wavelet, transmitted from a monostatic antenna with a spatial 23 

sampling interval of 0.01 m.  Normally-distributed random noise amplitudes were 24 
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scaled and added to the synthetic data, to give SNR of +10 dB.  The semblance 1 

response (Fig. 2b), computed in Mathworks Matlab® for ranges of VST and t(x0) 2 

substituted into Equation (2), showed a characteristic arrangement of peaks which 3 

correspond to the slower stacking velocities expressed by successive wavelet half-4 

cycles, given their increasing delay from first-break (see Booth et al., 2010a for 5 

background).  Semblance trajectories were defined for an aperture of 240 traces, 6 

i.e., for x = 1.2 m either side of the target diffraction (blue box in Fig. 2c), located 7 

vertically beneath x0 = 2.5 m.  The source pulse is dominated by the second wavelet 8 

half-cycle (Fig. 2c), hence the peak semblance magnitude, SM (a dimensionless 9 

quantity), was measured for the second semblance peak; here, SM = 0.703.  The 10 

half-width of the same semblance peak spanned a range of stacking velocities from 11 

~ 0.117 m/ns to 0.127 m/ns, hence vST resolution is the velocity enclosed by this 12 

range, ≈ 0.01 m/ns. 13 

 14 

 15 

Fig. 2.  Synthetic 500 MHz GPR diffraction hyperbola (a), showing the response to a 16 

point diffractor. The semblance response (b) is calculated within a 2.4 m-wide 17 
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aperture.  The second semblance peak is picked, since this corresponds to the 1 

largest-magnitude of the four wavelet half-cycles labelled in (c).   2 

 3 

Since semblance is a measure of wavelet coherency, an increase in the underlying 4 

noise level (i.e., a reduction in SNR) should reduce SM.  In Figure 3a, SM is 5 

measured for the synthetic data as SNR is increased from -10 dB to +20 dB, and 6 

reduces sharply for SNR < +2.5 dB.  For the time-lapse applications of this study, 7 

assuming that noise is stationary, SM would be expected to vary as (e.g.) the 8 

reflectivity of the target changes, or with changes to the attenuation characteristics 9 

(typically associated with changing water saturation) of the overburden.  Given the 10 

link to water saturation, the latter process may also be associated with a reduction in 11 

vST.    12 

 13 

The resolution of stacking velocity vST in a semblance panel is a function of the 14 

travel-time moveout (the difference between t(x) and t(x0)) displayed by a diffraction 15 

hyperbola; the greater the moveout that is expressed, the better the resolution of vST 16 

will be (Booth et al., 2011).  If a wavelet undergoes greater attenuation, it follows that 17 

it will be visible in an increasingly narrow aperture around the diffraction hyperbola, 18 

and therefore display less travel-time moveout.  We simulated this effect in Figure 19 

3b by reducing the semblance aperture across which the synthetic data were 20 

analysed, from 2.4 to 0.4 m (corresponding to travel-time moveout reducing to 0.5 21 

ns).  The curves in this plot span the half-width of the resulting semblance peaks (as 22 

shown in Fig. 2b), therefore a narrower span implies superior resolution.  Note that 23 

this ‘funnel-shaped’ plot was observed by Booth et al. (2011) for semblance analysis 24 

of CMP gathers, suggesting that the behaviour of the semblance statistic is 25 
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independent of the domain in which it is applied.  For a fixed analysis aperture, the 1 

resolution of velocity can also be used as a proxy SNR, since a higher-amplitude 2 

wavelet will be perceptible across a longer moveout range.   3 

 4 

Fig. 3.  Characteristics of semblance responses for modified synthetic data. a) Peak 5 

semblance magnitude, SM, is increased for higher SNR within the synthetic data. b) 6 

The half-width of semblance peaks spans a narrower range of stacking velocity (i.e., 7 

improved resolution) for hyperbolae perceived across a wider aperture, 8 

corresponding to a longer travel-time moveout. 9 

 10 

 11 

 12 

3. Data Analysis 13 

 14 

Characteristics of the semblance response were used to quantify the assessment of 15 

GPR data quality.  For all data analysed, we recorded: 16 

1) the peak magnitude of the semblance response, SM, to the diffraction hyperbola 17 

within each input profile; 18 

2) the stacking velocity (vST) at which SM is expressed; 19 
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3) the half-width of the peak semblance response, to quantify the resolution of vST, 1 

and; 2 

4) the travel-time, t(x0), at which SM is expressed. 3 

While quantifying the assessment of GPR data quality, any systematic variation in 4 

these quantities could also be diagnostic of some decompositional process acting on 5 

the burials, or a change in the local overburden. 6 

 7 

All GPR profiles were exported from ReflexW© processing software into Mathworks 8 

Matlab® for semblance analysis, and continuous time series of semblance 9 

characteristics could be derived for the five-year study period.  All semblance 10 

analyses considered a range of trial stacking velocities from 0.05-0.12 m/ns, in 11 

increments of 0.0001 m/ns.  The reference position, x0, was taken in all cases to be 12 

2.4 m (the position of the trace in which the apex of the diffraction hyperbola was 13 

perceived), and t(x0) spanned a range from 0-30 ns in increments equal to the 14 

temporal sampling interval of the input data (see Table 1).  The semblance analysis 15 

window also spanned an interval equivalent to one temporal sample, to give the 16 

highest-resolution semblance response (see Booth et al., 2011 for background).  The 17 

analysis aperture was fixed at 4 m in all cases, consistent with the widest range of 18 

traces over which the diffraction hyperbola could be perceived. 19 

 20 

21 
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4.  Results 1 

 2 

Figure 4 shows diffraction hyperbolae in GPR 2D profiles, and their corresponding 3 

semblance responses.  This illustrative example, shown here for profiles acquired 4 

over the graves one year after their creation (the ‘12 MTH’ set of profiles in Fig. 1), 5 

was repeated for all profiles in the study.  The hyperbolic curves which overlie the 6 

profiles were defined by substituting the VST and t(x0) pair expressed at the peak 7 

semblance response (as annotated in Fig. 4) into Equation (2).  The 110 MHz 8 

response showed the highest peak semblance (> double that of the other 9 

diffractions) but, consistent with its lower frequency (Booth et al., 2011), the poorest 10 

velocity resolution. 11 

 12 

Although the 2D profiles were acquired over the same target, each hyperbola 13 

expressed a different stacking velocity and travel-time.  This effect was partly 14 

attributable to effects of target geometry (i.e., the size of the target scattered different 15 

components of each frequency-limited wavelet), but also to the incorrect assumption 16 

in Equation (2) that there is zero offset between antennas (i.e., a monostatic GPR 17 

system).  No correction was made for this since it would require a priori knowledge of 18 

the RMS velocity, but the necessary travel-time corrections could be included into 19 

the semblance analysis if required.  Nonetheless, the semblance parameters we 20 

obtained should not be interpreted in terms of absolute subsurface properties (e.g., 21 

dielectric permittivity, or target radius; see Shihab and Al-Nuaimy, 2005; Ristic et al., 22 

2009 for background); instead, they were simply the quantities that the hyperbolae 23 

express.  However, since the geometry of the acquisition never changed through the 24 
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survey period, relative differences between successive semblance responses could 1 

be related to a change either in subsurface properties or ambient conditions. 2 

 3 

 4 

Fig. 4.  Representative GPR 2D profiles acquired 12 months after burial, with 5 

corresponding calculated semblance analyses for (a) 110 MHz, (b) 225 MHz and (c) 6 

450 MHz data.  Arrows and corresponding annotations in semblance panels (right) 7 

indicate the respective peak semblance response. 8 

 9 

 10 

The time series for vST, vST resolution and t(x0) are shown in Figure 5.  Resolution 11 

was represented by the vertical vST error bar, and the colour of the symbol 12 
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corresponds to t(x0).  The time series of semblance magnitude is shown in Figure 6.  1 

Abbreviations W, SP, SU and A correspond respectively to seasons of the year 2 

(defined here as the complete months of January-March for winter, April-June for 3 

spring, July-September for summer, and November-December for autumn). 4 

 5 

No long-term trend was perceived through the observations for the wrapped-pig 6 

grave, for any semblance parameter or indeed antenna frequency; however, there 7 

was limited seasonality indicated within the VST and SM series.  Stacking velocities 8 

tended to increase during the spring and summer months (an increase of ~0.01-0.02 9 

m/ns compared to winter and autumn).  This observation was consistent with soil 10 

moisture budget calculations of Jervis and Pringle (2014), who showed that the site 11 

was significantly drier during summer.  These trends were supported by crossplots in 12 

which VST data are separated according to the season acquired (Fig. 7). 13 

 14 

In contrast to VST, semblance magnitudes exhibited reductions (~5-10%) in spring 15 

and summer compared to their values in autumn and winter, potentially suggesting 16 

that the reflectivity of the wrapped-pig burial is weakest when the soil was driest (i.e., 17 

a stronger dielectric contrast exists between the grave and a moist soil).  This effect 18 

was most apparent in the 450 MHz record; in the crossplot in Figure 7c, VST and SM 19 

are anti-correlated, but the equivalent relationship is weaker for the 110 and 20 

(especially) 225 MHz records.   21 

 22 
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 1 

Fig. 5.  Time series of stacking velocity (symbols) with velocity resolution (error bars) 2 

and travel-time (symbol colour), calculated by semblance analysis of 110 MHz, 225 3 

MHz and 450 MHz diffraction hyperbolae data.   4 
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 1 

Fig. 6. Time series of semblance magnitude, SM, expressed by semblance analysis 2 

of 110 MHz, 225 MHz and 450 MHz diffraction hyperbolae.  3 

 4 

 5 

 6 

 7 

 8 

 9 

 10 

 11 

 12 

 13 

 14 

 15 

    16 
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 1 

Fig. 7.  Crossplots of VST versus SM for (a) 110 MHz, (b) 225 MHz and (c) 450 MHz 2 

profiles.  Symbols are coloured according to season acquired (see legend). 3 

 4 

 5 

While we cannot exclude velocity and/or reflectivity changes associated with 6 

variations in the geometry of the burial over time (see Shibab and Al-Nuaimy, 2005), 7 

as the pig cadaver gradually decomposes, combined VST and t(x0) quantities 8 

consistently estimate the depth of the burial as 0.50 m ± 0.07 m, suggesting that 9 

geometric changes were not significant. 10 

 11 

  12 
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5.  Discussion 1 

 2 

In their study of simulated grave sites, Jervis and Pringle (2014) quantified the 3 

resistivity response of wrapped- and naked-pig burials over a five year monitoring 4 

period, and cautioned that seasonal variations may make grave-related anomaly(s) 5 

undetectable at certain times of the year.  Although limited primarily to the study of 6 

the wrapped-pig grave, the semblance analyses we have performed show, by 7 

contrast, no evidence of a systematic evolution of GPR properties over the course of 8 

the survey, and only a small seasonal control on the responses.  GPR methods are 9 

therefore unlikely to be readily sensitive to changes in the condition of a burial, and 10 

are instead more directly influenced by the environmental state (e.g., water content) 11 

of the host soil material.  This insensitivity likely impedes forensic application of GPR 12 

to date a burial.  However, by contrast with resistivity methods (Jervis and Pringle, 13 

2014), there was also no time of the year which could be described as obstructive to 14 

GPR methods hence a forensic search team could expect similar results from the 15 

GPR survey regardless of when the survey was conducted.     16 

 17 

The highest semblance magnitudes were typically observed for the 110 MHz data 18 

(their mean SM was 13%, and 20%, higher than those of the 225 MHz and 450 MHz 19 

series, respectively), presumably because SNR in the low frequency dataset was 20 

higher given the reduced signal attenuation.  While antenna frequencies should be 21 

chosen on a site and/or target-specific basis, we suggest that semblance analysis 22 

offers no practical limitation on the lowest recommendable frequency, an observation 23 

made by other researchers (e.g. Schultz and Martin, 2011; Pringle et al. 2012b). 24 

 25 
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Semblance analysis was lastly a promising means of objectifying the assessment of 1 

GPR data profiles, but only where targets (such as wrapped-pig burials) were 2 

expressed as diffraction hyperbolae.  The method would be unsuitable for assessing 3 

data in which targets do not present as prominent diffractions, including the majority 4 

of the 2D profiles acquired over the naked pigs (Pringle et al. 2012b).  However, in 5 

these cases, it may be possible to conduct equivalent semblance analyses but for 6 

data acquired as CMP gathers, although these are significantly more time-7 

consuming to collect (see Booth et al. 2010b).  A future development of the method 8 

would be to incorporate the finite offset of the GPR antennas into the semblance 9 

calculation or, alternatively, obtain the zero-offset response from the CO profile by 10 

the application of dip moveout (DMO) methods (e.g. see Jakubowicz, 1990).  In this 11 

way, semblance-derived parameters would be more interpretable in terms of the 12 

underlying physical properties of the subsurface and, potentially, the geometry of the 13 

burial. 14 

  15 
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6.  Conclusions 1 

 2 

This study showed an objective means of assessing GPR diffraction hyperbolae from 3 

simulated graves, with semblance-derived quantities of stacking velocity, velocity 4 

resolution and semblance magnitude all useful to this end.  Data from our wrapped-5 

pig grave were consistently amenable to semblance analysis, featuring strong 6 

diffraction hyperbolae.  The lowest frequency (110 MHz) acquisition consistently 7 

featured the highest signal-to-noise ratio responses, albeit with the lowest resolution.   8 

 9 

In contrast to the electrical resistivity surveys detailed in Jervis and Pringle (2014), 10 

there was no detectable long-term temporal trend observed with the GPR data over 11 

the survey period (although Pringle et al. (2012b) noted a qualitative tendency for 12 

hyperbolae to reduce in amplitude as more time since burial elapsed).  This gives 13 

confidence that GPR could detect a wrapped burial much older than five years in a 14 

comparable study setting of a sandy loam, semi-rural, environment.  Subtle seasonal 15 

variations were observed with increased velocities and lower reflectivity in summer 16 

months, but not to the extent that seasonality would preclude imaging and GPR 17 

application. 18 

 19 

We recommend further development of quantitative GPR analysis of forensic data, 20 

and suggest further research on control data, from a range of study settings, to 21 

validate the derivation of subsurface properties and determine the long-term 22 

sensitivity of semblance analysis to established decomposition trends. 23 

 24 

 25 
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