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Abstract 

This article proposes a design approach to calculate the capacity of slender high-strength concrete (HSC) 

columns confined with a cost-effective Steel Strapping Tensioning Technique (SSTT). The approach is 

based on results from segmental analyses of slender SSTT-confined circular columns subjected to 

eccentric loads. A capacity reduction factor analogue to that proposed by Kwak and Kim (2004) accounts 

for the effect of slenderness in design. P-M interaction diagrams computed using rigorous nonlinear P-ǻ 

analyses are compared to those calculated by the proposed approach to assess its accuracy. The results 

indicate that the proposed approach predicts conservatively the ultimate capacity of slender HSC circular 

columns confined using the SSTT, and therefore it can be used in the design of modern reinforced 

concrete (RC) structures. 
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1 Introduction 

To reduce the building mass and maximise usable floor space, many modern high-rise moment-resisting 

RC frame buildings are constructed using high-strength concrete (HSC) columns with small cross 

sections (compared to the column length) and end restraints that cannot prevent column sway. Such 

“slender columns” tend to deform laterally when subjected to axial load and bending moments, thus 

subjecting the columns to additional (second order) moments that add to the first order moments. Hence, 

at large lateral deformations, slender columns can experience global buckling and can fail at lower loads 

compared to those resisted by “short” columns. To account for the additional second order moments in 

design, current design codes [e.g. Eurocode 2 (2004), ACI 318 (2011)] factorise the first order moments 

by an “amplification factor” that essentially depends on the lateral deformation of the slender columns. In 

these codes, the column lateral deflections are calculated using an approximate flexural stiffness (EI) of 

the cross section. However, the calculation of EI is not trivial as this value is affected by cracking, time-

dependent effects and the nonlinearity of the concrete stress-strain curve as the applied load increases. 

Moreover, equations to compute EI included in existing codes are applicable to normal-strength concrete 

(NSC) columns with rectangular cross section, and have proven conservative for the design of circular 

columns (Bonet et al. 2011). On the other hand, rigorous numerical P-ǻ analyses can predict accurately 

the lateral deformations of slender columns, but such analyses are time-consuming and therefore difficult 

to use in practice. 

To overcome the above drawbacks, Kwak and Kim (2004) proposed a direct capacity reduction method 

for the design of slender RC columns. In this method, the column is initially assumed as “short”, and its 

load-moment (P-M) interaction diagram is calculated using section analysis based on force equilibrium 

and compatibility conditions. To compute the ultimate capacity of the slender column, the P-M 

interaction diagram of the “short” column is factorised by a capacity reduction coefficient that accounts 

for the effect of slenderness. Kwak and Kim (2004) report that the results from the direct capacity 

reduction method compare reasonably well with those obtained from rigorous P-ǻ analyses of columns 

with different cross section dimensions, longitudinal steel ratios and slenderness ratios L/r (L=column 

length; r=ratio of gyration of the column cross section). Moreover, the method predicts more accurately 
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the capacity of columns with L/r≥70 in comparison to the “amplification factor” method used by ACI 318 

(Kwak and Kim 2004). 

Previous research indicates that HSC columns can fail in a non-ductile manner, and therefore adequate 

confinement is necessary to provide ductility (Shin et al. 1989; Ho 1994). Internal steel confinement (ties 

or stirrups) was used in the past to enhance the ductility of such columns (e.g. Canbay et al. 2006, Ho et 

al. 2010). However, the effectiveness of internal stirrups at enhancing column ductility is limited as only 

the inner core of the column cross section is effectively confined after concrete cover spalling occurs, 

usually close the peak column capacity. To prevent concrete cover spalling and enhance the effectiveness 

of the confinement, concrete-filled steel tubular (CFST) columns have been examined experimental and 

analytically in the past (e.g. O'Shea and Bridge 2000; Giakoumelis and Lam 2004; Han et al. 2008; Ho et 

al. 2014). CFST are an attractive structural solution as the confining steel tubes can be also used as 

permanent formwork. More recently, externally bonded Fibre Reinforced Polymers (FRP) were also 

utilised to confine HSC members (e.g. Idris and Ozbakkaloglu 2013; Lim and Ozbakkaloglu 2014). 

However, both steel tubes and FRP composites can only provide passive confinement to concrete 

elements. Moreover, the initial cost of FRP may discourage their use as confinement solution in low and 

medium income developing countries. As a consequence, it is deem necessary to develop more cost-

effective confining solutions for RC columns. 

Recently, a cost-effective Steel Strapping Tensioning Technique (SSTT) was proven very effective at 

enhancing the load capacity and ductility of “short” columns cast with NSC (Moghaddam et al, 2010) and 

HSC (Awang 2013; Awang et al. 2013). The SSTT involves the post-tensioning of high-strength steel 

straps around RC members using hydraulically-operated steel strapping tools as those utilised in the 

packaging industry. After post-tensioning, the straps are fastened mechanically using jaws push-type seals 

to maintain the tensioning force. This provides active confinement to the full section of members, thus 

increasing their ductility and capacity. In comparison to other confining techniques such as FRP, the 

SSTT has advantages such as ease and speed of application, ease of removing or replacing steel straps, 

and low material cost. However, whilst most of the previous studies used the SSTT as a retrofit solution 

http://dx.doi.org/10.1260/1369-4332.18.9.1487


for existing RC elements (Helal et al. 2014; Garcia et al. 2014), less research has examined its use as 

external confinement for new HSC columns. Moreover, it is necessary to provide simple design methods 

for new SSTT-confined HSC columns so that the technique can be widely used in practice. 

This paper proposes a design approach for slender HSC circular columns confined using the SSTT. The 

approach was developed using results from segmental analyses of SSTT-confined circular columns 

subjected to eccentric loads. A capacity reduction factor analogue to that proposed by Kwak and Kim 

(2004) accounts for the effect of slenderness that usually dominates the design of such columns. P-M 

interaction diagrams computed using rigorous nonlinear P-ǻ analyses are compared to those calculated 

using the proposed design approach to assess its accuracy. The design approach proposed in this study is 

expected to contribute towards a) a wider use of the SSTT in new HSC structures, b) a faster adoption of 

the cost-effective active confinement technique by designers/practitioners and design guidelines, and c) a 

significant reduction of computational effort during the design of new HSC structures. 

2 Deflections of slender SSTT-confined HSC columns 

A theoretical model is proposed to calculate the deflections of slender SSTT-confined HSC columns 

subjected to eccentric loads. The model simulates the second order effects experienced by a slender 

column using an axial load-moment curvature path. The load-deflection curve at each discrete point of the 

column is obtained by a numerical integration method (Newmark 1943). The analyses are carried out 

using a computational code written in MATLAB 7.6, according to the procedure described in the 

following sections. 

2.1 Constitutive models for analysis 

In this study, the confinement model proposed by Awang et al. (2013) is used to account for the effect of 

steel strap confinement on HSC. The model is based on the equations proposed originally by Mander et 

al. (1988) for normal strength concrete subjected to active confinement, but Awang et al. (2013) 

calibrated the model (using an extensive experimental database) and extended its applicability to HSC 

columns confined with the SSTT. Accordingly, the concrete stress (fci) at a given strain (İci) is defined by: 



Chau-Khun, M., Awang, A. Z., Omar, W., Pilakoutas, K., Tahir, M. M., & Garcia, R. (2015). Elastic Design of Slender High-Strength RC Circular Columns 
Confined with External Tensioned Steel Straps. Advances in Structural Engineering, 18(9), 1487-1500. http://dx.doi.org/10.1260/1369-4332.18.9.1487 

 

5 

 

௖݂௜ ൌ ௙೎೎ᇲ ௫௥௥ିଵା ௫ೝ                                                                        (1) 

 

where x=İcc/İ’cc; İcc is the axial compressive strain of concrete and is computed as İcc=[1+ሺͷሺ݂Ԣ௖௖Ȁ ௖݂௢ሻ െͳሻ]; İ’cc and  f’cc are the strain and concrete strength in confined conditions, respectively; and fco is the 

unconfined concrete compressive strength. Likewise, r=Ec/(Ec–E’sec), where Ec is the tangent modulus of 

elasticity of concrete and E’sec is the secant modulus of elasticity of the confined concrete at peak stress. 

For the analysis performed in this study, these values are assumed to be Ec=22700 ඥ݂ᇱ௖௖ȀͳͻǤ͸  (MPa) 

and E’sec=f’cc/İ’cc (MPa), as suggested by Awang et al. (2013),  

The values f’cc and İ’cc are calculated using the empirical model proposed recently by Awang et al. (2013) 

for concrete confined using the SSTT: 

݂Ԣ௖௖ ൌ ௖݂௢ ή  ʹǤ͸ʹሺߩ௩ሻ଴Ǥସ                                                   (2) 

Ԣ௖௖ߝ                                        ൌ ௖௢ߝ  ή  ͳͳǤ͸Ͳሺߩ௩ሻ                                                    (3) 

where ȡv is the volumetric confinement ratio of steel straps (ȡv=Vsfy/Vcfco, where Vs and Vc are the volumes 

of straps and confined concrete, respectively, and fy is the yield strength of the straps); and İco is the 

ultimate strain of unconfined HSC (assumed equal to 0.004). It should be mentioned that Eqns 2 and 3 

were calibrated using data from uniaxial compressive tests on 140 concrete cylinder specimens (100×200 

mm) with strap confinement ratios ranging from 0.06 to 0.86. 

A simplified bilinear tensile stress-strain (fs-İs) model is adopted for the reinforcement, according to: 

 sss Ef       for ys  0  
(4) 

 ys ff       for ys    
 

where Es is the elastic modulus of the longitudinal column reinforcement; whereas İs  and İy are the strain 

and yield strain of such reinforcement, respectively. 

The moment-curvature relationship of a column can be determined using the above material properties 

and the geometry of the cross section, as shown in the following section. 

http://dx.doi.org/10.1260/1369-4332.18.9.1487


2.2 Calculation of moment-curvature relationships 

2.2.1 Material properties and section analyses 

For the analyses performed in this paper, a column with circular cross section of diameter D=150 mm cast 

using HSC of fco=60 MPa is assumed (Figure 1a). The longitudinal column reinforcement consists of four 

10 mm bars, with a yield strength fy=460 MPa and an elastic modulus Es=200 GPa. A free concrete cover 

of 20 mm is adopted. Each confining steel straps is assumed to have a cross section of 0.5×15 mm and an 

elastic modulus of 200 GPa. These properties are typical of steel straps used in the packaging industry in 

Southeast Asia.  

To achieve a desired confined concrete strength using the SSTT, designers are free to select the 

volumetric ratio ȡv by changing the strap spacing, number of strap layers, yield strength of the straps and 

compressive concrete strength. However, typical values of ȡv for practical confining applications on HSC 

columns range between 0.05 and 0.50. Whilst higher values of ȡv usually lead to higher column capacity, 

the number of straps that can be installed is limited by practical aspects such as a) the clear spacing 

between straps necessary to secure the metal clips using the jaws (minimum 2-3 mm), b) the number of 

strap layers than can be secured using a single clip (normally no more than two layers of straps), and c) 

the yield strength of the steel straps. Therefore, SSTT volumetric ratios ȡv=0.09, 0.25 and 0.50 are used in 

this study to assess the effect of light, moderate and heavy steel strap confinement that can be applied in 

practice. Results from compressive tests on short HSC columns confined with such SSTT volumetric 

ratios indicate that column failure is dominated by a ‘ductile’ behaviour (e.g Lee et al. 2013). 
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Figure 1. Analytical model and assumptions used in the calculations  

Conventional section analysis is carried out by discretizing the column cross section into 50 layers, as 

shown in Figure 1b. For every step of analysis, the axial load (Nstep) and bending moment (Mstep) of the 

column can be calculated using: 

Nstep = σ   ௖݂௜ݕ௜ d݈ ൅  ሺ࣌௦௜ െ  ௖݂௜ሻ௡௜ୀ଴   ௦௜                                       (5)ܣ

Mstep =  σ ሺ  ௖݂௜ݕ௜ d݈ሻ ௜ܲ௡௜ୀ଴  + ሺ࣌௦௜ െ  ௖݂௜ሻሺܴ െ  ݀௦௜ሻܣ௦௜                         (6) 

where yi is the width of i-th layer; dl is the thickness of each layer (dl=3 mm); ોsi is the stress of the 

longitudinal column bar at the i-th layer; Asi is the corresponding cross-sectional area of the longitudinal 

column bar; Pi is the distance from the center point of the i-th layer to the neutral axis; R is the column 

radius (R=D/2); and dsi is the distance between longitudinal tensile bars and the extreme concrete fibre. 
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2.2.2 Moment-curvature analysis 

An incremental iterative procedure is used to calculate the moment-curvature relationships. As such, the 

extreme fibre concrete strain (İcj) is increased gradually from zero up to the ultimate concrete strain (İcu). 

For each strain value İcj, the curvature øj is varied until the resultant axial load is similar to the applied 

axial load Nstep. The neutral axis depth xn is determined using øj=İcj/xn, and the resultant moment is thus 

calculated using Eqn 6.  

2.3 Calculation of column deflections 

Based on the moment-curvature relationship of the cross section, the lateral deflection of a slender 

column can be calculated using numerical integration. This technique has been used for the analysis of 

RC (e.g. Pfrang and Siess 1961; Cranston 1972), steel (Shen and Lu 1983), composite (e.g. Choo et al. 

2006; Tikka and Mirza 2006) and FRP-confined columns (e.g. Jiang and Teng 2012). 

The curvature of a column (ø) is defined as the second order derivative of its lateral deflection (į), and its 

relationship can be expressed using a central difference equation: 

௠ାଵߜ െ ௠ߜʹ ൅ ߜ௠ିଵ ൌ  െø௠ሺdܮଶሻ                                                (7) 

where ߜ௠ and ø௠ are the lateral displacement and curvature at the m-th discrete point, respectively, 

whereas m is the discrete point number along the column length (L).  

The column model shown in Figure 1c (m=1, 2, 3…31) is used to derive the theoretical results shown 

later in Section 4. To generate the load-deflection curve, the axial load on the column Nstep is increased 

progressively to calculate the corresponding deflection at each discrete point along the column length. 

The first order moment can be computed as: 

Mf,step = Nstep  ή  em                                                         (8) 

where Mf,step and em are the first order moment and the eccentricity at the m-th point, respectively. The 

second order moment (Ms,step) can be expressed as: 

Ms,step = Nstep  ή įm                                                         (9) 

Therefore, the total moment (Mstep) can be calculated by adding Mf,step and Ms,step: 

Mstep = Mf,step + Ms,step = Nstep ή (em + įm )                                 (10) 



Chau-Khun, M., Awang, A. Z., Omar, W., Pilakoutas, K., Tahir, M. M., & Garcia, R. (2015). Elastic Design of Slender High-Strength RC Circular Columns 
Confined with External Tensioned Steel Straps. Advances in Structural Engineering, 18(9), 1487-1500. http://dx.doi.org/10.1260/1369-4332.18.9.1487 

 

9 

 

A value į2 needs to be assumed to start the calculations, and į2=0 is assumed as a first trial. The value for 

ø2 can be then retrieved from the axial load-moment-curvature relationship once the moment M2 is 

calculated. Note that the value M2 can be calculated using Eqn 10 and assuming į2 as equal to zero. Once 

ø2 and M2 are known, the value į3 of the next discrete point is computed. The lateral deflection of the 

column can be calculated by repeating the above procedure for subsequent discrete points. However, the 

lateral deflection is only valid if  Eqn 11 is satisfied, i.e. if both ends of the loaded column do not deflect: 

į1=į(m+1) = 0                                                                (11) 

In the calculations carried out in this paper, the assumed value į2=0 resulted in a negative value of į(m+1). 

Therefore, į2 was adjusted to a larger value to satisfy Eqn 11. In the analytical P-ǻ results shown in 

Section 4, the solution for the lateral deflection at a given load was halted when the calculated į31 had an 

absolute value lower than 10-4 mm. Full details of the theoretical model and computation procedure are 

given in Ma et al. (2014). 

3 Capacity of short SSTT-confined circular columns 

3.1 Development of an equivalent stress block for HSC confined using the SSTT 

Current design guidelines for ultimate flexural design of RC members represent the compressive stress 

profile of concrete using an equivalent stress block with uniform compressive stresses. This equivalent 

stress block can be defined by: a) the magnitude of stresses, and b) the depth of the stress block. 

However, the resulting equivalent stress block and the original stress profile must resist the same axial 

force and bending moment. Due to the steel strap confinement, the equivalent stress block proposed by 

current design guidelines is inadequate to calculate the ultimate capacity of SSTT-confined HSC 

columns. Therefore, a parametric study is carried out to develop an equivalent stress block of SSTT-

confined HSC sections. The equivalent stress block is defined by: 

1) A mean stress factor (Į1), defined as the ratio of the uniform stress over the stress block to the 

compressive strength of SSTT-confined HSC, and  

2) A block depth factor (ȕ1), defined as the ratio of the depth of the stress block to that of the neutral axis. 

http://dx.doi.org/10.1260/1369-4332.18.9.1487


To derive Į1 and ȕ1, section analyses are performed using the circular column model shown in Figure 1b 

and c. Table 1 summarizes the variables and values considered in the parametric study. 

Table 1 Variables and values used in this study 

Parameter Values 

xn 0, 20, 40, 60, 80, 100, 120, 140, 160, 180, 200 

ȡv 0.09, 0.25, 0.5 

es/D 0.05, 0.1, 0.2, 0.4 

 

The stress distribution over the compression zone of a circular column is examined for the neutral axis 

depths shown in Table 1. The stress block parameters are determined simultaneously from the axial load 

and moment equilibrium conditions to match the equations proposed by Macgregor and Wright (2005). 

For circular columns, the shape of the compression zone is defined by a segment of a circle, as shown in 

Figure 2. 

 

Figure 2 Compression zones of circular columns under eccentric loading (after Macgregor and Wright, 2005) 

The area of the compression zone A can be calculated using Eqn 12: 

A = D2ቀఏೝೌ೏ି ௦௜௡ఏ௖௢௦ఏସ ቁ                                           (12) 

where șrad is the angle of the compression zone as defined in Figure 2 (in radians). 

The moment of the zone A can be expressed by: 

Ay = ܣ ቀ஽ଶ െ ఉభ௑೙ଶ ቁ                                                  (13) 

where y is the distance between the centroid of the compression zone and the centroid of the column; ȕ1 is 

the block depth ratio; and xn is the neutral axis depth (see Figure 2). 
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The angle ș can be calculated using: 

ș = arcos ቀோି ఉభ௫೙ோ ቁ   for ߚଵxn ≤ D/2                                   (14) 

ș = 180ᤪ - arcos ቀ ఉభ௫೙ିோோ ቁ   for   D/2 ≤ ߚଵxn ≤ D                       (15)  

ș = 180ᤪ   for xn > D                                                  (16) 

where R is the radius of the column. 

Therefore, the concrete compressive load (Cc) for a circular column is: 

Cc = Į1 f’cc A                                                     (17) 

The moment produced by the concrete in compression is given by: 

Mc = Į1 f’cc Ay                                                   (18) 

For compressive force on the compression reinforcement, the strain of the longitudinal bars (İsc) can be 

calculated using strain compatibility: 

İsc = İcu (1 - 
ௗᇲ௫೙ )                                               (19) 

where d’ is the distance from the outermost fibre to the compressive bars; and the rest of the variables are 

as defined before. 

Hence, the compressive stress in the longitudinal bars (ોsc ) can be calculated using Eqn 20 or 21: 

ોsc = Esİsc   for İsc ≤ İsy                                              (20) ોsc = fsy    for İsc > İsy                                                 (21) 

where İsy, fsy and Es are the yield strain, yield stress and the elastic modulus of the longitudinal column 

bars.  

The compression force of the compression bars can be calculated as a function of the area of compressive 

steel (Asc): 

Cs =  ોsc Asc                                                      (22) 

Similarly, the strain (İst) and stress (ોst ) in the column tension bars can be calculated as: 

http://dx.doi.org/10.1260/1369-4332.18.9.1487


İst = İcu (
ௗ௫೙ െ ͳ)                                                (23) 

ોst = Esİst ; İst ≤ İsy                                               (24) ોst = fsy ; İst  ≥ İsy                                                (25) 

Therefore, the tensile force in the bars is given as: 

T = İst Ast                                                      (26) 

Figure 3 shows the stress block factor results obtained from the analysis of SSTT-confined HSC circular 

columns with different neutral axis depths (xn). Previous research (Awang 2013) has shown that the SSTT 

is effective at confining concrete only if ȡv>0.09, and that values 0≥ȡv≤0.09 can be used to represent 

unconfined concrete. As a result, the corresponding data results for ȡv=0.09 are plotted at ȡv=0 in Figure 3 

to obtain a linear distribution. Figure 3a shows that Į1 tends to increase with the volumetric ratio of 

confining steel straps, ȡv. Conversely, Figure 3b shows that ȕ1 varies only slightly for the examined ȡv 

ratios, and therefore a constant value can be assumed for practical design: 

ȕ1 = 0.90                                                         (27)
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Figure 3 Stress block factors for SSTT-confined HSC sections 

Once ȕ1 is defined, the mean stress factor Į1 can be recalculated using the equivalent stress block 

approach. Figure 4 shows the recalculated factor Į1, but using a constant value ȕ1=0.9. Based on 

regression analysis (see Figure 4), Eqn 26 is proposed to compute Į1: 

Į1 = 0.195ȡv + 0.85                                             (28) 
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Figure 4 Recalculated mean stress factor Į1 for SSTT-confined HSC sections assuming ȕ1=0.9 

3.2 Ultimate capacity of short SSTT-confined columns 

The interaction diagram of a short SSTT-confined HSC column can be developed using Eqns 29 and 30 

and the values Į1 (Eqn 28) and ȕ1=0.90 determined in the previous section: 

Nu = Cc+ Cs + T                                              (29)  

Mu = Mc + Csቀ஽ଶ െ ݀Ԣቁ+ Tቀ݀ െ  ஽ଶቁ                            (30)                        

where Nu and Mu are ultimate load and moment capacity of the column; and the rest of the variables are as 

defined before. 

Figure 5 compares the axial load capacity predicted using Eqn 29 and section analyses. The results are 

shown for values ȡv=0.09, 0.25 and 0.50, and e/D ratios ranging from 0.05 (minimum eccentricity) to 

0.40. It is shown that Eqn 29 predicts the test results with good accuracy (correlation coefficient 

R2=0.96). 
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Figure 5 Prediction of design Eqn 29 

Figure 6 compares the interaction diagrams calculated using Eqns 29 and 30 and section analysis. The 
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Overall, Figure 6 indicates that Eqns 29 and 30 can be used to assess the capacity of short SSTT-confined 
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Figure 6 Comparison between interaction diagrams based on section analysis and predictions by Eqns 29 and 30 for 
(a) ȡv=0.09, (b) ȡv=0.25, and (c) ȡv=0.50 
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4 Design approach for slender SSTT-confined HSC columns 

A new approach is proposed to predict the ultimate capacity of slender SSTT-confined HSC columns, 

based on the direct capacity reduction method proposed by Kwak and Kim (2004). In this method, the 

column is initially assumed as “short”, and its load-moment (P-M) interaction diagram is calculated using 

section analysis based on force equilibrium and compatibility conditions. To compute the ultimate 

capacity of the original slender column, the P-M interaction diagram of the “short” column is factorised 

by a capacity reduction factor (C) that accounts for the effect of slenderness. C represents the normalised 

ratio of the difference between the capacities of a “short” and a slender column (see Figure 7), and is 

defined by: 

C = 1- [(0A – 0B) / 0A]                                             (31) 

 

Figure 7 Example of capacity reduction coefficient, C. 

4.1 Calculation of the capacity reduction factor C 

Figure 8 shows results of the numerical analysis performed using the theoretical model described in 

Section 2 for slenderness ratios Ȝ=20, 30 and 40. The results in this figure indicate that, as expected, 

second order effects have more influence on the column’s behaviour as slenderness ratios increase. This 

can be attributed to the smaller flexural stiffness of columns with larger slenderness ratios, which 

increases the lateral deflection and therefore the second order effects. Figure 8 also shows that the second 

0

500

1000

1500

2000

2500

0 5 10 15 20 25 30

Lo
a

d
, 

N
 (

k
N

) 

Moment, M (kN.m) 

ʌv = 0.25 

ʌs = 0.018 

d/D = 0.85 

Section Analysisૃ = 40 B 

A 

C 

Short column 

Slender column 

http://dx.doi.org/10.1260/1369-4332.18.9.1487


order effects increase with the eccentricity of the applied axial load N. However, such effects reduce as 

the value of the eccentricity attains the balanced eccentricity, eb. Moreover, for eccentricities larger than 

the balanced eccentricity eb, the influence of the second order effects reduces further, up to the point of 

being practically negligible when the applied axial load is close to zero. 

Figure 9 shows the calculated capacity reduction factor C for confined columns with slenderness ratios ૃ 

=20, 30 and 40. It is shown that C increases proportionally with ૃ and ȡv. The results in Figure 9 also 

suggest that C reaches a maximum value when the eccentricity is close to the balanced eccentricity. 
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Figure 8 Load-moment interaction diagram developed from the proposed theoretical model for (a) ȡv=0.09, (b) 

ȡv=0.25, and (c) ȡv=0.50 

 

 

 

Figure 9 Results of capacity reduction coefficient versus slenderness ratio for (a) ȡv=0.09, (b) ȡv=0.25, and (c) 
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Based on linear regression, two sets of formulas are proposed to compute the capacity reduction 

coefficient C: 

(1) For es<eb.  Eqn 32 is proposed for columns subjected to an eccentricity smaller than the balanced 

eccentricity, eb: 

C = 0.06 ૃ  + b     for es < eb                                             (32) 

where b is a coefficient that accounts for the effect of the volumetric ratio of steel strap confinement, ȡv. 

Figure 10 shows the effect of ȡv on the coefficient b included in Eqn 32. Based on the results of this 

figure, a linear regression formula is proposed to determine b: 

b = -0.1 ȡv
 + 0.12                                                     (33) 

 

Figure 10 Effect of strap volumetric ratio ȡv on coefficient b 

 

(2) For es>eb. Figure 11 shows that the relationship between the capacity reduction capacity C and the 

slenderness ratio line is practically linear. As a result, the capacity reduction factor C, for a column with 
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C = 0.4 ȡv + 0.6   for es > eb                                             (34) 
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Figure 11 Effect of strap volumetric ratio ȡv on the capacity reduction factor C 

Eqns 32 to 34 were developed based on the upper limit values of the capacity reduction coefficient, C. 

Note that, for simplicity, the normalised eccentricity, ݁௦Ȁܦ is not incorporated in these equations. Hence, 

the predictions from Eqns 32 to 34 can be very conservative for very small eccentricities. Nonetheless, as 

shown in the following section, Eqns 32 to 34 are sufficiently accurate to calculate the ultimate capacity 

of slender SSTT-confined HSC columns. 

Based on the results of this section, Eqns 35 and 36 are proposed to calculate the ultimate resisting 

capacity of slender SSTT-confined HSC columns: 

Ns = C·Nu                                                              (35) 

Ms = C·Mu                                                             (36) 

where the Ns and Ms are the slenderness-factored ultimate load and ultimate moment, respectively, and Nu 

and Mu are as defined before (see Eqns 29 and 30).  

Note that whilst the proposed design approach is applicable for the design of slender SSTT-confined HSC 

columns with circular cross section, further research is necessary to propose design equations for SSTT-
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4.2 Validation of the proposed design approach 

Figure 12 compares the M-N results calculated using Eqns 35 and 36 with those from rigorous P-ǻ 

analysis obtained using the theoretical model described in Section 2. It is shown that the proposed 

equations show similar trends as the theoretical results. In particular, a better matching of results is 

observed for HSC columns with SSTT volumetric ratios ȡv=0.25 and 0.50. Note that Eqns 35 and 36 

predict conservatively the capacity of unconfined HSC columns, and such conservativeness is higher 

when the column is subjected to very small eccentricity. 
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Figure 12 Comparison of results given by Eqns 35 and 36 and theoretical P-ǻ analysis 
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Table 2 compares the predictions given by Eqns 35 and 36 with experimental results (ultimate axial load 

Nu, and flexural moment Mu) obtained from 18 slender SSTT-confined HSC columns tested recently by 

Ma et al. (2014). Fifteen of such columns were confined with one or two layers of metal straps placed at 

clear spacings of 20 or 40 mm, thus leading to confinement ratios ranging from 0.076 to 0.178. The 

columns had circular sections with diameter D=150 mm, slenderness ratios Ȝ=16, 24 or 40 and were cast 

using HSC with mean compressive concrete strength fco=62.3-65.5 MPa. The results in Table 2 confirm 

that the proposed approach predicts conservatively the ultimate capacity of slender SSTT-confined HSC 

columns, with mean Test/Prediction ratios for axial load (Nu/Ns) and flexural moment (Mu/Ms) equal to 

1.31 and 1.10, respectively. The standard deviation of the Test/Prediction ratios (SD=0.22) also indicates 

the relatively low scatter of the predictions. Based on the results of this study, it is proposed to use Eqns 

35 and 36 for the design of practical SSTT confinement solutions for slender HSC columns. 

Table 2 Comparison of predictions given by Eqns 35-36 with test results by Ma et al. (2014) 

Column 
ID 

No. of  
strap  
layers 

ૃ fco  

(MPa) 
Nu  

(kN) 
Ns  

(kN) 
Mu  

(kNm) 
Ms  

(kNm) 
Nu/Ns  

(-) 
Mu/Ms 

(-) 

C600-E25-R0-C 0 16 65.5 727 570 18.6 14.5 1.28 1.28 

C600-E25-R0-S0.076 1 16 65.5 605 570 15.4 14.5 1.06 1.06 

C600-E25-R0-S0.12 1 16 65.5 860 635 22.2 23.3 1.35 0.95 

C600-E25-R0-S0.178 2 16 65.5 1020 740 28.2 26.8 1.38 1.05 

C600-E25-R1-S0.12 1 16 65.5 835 580 21.6 22.3 1.44 0.97 

C600-E50-R0-S0.12 1 16 66.7 604 334 30.5 18.7 1.81 1.63 

C900-E25-R0-C 0 24 66.7 705 570 18.4 14.9 1.24 1.24 

C900-E25-R0-S0.076 1 24 66.7 830 570 22.0 21.2 1.46 1.04 

C900-E25-R0-S0.12 1 24 66.7 825 635 21.9 24.0 1.30 0.91 

C900-E25-R0-S0.178 2 24 66.7 950 740 25.6 27.3 1.28 0.94 

C900-E25-R1-S0.12 1 24 66.7 774 550 21.7 22.3 1.41 0.97 

C900-E50-R0-S0.12 1 24 66.7 511 325 26.5 19.1 1.57 1.39 

C1200-E25-R0-C 0 32 62.3 565 560 15.4 15.6 1.01 0.99 

C1200-E25-R0-S0.076 1 32 62.3 870 560 23.3 15.6 1.55 1.50 

C1200-E25-R0-S0.12 1 32 62.3 810 630 22.6 24.6 1.29 0.92 

C1200-E25-R0-S0.178 2 32 62.3 832 730 22.4 28.7 1.14 0.78 

C1200-E25-R1-S0.12 1 32 62.3 517 500 16.0 15.4 1.03 1.04 

C1200-E50-R0-S0.12 1 32 62.3 341 340 18.3 16.7 1.00 1.09 

Mean        1.30 1.10 

http://dx.doi.org/10.1260/1369-4332.18.9.1487


SD        0.22 0.22 

It should be mentioned that whilst this study focuses on the design and capacity of SSTT-confined HSC 

elastic columns, the technique is expected to increase considerably the columns’ ductility during the 

plastic stage. Therefore, further experimental and analytical research is necessary to extend the proposed 

design method to columns where yielding of the longitudinal reinforcement (or concrete crushing failure) 

can occur. It should be also noted that creep and shrinkage developing during the design life of the RC 

column may (slightly) reduce the post-tensioning stress in the steel straps. Accordingly, further tests 

should investigate the long-term behaviour of the SSTT methodology. However, unlike other permanent 

confining techniques also affected by creep and shrinkage (e.g pre-cured FRP tubes or concrete-filled 

steel tubular (CFST) columns), the steel straps can be inspected/assessed over the design life of the 

column and easily replaced with new straps if stress relaxation is evident. 

5 Conclusions 

This paper proposes a design procedure to calculate the capacity of slender HSC circular columns 

confined using a cost-effective Steel Strapping Tensioning Technique (SSTT). To account for the effect 

of slenderness in the design, the procedure uses a capacity reduction factor, C, analogue to that proposed 

by Kwak and Kim (2004). From the analyses and results shown in this paper, the following conclusions 

are drawn: 

1) An equivalent stress block for SSTT-confined HSC columns with circular section is developed. The 

equivalent stress block is defined by a constant block depth ratio (ȕ1=0.9) and a mean stress factor Į1 that 

depends on the amount of steel strap confinement (ȡv). The equivalent stress block predicts the ultimate 

capacity of “short” SSTT-confined HSC columns with good accuracy. 

2) Based on regression analyses, a capacity reduction coefficient, C, is proposed to calculate the capacity 

of slender SSTT-confined HSC columns with circular cross section. The coefficient was found to depend 

on the eccentricity level applied on the column, the amount of steel strap confinement and the column 

slenderness.  
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3) The proposed design approach is faster than rigorous theoretical P-ǻ analysis and predicts 

conservatively the capacity of slender SSTT-confined HSC columns. Overall, better predictions were 

obtained for columns subjected to eccentricities larger than the balanced eccentricity, eb. The proposed 

equations were effective at predicting conservatively the experimental results of SSTT-confined columns, 

with Test/Prediction ratios for axial load and flexural moment equal to 1.31 and 1.10, respectively. 

Therefore, the proposed equations can be used to estimate the ultimate resisting capacity of column 

during design. 

4) Whilst the SSTT has proven effective at enhancing the capacity and behaviour of HSC columns, 

further research should investigate a) its effectiveness at enhancing the columns’ ductility when yielding 

of the longitudinal reinforcement (or concrete crushing failures) can occur, and b) creep and shrinkage 

effects on the long-term behaviour of the SSTT methodology. Moreover, it is also necessary to propose 

design equations for SSTT-confined HSC columns with non-circular cross sections. 

Notation 

The following symbols are used in this article: 

Asi = corresponding cross-sectional area of longitudinal steel bar 

Ast = total cross-sectional area of longitudinal bars 

b = coefficient that accounts for the effect of SSTT-volumetric ratio, ȡv 

C = capacity reduction coefficient 

D = diameter of column section 

dl =  thickness of each layer of discretized column section 

dL = length of column segmented unit 

dsi = location of longitudinal tensile bar from the extreme concrete fibre 

e = load eccentricities 

es = column end eccentricities which can be either positive or negative value 

Ec = tangent modulus of elasticity of concrete 

http://dx.doi.org/10.1260/1369-4332.18.9.1487


E’sec= secant modulus of confined concrete at peak stress 

Es = elastic modulus of steel  ઽco = ultimate strain of unconfined HSC ઽ’cc = peak strain of confined concrete ઽs = steel strain ઽy = yield strain of steel ઽci = concrete strain ઽcc = axial compressive strain of concrete 

fci = concrete stress at a given strain 

fco = concrete compressive strength 

fy = yield strength of steel 

L = column length 

Mstep = bending moment at progressively incremental loading steps 

Mf,step = first order moment at a given load step 

Ms,step = second order moment at a given load step 

Nstep = axial load at progressively incremental loading steps 

Nult = ultimate load capacity of column under concentric load 

R = radius of column section 

Vs = volume of steel straps using the SSTT 

Vc = volume of concrete 

x = ratio of axial compressive strain to concrete peak strain 

xn = neutral axis depth 

yi = width of i-th layer 

ȡv = confinement volumetric ratio of steel straps 

ȡs = internal reinforcement ratio of column 

įm = lateral deflection at a discrete point of a column 

į = lateral deflection 

ø = curvature ોsi = stress of longitudinal bar at i-th layer 
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ૃ = slenderness ratio 
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