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ON THE DECOMPOSITION MATRIX OF THE PARTITION

ALGEBRA IN POSITIVE CHARACTERISTIC

OLIVER KING

Abstract. We examine the structure of the partition algebra Pn(δ) over a
field k of characteristic p > 0. In particular, we describe the decomposition
matrix of Pn(δ) when n < p and δ 6= 0, and when n = p and δ = p − 1.

1. Introduction

The partition algebra was originally defined by Martin in [12] over C as a gener-
alisation of the Temperley-Lieb algebra for δ-state n-site Potts models in statistical
mechanics, and independently by Jones [11]. Although this interpretation requires δ
to be integral, it is possible to define the algebra for any δ. It was shown in [18] that
the partition algebra P F

n (δ) over an arbitrary field F is a cellular algebra, with cell
modules ∆λ(n) indexed by partitions λ of size at most n. If we suppose δ 6= 0, then
in characteristic zero these partitions also label a complete set of non-isomorphic
simple modules, given by the heads of the corresponding cell modules. In positive
characteristic the simple modules are indexed by the subset of p-regular partitions
(again under the assumption δ 6= 0). It is natural to then ask how the simple
modules arise as composition factors of the cell modules. In the case char F = 0
this has been entirely resolved by Martin [13] and Doran and Wales [3], however
there has previously been little investigation into the positive characteristic case.

Martin provides in [13] a condition on λ, µ and δ for when there is a homomor-
phism in characteristic zero between cell modules labelled by λ and µ, provided
δ 6= 0. This was strengthened in [3] to allow for δ = 0. In [1] this condition was re-
formulated in terms of the reflection geometry of a Weyl group W under a δ-shifted
action. By then considering the action of the corresponding affine Weyl group W p, a
description of the blocks of the partition algebra in positive characteristic was given.

In this paper we continue to investigate the representations of P F
n (δ) when

char F = p > 2. We show that by placing certain restrictions on the values of
n, δ and p we can in these cases compute the decomposition matrix of P F

n (δ).
In Section 2 we set up the notation and definitions that will be used throughout

the paper, and review some previous results. In Section 3 we recall some results re-
garding the representation theory of the symmetric group, and the abacus method
of representing partitions. Section 4 introduces the partition algebra and recalls the
block structure in characteristic zero and in prime characteristic. In Section 5 we
obtain the decomposition matrix of the partition algebra in positive characteristic.
We separate this last section into three subsections, each dealing with a particular
set of values for n and δ.
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2 OLIVER KING

When writing this paper, it was brought to the author’s attention that the
decomposition numbers of the partition algebra P k

n (δ) over a field k of characteristic
p > n were obtained independently, and by different methods, by A. Shalile [17].

1.1. Notation. Throughout this paper, we fix a prime number p > 2 and a p-
modular system (K, R, k). That is, R is a discrete valuation ring with maximal
ideal P = (π), field of fractions Frac(R) = K of characteristic 0, and residue field
k = R/P of characteristic p. We will use F to denote either K or k.

We also fix a parameter δ ∈ R and assume that its image in k is non-zero (so
in particular, δ 6= 0 ∈ R). We will use δ to denote both the element in R and its
projection in k.

2. Preliminaries

Suppose A is an R-algebra, free and of finite rank as an R-module. We can extend
scalars to produce the K-algebra AK = K ⊗R A and the k-algebra Ak = k ⊗R A.
Given an A-module M , we can then also consider the AK-module MK = K ⊗R M
and the Ak-module Mk = k ⊗R M .

The following lemma shows that we can reduce K-module homomorphisms to
k-module homomorphisms.

Lemma 2.1. Suppose X and Y are R-free A-modules of finite rank, and let M ⊆
YK be an AK-submodule. If HomAK

(XK , YK/M) 6= 0 then there is a submodule
N ⊆ Yk such that HomAk

(Xk, Yk/N) 6= 0. Moreover, N is the p-modular reduction
of a lattice in M .

Proof. Let f ∈ HomAK
(XK , YK/M) be non-zero, and let Q = YK/M be the image

of the canonical quotient map ρ : YK → YK/M . As A-modules we see Y contained
in YK , generated by elements of the form 1 ⊗ y for y ∈ Y . Since X and Y are
A-modules of finite rank we may assume that

(2.1) f(X) ⊆ ρ(Y ) but f(X) * πρ(Y ),

for instance by considering the matrix of f and multiplying the coefficients by an
appropriate power of π. Then f restricts to a homomorphism X −→ ρ(Y ), and
thus reduces to a homomorphism f : Xk −→ ρ(Y )k. This must be non-zero since
we can find x ∈ X such that f(x) ∈ ρ(Y )\πρ(Y ) by (2.1).

It remains to prove that ρ(Y )k can be taken to be Yk/N for some N ⊂ Yk, the
modular reduction of a lattice in M . As a K-module, Q is torsion free. Therefore
as an R-module, ρ(Y ) ⊆ Q must also be torsion free. Since R is a principal ideal
domain (by definition of it being a discrete valuation ring), the structure theorem
for modules over a principal ideal domain tells us that ρ(Y ) must be R-free. Since
Y has finite rank and ρ(Y )K = ρ(YK) = Q, this implies that ρ(Y ) is a lattice in Q.
Moreover, we see that ρ(Y ) is a projective R-module, and the exact sequence

0 −→ L −→ Y −→ ρ(Y ) −→ 0,

where L = Ker(Y −→ ρ(Y )), is split. Then, since the functors K ⊗R − and k⊗R −
preserve split exact sequences, we deduce that M ∼= LK and we can set N = Lk to
complete the exact sequence

0 −→ N −→ Yk −→ ρ(Y )k −→ 0

satisfying the requirements above. This scenario is illustrated in the following
diagram:
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3. Representation theory of the symmetric group

A more detailed account of the results in this section can be found in [9].

3.1. Partitions. For any natural number n, we define a partition λ = (λ1, λ2, . . . )
of n to be a weakly decreasing sequence of non-negative integers such that

∑

i≥1 λi =
n. These conditions imply that λi = 0 for i ≫ 0, hence we will often truncate the se-
quence and write λ = (λ1, . . . , λl), where λl 6= 0 and λl+1 = 0. We also combine re-
peated entries and use exponents, for instance the partition (5, 5, 3, 2, 1, 1, 0, 0, 0, . . . )
of 17 will be written (52, 3, 2, 12). We use the notation λ ⊢ n to mean λ is a partition
of n. We let Λn be the set of all partitions of n, and define the following set

Λ≤n =
⋃

0≤i≤n

Λn.(3.1)

We say that a partition λ = (λ1, . . . , λl) is p-singular if there exists t such that

λt = λt+1 = · · · = λt+p−1 > 0,

i.e. some (non-zero) part of λ is repeated p or more times. Partitions that are not
p-singular we call p-regular. We let Λ∗

n be the subset of Λn of all p-regular partitions
of n, and similarly define the set

Λ∗
≤n =

⋃

0≤i≤n

Λ∗
n.(3.2)

There exists a partial order on the set Λ≤n called the dominance order with size,
denoted by ≤d. We say a partition λ is less than or equal to µ under this order if

either |λ| < |µ|, or |λ| = |µ| and

j
∑

i=1

λi ≤

j
∑

i=1

µi for all j ≥ 1. We write λ <d µ to

mean λ ≤d µ and λ 6= µ.
To each partition λ we may associate the Young diagram

[λ] = {(x, y) | x, y ∈ Z, 1 ≤ x ≤ l, 1 ≤ y ≤ λx}.

An element (x, y) of [λ] is called a node. If λi+1 < λi, then the node (i, λi) is
called a removable node of λ. If λi−1 > λi, then we say the node (i, λi + 1) of
[λ]∪{(i, λi +1)} is an addable node of λ. This is illustrated in Figure 1 below. If a
partition µ is obtained from λ by removing a removable (resp. adding an addable)
node then we write µ ⊳ λ (resp. µ ⊲ λ).

Each node (x, y) of [λ] has an associated integer, called the content, given by
y − x.
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Figure 1. The Young diagram of λ = (52, 3, 2, 12). Removable
nodes are marked by r and addable nodes by a.

3.2. Abacus. We recall the abacus method of constructing partitions from [9,
Chapter 2.7]. To each partition and prime number p we associate an abacus di-
agram, consisting of p columns, known as runners, and a configuration of beads
across these. By convention we label the runners from left to right, starting with
0, and the positions on the abacus are also numbered from left to right, work-
ing down from the top row, starting with 0 (see Figure 2). Given a partition
λ = (λ1, . . . , λl) ⊢ n, fix a positive integer b ≥ n and construct the β-sequence of λ,
defined to be

β(λ, b) = (λ1 − 1 + b, λ2 − 2 + b, . . . , λl − l + b,−(l + 1) + b, . . . 2, 1, 0).

Then place a bead on the abacus in each position given by β(λ, b), so that there are
a total of b beads across the runners. Note that for a fixed value of b, the abacus
is uniquely determined by λ, and any such abacus arrangement corresponds to a
partition simply by reversing the above. Here is an example of such a construction:

Example 3.1. In this example we will fix the values p = 5, n = 9, b = 10 and
represent the partition λ = (5, 4) on the abacus. Following the above process, we
first calculate the β-sequence of λ:

β(λ, 10) = (5 − 1 + 10, 4 − 2 + 10, −3 + 10, −4 + 10, . . . , −10 + 10)

= (14, 12, 7, 6, 5, 4, 3, 2, 1, 0).

The next step is to place beads on the abacus in the corresponding positions. We
also number the beads, so that bead 1 occupies position λ1 −1+ b, bead 2 occupies
position λ2 − 2 + b and so on. The labelled spaces and the final abacus are shown
below.

0 1 2 3 4

5 6 7 8 9

10 11 12 13 14

10 9 8 7 6

5 4 3

2 1

Figure 2. The positions on the abacus with 5 runners, the ar-
rangement of beads (numbered) representing λ = (5, 4), and the
corresponding 5-core.

After fixing values of p and b, we will abuse notation and write λ for both the
partition and the corresponding abacus with p runners and b beads. We then also
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define Γ(λ, b) = (Γ(λ, b)0,Γ(λ, b)1, . . . ,Γ(λ, b)p−1), where

(3.3) Γ(λ, b)i =
∣
∣{j : β(λ, b)j ≡ i (mod p)}

∣
∣,

so that Γ(λ, b) records the number of beads on each runner of the abacus of λ.
We define the p-core of a partition λ to be the partition µ whose abacus is

obtained from that of λ by sliding all beads as far up their runners as possible. Note
then that Γ(µ, b) = Γ(λ, b). It is shown in [9, Chapter 2.7] that this is independent
of the choice of b. An example of this can be seen in Figure 2.

3.3. Specht Modules. The algebra RSn is a cellular algebra, as shown in [4]. The
cell modules are labelled by the partitions of n, and are more commonly known as
Specht modules. We denote the Specht module indexed by λ by Sλ

R. These can
be constructed explicitly, see for example [8]. We then define the KSn-module
Sλ

K = K ⊗R Sλ
R and the kSn-module Sλ

k = k ⊗R Sλ
R.

Theorem 3.2 ([8, Theorem 4.12]). The set {Sλ
K : λ ∈ Λn} is a complete set of

pairwise non-isomorphic simple KSn-modules.

Theorem 3.3 ([8, Theorem 11.5]). For λ ∈ Λ∗
n, the Specht module Sλ

k has simple
head Dλ

k . The set {Dλ
k : λ ∈ Λ∗

n} is a complete set of pairwise non-isomorphic
simple kSn-modules.

The blocks of the algebra kSn correspond to the p-cores of partitions in the
following way.

Theorem 3.4 (Nakayama’s Conjecture, [9, Chapter 6]). Two partitions
λ, µ ∈ Λn label Specht modules in the same block of kSn if and only if they have
the same p-core, that is Γ(λ, b) = Γ(µ, b) for some (and hence all) b ≥ n.

4. The partition algebra

For a fixed n ∈ N and δ ∈ R, we define the partition algebra PR
n (δ) to be the

free R-module with basis set-partitions of {1, 2, . . . , n, 1̄, 2̄, . . . , n̄}, made into an
R-algebra via the operation below. We call each part of a set-partition a block. For
instance,

{
{1, 3, 3̄, 4̄}, {2, 1̄}, {4}, {5, 2̄, 5̄}

}

is a set-partition with n = 5 consisting of 4 blocks. Any block with {i, j̄} as a
subset for some i and j is called a propagating block.

We can represent each set-partition by an (n, n)-partition diagram, consisting of
two rows of n nodes with arcs between nodes in the same block. Multiplication
in the partition algebra is by concatenation of diagrams in the following way: to
obtain the result x · y given diagrams x and y, place x on top of y and identify
the bottom nodes of x with those on top of y. This new diagram may contain a
number, t say, of blocks in the centre not connected to the northern or southern
edges of the diagram. These we remove and multiply the final result by δt. An
example is given in Figure 3 below.
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× = δ

Figure 3. Multiplication of two diagrams in PR
5 (δ).

As shown in Example 4.1 below, there are many diagrams corresponding to the
same set-partition. We will identify all such diagrams.

Example 4.1. Let n = 5 and consider the set-partition

{
{1, 3, 3̄, 4̄}, {2, 1̄}, {4}, {5, 2̄, 5̄}

}

as above. Three examples of diagrams representing this are given in Figure 4 (note
that this list is not exhaustive).

Figure 4. Some of the ways of representing the given set-partition

The following elements of PR
n (δ) will be of interest:

si,j =

i j

ī j̄

, pi,j =

i j

ī j̄

,

and pi =

i

ī

.

It was shown in [6] that these elements generate PR
n (δ).

Notice that multiplication in PR
n (δ) cannot increase the number of propagating

blocks. We therefore have a filtration of PR
n (δ) by the number of propagating

blocks. Over F, we can construct this filtration explicitly by use of the idempotents
ei defined in Figure 5 below. Recall from Section 1.1 that we are assuming that
δ 6= 0, so this definition does indeed make sense.
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ei =
1

δn−i+1

i

ī

Figure 5. The idempotent ei

The filtration is then given by

(4.1) J (0)
n ⊂ J (1)

n ⊂ . . . J (n−1)
n ⊂ J (n)

n = P F

n (δ)

where J
(r)
n = P F

n (δ)er+1P
F
n (δ) contains only diagrams with at most r propagating

blocks. We also use ei to construct algebra isomorphisms

(4.2) Φn : P F

n−1(δ) −→ enP F

n (δ)en,

taking a diagram in P F
n−1(δ) and adding an extra northern and southern node to

the right hand end. Using this and following [5] we obtain an exact localisation
functor

Fn : P F

n (δ)-mod −→ P F

n−1(δ)-mod(4.3)

M 7−→ enM

and a right exact globalisation functor

Gn : P F

n (δ)-mod −→ P F

n+1(δ)-mod(4.4)

M 7−→ P F

n+1(δ)en+1 ⊗P F
n(δ) M.

Since Fn+1Gn(M) ∼= M for all M ∈ P F
n (δ)-mod, Gn is a full embedding of cate-

gories. From the filtration (4.1) we see that

(4.5) P F

n (δ)/J (n−1)
n

∼= FSn,

so using (4.2) and following the arguments of [5, Theorem 6.2g], we see that the
simple P F

n (δ)-modules are indexed by the set Λ≤n if F = K and by the set Λ∗
≤n if

F = k (see (3.1) and (3.2) for definitions of these).
We will also need to consider the algebra P F

n− 1
2

(δ), which is the subalgebra of

P F
n (δ) spanned by all set-partitions with n and n̄ in the same block. As in (4.1) we

have a filtration of this algebra defined by the number of propagating blocks:

(4.6) J
(1)

n− 1
2

⊂ J
(2)

n− 1
2

⊂ . . . J
(n−1)

n− 1
2

⊂ J
(n)

n− 1
2

= P F

n− 1
2
(δ)

where J
(r)

n− 1
2

contains all diagrams with at most r propagating blocks. Note that

since we require the nodes n and n̄ to be in the same block, we always have at
least one propagating block. Also since n and n̄ must always be joined, we see that

P F

n− 1
2

(δ)/J
(n−1)

n− 1
2

∼= FSn−1, and so following the argument for P F
n (δ) above we see

that the simple P F

n− 1
2

(δ)-modules are indexed by Λ≤n−1 if F = K and by Λ∗
≤n−1 if

F = k.
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Note that we have a natural inclusion of PR
n (δ) inside PR

n+ 1
2

(δ)

PR
n (δ) −→ PR

n+ 1
2
(δ)

d 7−→ d ∪
{
{n + 1, n + 1}

}
.

This allows us to define restriction and induction functors:

resn : P F

n (δ)-mod −→ P F

n− 1
2
(δ)-mod

M 7−→ M |P F

n− 1
2

(δ);

indn− 1
2

: P F

n− 1
2
(δ)-mod −→ P F

n (δ)-mod

M 7−→ P F

n (δ) ⊗P F

n− 1
2

(δ) M ;

resn+ 1
2

: P F

n+ 1
2
(δ)-mod −→ P F

n (δ)-mod

M 7−→ M |P F
n(δ);

indn : P F

n (δ)-mod −→ P F

n+ 1
2
(δ)-mod

M 7−→ P F

n+ 1
2
(δ) ⊗P F

n(δ) M.(4.7)

4.1. Cellularity of P F
n (δ). It was shown in [18] that the partition algebra is cellu-

lar. The cell modules ∆F

λ(n; δ) are indexed by partitions λ ∈ Λ≤n, and the cellular
ordering is given by <d. When λ ⊢ n, we obtain ∆F

λ(n; δ) by lifting the Specht
module Sλ

F
to the partition algebra using (4.5). When λ ⊢ n− t for some t > 0, we

obtain the cell module by

∆F

λ(n; δ) = Gn−1Gn−2 . . . Gn−t∆
F

λ(n − t; δ).

Over K, each of the cell modules has a simple head LK
λ (n; δ), and these form a

complete set of non-isomorphic simple PK
n (δ)-modules. Over k, the heads Lk

λ(n; δ)
of cell modules labelled by p-regular partitions λ ∈ Λ∗

≤n provide a complete set of

non-isomorphic simple P k
n (δ)-modules.

When the context is clear, we will write ∆F

λ(n) and LF

λ(n) to mean ∆F

λ(n; δ) and
LF

λ(n; δ) respectively.
We also have an explicit construction of the cell modules. Let I(n, t) be the set

of (n, n)-diagrams with precisely t propagating blocks and t + 1, t + 2, . . . , n each
in singleton blocks. Then denote by V (n, t) the free R-module with basis I(n, t).
There is a (PR

n (δ),St)-bimodule action on V (n, t), where elements of PR
n (δ) act

on the left by concatenation as normal and elements of St act on the right by
permuting the t leftmost southern nodes. Thus for a partition λ ⊢ t we can easily
show that ∆R

λ (n) ∼= V (n, t) ⊗St
Sλ

R, where Sλ
R is the Specht module. The action

of PR
n (δ) on ∆R

λ (n) is as follows: given a partition diagram x ∈ PR
n (δ) and a pure

tensor v ⊗ s ∈ ∆R
λ (n), we define the element

x(v ⊗ s) = (xv) ⊗ s

where (xv) is the product of two diagrams in the usual way if the result has t
propagating blocks, and is 0 otherwise.
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Remark. Note that in general there does not exist an R-module LR
λ (n) such that

LK
λ (n) = K ⊗R LR

λ (n) or Lk
λ(n) = k ⊗R LR

λ (n).

The algebra P F

n− 1
2

(δ) is also cellular (see [14]). We can construct the cell modules

in a similar way to those of P F
n (δ). Let I(n− 1

2 , t) be the set of (n, n)-diagrams with

precisely t propagating blocks, one of which contains n and n̄, with t, t + 1, . . . , n − 1
each in singleton blocks. Then denote by V (n− 1

2 , t) the free R-module with basis

I(n− 1
2 , t). There is a (PR

n− 1
2

(δ),St−1)-bimodule action on V (n, t), where elements

of PR
n− 1

2

(δ) act on the left as normal and elements of St−1 act on the right by

permuting the t − 1 leftmost southern nodes. Then for a partition λ ⊢ t − 1 we
have ∆R

λ (n − 1
2 ) ∼= V (n − 1

2 , t) ⊗St−1 Sλ
R, where Sλ

R is a Specht module. Note that

when λ ⊢ n − 1, ∆R
λ (n − 1

2 ) ∼= Sλ
R, the Specht module. The action of PR

n− 1
2

(δ) is

the same as in the previous case.
We then have

∆K
λ (n − 1

2 ) = K ⊗R ∆R
λ (n − 1

2 ) and ∆k
λ(n − 1

2 ) = k ⊗R ∆R
λ (n − 1

2 ),

and as before ∆K
λ (n− 1

2 ) has a simple head LK
λ (n− 1

2 ) for all λ, and ∆k
λ(n− 1

2 ) has

a simple head Lk
λ(n − 1

2 ) for each p-regular λ.

The localisation and globalisation functors ((4.3) and (4.4)) preserve the cellu-
lar structure of the partition algebra, and in particular map cell modules to cell
modules as below:

Fn(∆F

λ(n)) ∼=

{

∆F

λ(n − 1) if λ ∈ Λ≤n−1

0 otherwise

Gn(∆F

λ(n)) ∼= ∆F

λ(n + 1).

It was shown in [14, Proposition 7] that the restriction and induction functors (4.7)
also preserve the cellular structure of P F

n (δ). Furthermore, if we apply these to cell
modules, then the result has a filtration by cell modules. Recall from Section 3.1
that we write µ⊳λ (resp. µ⊲λ) if µ is obtained from λ by removing (resp. adding)
a node. We then have the following exact sequences:

0 −→ ∆F

λ(n) −→ resn+ 1
2
∆F

λ(n + 1
2 ) −→

⊎

µ⊲λ

∆F

µ(n) −→ 0;

0 −→
⊎

µ⊳λ

∆F

µ(n − 1
2 ) −→ resn∆F

λ(n) −→ ∆F

λ(n − 1
2 ) −→ 0;

0 −→ ∆F

λ(n) −→ indn− 1
2
∆F

λ(n − 1
2 ) −→

⊎

µ⊲λ

∆F

µ(n) −→ 0;

0 −→
⊎

µ⊳λ

∆F

µ(n + 1
2 ) −→ indn∆F

λ(n) −→ ∆F

λ(n + 1
2 ) −→ 0,(4.8)

where
⊎n

i=1 Ni is used to denote a module with a filtration

0 = M0 ⊂ M1 ⊂ · · · ⊂ Mn
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with Mi/Mi−1
∼= Ni for all i. Although the original proof is for modules over

the complex numbers, this can be adapted to the general case (see for example [1,
Theorem 5.1]).

Martin defines in [14, Section 3] an idempotent that induces a Morita equivalence
between P C

n+ 1
2

(δ) and P C
n (δ − 1). It is shown in [1, Theorem 5.2] that in fact this

holds over arbitrary fields and furthermore the equivalence takes cell modules to
cell modules.

Proposition 4.2 ([1, Theorem 5.2]). Define the idempotent

ξn+1 =

n∏

i=1

(1 − pi,n+1) ∈ P F

n+1(δ).

Then we have an algebra isomorphism

ξn+1P
F

n+ 1
2
(δ)ξn+1

∼= P F

n (δ − 1)

which induces a Morita equivalence between the categories P F

n+ 1
2

(δ)-mod and P F
n (δ−

1)-mod. More precisely, using the above isomorphism the functors

Φ : P F

n+ 1
2
(δ)-mod −→ P F

n (δ − 1)-mod

M 7−→ ξn+1M

and Ψ : P F

n (δ − 1)-mod −→ Φ : P F

n+ 1
2
(δ)-mod

N 7−→ P F

n+
1
2

(δ)ξn+1 ⊗P F
n(δ−1) N

define an equivalence of categories. Moreover, this equivalence preserves the cellular
structure of these algebras and we have

Φ(∆F

λ(n + 1
2 ; δ)) ∼= ∆F

λ(n; δ − 1)

for all λ ∈ Λ≤n.

4.2. The blocks of the partition algebra. The blocks of the partition algebra
PK

n (δ) in characteristic 0 were described in [13]. Assuming δ is an integer (otherwise
the algebra is semisimple, see [15]), the blocks are given by chains of partitions,
each satisfying a combinatorial property determined by the previous partition in
the chain. We briefly recount this below, but first we introduce some notation.

Definition 4.3. Let BK
λ (n; δ) be the set of partitions µ labelling cell modules in

the same block as ∆K
λ (n). We will also say that partitions µ and λ lie in the same

block if they label cell modules in the same block. If the context is clear, we will
write BK

λ (n) to mean BK
λ (n; δ).

Definition 4.4. Let λ, µ be partitions, with µ ⊂ λ. We say that (µ, λ) is a δ-pair,
written µ →֒δ λ, if λ differs from µ by a strip of nodes in a single row, the last of
which has content δ − |µ|.

The following is an example of this condition.

Example 4.5. We let δ = 7, λ = (4, 3, 1) and µ = (4, 1, 1). Then we see that λ
and µ differ in precisely one row, and the last node in this row of λ has content 1
(see Figure 6). Since δ − |µ| = 7 − 6 = 1, we see that (µ, λ) is a 7-pair.
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0 1 2 3
-1
-2

→֒7

0 1 2 3
-1 0 1
-2

Figure 6. An example of a δ-pair when δ = 7

We then have the following characterisation of the blocks of the partition algebra
in characteristic 0.

Theorem 4.6 ([13, Proposition 9]). Each block of the partition algebra PK
n (δ) is

given by a maximal chain of partitions

λ(0) ⊂ λ(1) ⊂ · · · ⊂ λ(r)

where for each i, (λ(i),λ(i+1)) form a δ-pair, differing in the (i+1)-th row. Moreover
there is an exact sequence of PK

n (δ)-modules

0 → ∆K
λ(r)(n) → ∆K

λ(r−1)(n) → · · · → ∆K
λ(1)(n) → ∆K

λ(0)(n) → LK
λ(0)(n) → 0

with the image of each homomorphism a simple module. In particular, each of the
cell modules ∆K

λ(i)(n) for 0 ≤ i < r has Loewy structure

LK
λ(i)(n)

LK
λ(i+1)(n)

and ∆K
λ(r)(n) = LK

λ(r)(n).

This was reformulated in [1] as a geometric characterisation in the following way.
Let {ε0, . . . , εn} be a set of formal symbols and set

En =

n⊕

i=0

Rεi.

We have an inner product 〈 , 〉 on En given by extending linearly the relations

〈εi, εj〉 = δij ,

where δij is the Kronecker delta.
Let Φn = {εi − εj : 0 ≤ i, j ≤ n, i 6= j} be a root system of type An, and

Wn
∼= Sn+1 the corresponding Weyl group, generated by the reflections si,j =

sεi−εj
(0 ≤ i < j ≤ n). There is an action of Wn on En, the generators acting by

si,j(x) = x − 〈x, εi − εj〉(εi − εj)

for all x ∈ En.
If we fix the element ρ = ρ(δ) = (δ,−1,−2, . . . ,−n) we may then define a shifted

action of Wn on En, given by

w ·δ x = w(x + ρ(δ)) − ρ(δ)

for all w ∈ Wn and x ∈ En.
Given a partition λ = (λ1, λ2, . . . , λl), let

λ̂ = (−|λ|, λ1, . . . , λn) = −|λ|ε0 +
n∑

i=1

λiεi ∈ En

where any λi not appearing in λ is taken to be zero. Using this embedding of Λ≤n

into En we can consider the action of Wn on the set of partitions Λ≤n defined by

w ·δ λ̂ = w(λ̂ + ρ(δ)) − ρ(δ),
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where w ∈ Wn and ρ(δ) = (δ,−1,−2, . . . ,−n) as before. We introduce the following
notation for the orbits of this action

Definition 4.7. Let Oλ(n; δ) be the set of partitions µ such that µ̂ ∈ Wn ·δ λ̂. If
the context is clear, we will write Oλ(n) to mean Oλ(n; δ).

We then have the following reformulation of the block statement from [13, Propo-
sition 9].

Theorem 4.8 ([13], [1, Theorem 6.4]). For all λ ∈ Λ≤n, we have
BK

λ (n; δ) = Oλ(n; δ).

This can be extended to give a characterisation of the blocks of the partition
algebra P k

n (δ) in characteristic p. We let W p
n be the affine Weyl group corre-

sponding to Φn, generated by reflections si,j,rp = sεi−εj ,rp (0 ≤ i < j ≤ n,
r ∈ Z), with an action on En given by

si,j,rp(x) = x −
(
〈x, εi − εj〉 − rp

)
(εi − εj).

We use the following notation, analogues of Definitions 4.3 and 4.7.

Definition 4.9. Let Bk
λ(n; δ) be the set of partitions µ labelling cell modules in

the same block as ∆k
λ(n; δ). We will also say that partitions µ and λ lie in the same

block if they label cell modules in the same block. Moreover, let Op
λ(n; δ) be the set

of partitions µ such that µ̂ ∈ W p
n ·δ λ̂. If the context is clear, we will write Bk

λ(n)
and Op

λ(n) to mean Bk
λ(n; δ) and Op

λ(n; δ) respectively.
Theorem 4.10 ([1, Theorem 9.8]). For all λ ∈ Λ≤n, we have
Bk

λ(n; δ) = Op
λ(n; δ).

The proof of Theorem 4.10 given in [1] introduces a variation of the abacus as
defined in Section 3. We will briefly outline this below.

For any two partitions λ, µ ∈ Λ≤n it is possible to show that

(4.9) µ ∈ Op
λ(n; δ) ⇐⇒ µ̂ + ρ(δ) ∼p λ̂ + ρ(δ),

where ∼p means that the two sequences modulo p are the same up to reordering.
We represent this equivalence in the form of an abacus in the following way. For

a partition λ, choose b ∈ N satisfying b ≥ |λ|. We write λ̂ as a (b + 1)-tuple by
adding zeros to obtain a vector in Eb, and extend ρ(δ) to the (b + 1)-tuple

ρ(δ) = (δ,−1,−2, . . . ,−b) ∈ Eb.

Now define the βδ-sequence of λ to be

βδ(λ, b) = λ̂ + ρ(δ) + b(1, 1, . . . , 1
︸ ︷︷ ︸

n+1

)

= (δ − |λ| + b, λ1 − 1 + b, . . . , λl − l + b,−(l + 1) + b, . . . , 0).

We then see that (4.9) is also equivalent to βδ(µ, b) ∼p βδ(λ, b). The βδ-sequence
is used to construct the δ-marked abacus of λ as follows:

(1) Take an abacus with p runners, labelled 0 to p − 1 from left to right. The
positions of the abacus start at 0 and increase from left to right, moving
down the runners.

(2) Let βδ(λ, b)0 = δ − |λ| + b ≡ vλ (mod p), where 0 ≤ vλ ≤ p − 1. Place a ∨
on top of runner vλ.
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(3) For the rest of the entries of βδ(λ, b), place a bead in the corresponding
position of the abacus, so that the final abacus contains b beads.

Example 4.11 below demonstrates this construction.

Example 4.11. Let p = 5, δ = 6, λ = (2, 1). We choose an integer b ≥ 3, for
instance b = 7. Then the β-sequence is

βδ(λ, 7) = (6 − 3 + 7, 2 − 1 + 7, . . . , 0)

= (10, 8, 6, 4, 3, 2, 1, 0).

The resulting abacus is given in Figure 7.

Figure 7. The δ-marked abacus of λ, where λ = (2, 1), p = 5,
δ = 1 and b = 7.

Note that if we ignore the ∨ we recover James’ abacus representing λ with b
beads.

If the context is clear, we will use marked abacus to mean δ-marked abacus.
Recall the definition of Γ(λ, b) from (3.3). If we now use the marked abacus, we

similarly define Γδ(λ, b) = (Γδ(λ, b)0,Γδ(λ, b)1, . . . ,Γδ(λ, b)p−1) by

(4.10) Γδ(λ, b)i =

{

Γ(λ, b) if i 6= vλ

Γ(λ, b) + 1 if i = vλ.

Given any other partition µ, we construct its marked abacus and see that a further
equivalent form of (4.9) is Γδ(µ, b) = Γδ(λ, b). Combining this with Theorem 4.10
gives a characterisation of the blocks of P k

n (δ) in terms of the marked abacus.

5. The decomposition matrix of P k
n (δ)

In this section we present some results that allow us to use information about
PK

r (δ + tp) (t ∈ Z) to understand the structure of P k
r (δ). We use the notation

D(A) to denote the decomposition matrix of the algebra A.
We first recall the following theorem from [7] which allows us to use the modular

representation theory of the symmetric group in examining the partition algebra.

Theorem 5.1 ([7, Corollary 6.2]). Let λ, µ ⊢ n − t be partitions, with λ ∈ Λ∗
≤n.

Then
[∆k

µ(n; δ) : Lk
λ(n; δ)] = [Sµ

k : Dλ
k ].

In particular, given two partitions λ, µ ⊢ n−t, if the two Specht modules Sλ
k and Sµ

k

are in the same block for the symmetric group algebra kSn−t, then µ ∈ Bk
λ(n; δ).

We also recall some results from [3] which can be generalised to fields of arbitrary
characteristic. We begin by defining the k-vector space
Ψ(n, t) = {u ∈ k ⊗R V (n, t) : pi,ju = 0 for all i 6= j}.
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Definition 5.2. We place a partial order ≺ on I(n, t) by refinement of set-partitions.
Let M(n, t) be the set of minimal elements of I(n, t) under ≺.

For x, y ∈ I(n, t), we recursively define the Möbius function to be

µ(x, y) =







1 if x = y

−
∑

x�z≺y µ(x, z) if x ≺ y

0 otherwise.

Example 5.3. The Hasse diagram of I(3, 1) under ≺ is given below.

Figure 8. The Hasse diagram of I(3, 1).

The three diagrams on the bottom row are the elements of M(3, 1).

The original proof of the following proposition only involves the poset I(n, t) and
integral linear combinations of diagrams therein. When repeating the arguments
modulo p, no complications are introduced. For instance the space of functions
h : M(n, t) −→ k (c.f. [3, Theorem 4.2]) is still spanned by the characteristic
functions hy, taking value 1 on y and 0 on all other diagrams. The proof is therefore
valid over a field of positive characteristic.

Proposition 5.4 ([3, Proposition 4.3]). A basis for Ψ(n, t) is given by the set






∑

x∈I(n,t)

µ(y, x)x : y ∈ M(n, t)






.

Each of these basis elements has a unique non-zero term of the form y for each
y ∈ M(n, t) in its sum. All other non-zero terms are x for x strictly greater than
y.

We have an action of Sn on the left of I(n, t) by permuting the n northern nodes,
and an action of St on the right by permuting the t leftmost southern nodes. This
gives a (Sn,St)-bimodule structure on Ψ(n, t). Let σ ∈ Sn and x, y ∈ I(n, t)
such that x ≺ y. Then σx ≺ σy, since σy will be a refinement of the set-partition
represented by σx. Therefore σ will take one basis element as given in Proposition
5.4 to another. Similarly for τ ∈ St we have xτ ≺ yτ .

We can then decompose Ψ(n, t) as a (Sn,St)-bimodule. In order for the original
proof of the following proposition to be valid in positive characteristic, we assume
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that t < p. The proof below is then almost identical to that in [3], and is included
to highlight where the assumption that t < p is used.

Proposition 5.5 ([3, Proposition 4.4]). Suppose t < p. Then as a (Sn,St)-
bimodule,

Ψ(n, t) ∼=
⊎

µ⊢t

(

indSn

St×Sn−t
(Sµ

k ⊠ 1Sn−t
) ⊠ Sµ

k

)

.

Proof. By Proposition 5.4, we can index a basis of Ψ(n, t) by M(n, t). Note that
Sn × St acts transitively on this set. Let y ∈ M(n, t) be the element below

y =

t n − t

.

We see that St ×Sn−t is a natural subgroup of Sn, with St acting on the leftmost
t northern nodes and Sn−t acting on the remaining northern nodes. Then the
stabiliser of y in Sn × St is the set of permutations

H = {((γ, π), γ−1) : π ∈ Sn−t, γ ∈ St} ⊆ Sn × St

Since the action of Sn × St on M(n, t) is transitive, we can write

Ψ(n, t) = indSn×St

H 1H . We induce first to the subgroup (St × Sn−t) × St of
Sn × St. Note that since t < p, the group algebras kSt and k(St × St) are
semisimple. It is clear using Frobenius reciprocity that inducing the trivial module
from the subgroup L = {(γ, γ−1) : γ ∈ St} of St × St to St × St gives a module

with filtration
⊎

µ⊢t

(Sµ
k ⊠ Sµ

k ) (precisely as in [3, Proposition 4.4]). Since Sn−t has

no effect here, it follows that

ind
(St×Sn−t)×St

H 1H
∼=

⊎

µ⊢t

(
Sµ

k ⊠ 1Sn−t

)
⊠ Sµ

k .

Inducing the left side of the tensor product to Sn then gives the required result.
This has no effect on the last factor, as seen for example by taking coset represen-
tatives in Sn. �

Using the Littlewood-Richardson rule we obtain the following decomposition.
We still assume that t < p, so that the original proof of Doran and Wales is valid.

Proposition 5.6 ([3, Proposition 4.5]). Suppose t < p. Then as a Sn×St-module

Ψ(n, t) ∼=
⊎

λ⊢n,µ⊢t

with cλ
µ,(n−t)=1

Sλ
k ⊠ Sµ

k

for all µ ⊢ t and for a given µ only those λ for which cλ
µ,(n−t) 6= 0. These are the

λ which can be obtained from µ by adding n − t nodes, no two in a column.

Proof. This follows from the Littlewood-Richardson rule, generalised to arbitrary
field by James and Peel in [10]. The Littlewood-Richardson coefficients cλ

µ,(n−t) can

only be 0 or 1. Note that as a Sn × St-module it is multiplicity free. �
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For the same reasons as listed before Proposition 5.4, the proof of the following
is still valid over a field of positive characteristic.

Proposition 5.7 ([3, Proposition 4.6]). The submodule of ∆k
µ(n) which is annihi-

lated by all pi,j is spanned by elements of the form u⊗s for s ∈ Sµ
k and u ∈ Ψ(n, t).

The next result is a very restricted case of [3, Proposition 4.7], but is necessary
for later use. The proof of the original proposition does not generalise to fields of
positive characteristic, but the proof given here is based upon that in [3]. Note that
we make the assumption t < p, so that we can use Propositions 5.5 and 5.6.

Proposition 5.8 ([3, Proposition 4.7]). Let µ be a partition with |µ| = t < p, and
suppose λ 6= µ is the only partition other than µ that appears as a composition
factor of ∆k

µ(n). Then µ ⊂ λ, all of the nodes in [λ]/[µ] are in different columns,

and in fact [∆k
µ(n) : Lk

λ(n)] = 1.

Proof. By localising we may assume that λ ⊢ n. By the cellularity of P k
n (δ) we see

that Lk
µ(n) appears precisely once as a composition factor of ∆k

µ(n), as the head of

the module. Therefore ∆k
µ(n) has structure

Lk
µ(n)

⊎

Lk
λ(n).

Thus there is a submodule W ⊂ ∆k
µ(n) isomorphic to

⊎
Lk

λ(n), and therefore a
sequence of modules

0 = W0 ⊂ W1 ⊂ W2 ⊂ · · · ⊂ Wr−1 ⊂ Wr = W

such that Wi/Wi−1
∼= Lk

λ(n) for 1 ≤ i ≤ r. Let wr ∈ Wr = W , and consider
pi,jwr. Since Wr/Wr−1

∼= Lk
λ(n) is a module for the symmetric group, it must

be annihilated by pi,j . Therefore pi,jwr = wr−1 for some wr−1 ∈ Wr−1. By the
same argument, we also see that pi,jwr−1 = wr−2 for some wr−2 ∈ Wr−2, and so
p2

i,jwr = wr−2. Repeating this process we arrive at pr
i,jwr = 0, and since pi,j is an

idempotent we deduce that pi,jwr = 0 for all wr ∈ W . By Proposition 5.7, W must
then be in Ψ(n, t) ⊗ Sµ

k .

Consider now the module W1
∼= Lk

λ(n), which as a left kSn-module is isomorphic
to Sλ

k . Now since |µ| = t < p, we can find an idempotent eµ such that Sµ
k =

kSteµ. Then for τ 6= µ, |τ | = |µ|, we have eτkSteµ = 0 and so eτkSt ⊗St

kSteµ = 0. Therefore (Sλ
k ⊠ Sτ

k ) ⊗St
Sµ

k = 0 if τ 6= µ. This means the only terms
from Proposition 5.6 we need consider in Ψ(n, t) are those {λ, µ} with this given
µ. By Proposition 5.6, µ ⊂ λ and the nodes of [λ]/[µ] are in different columns.
Furthermore, cλ

µ,(n−t) = 1, and so there is a unique copy. �

In the rest of this section, we will consider separately different cases concerning
the values of n and δ. The first distinction we make is due to the following Lemma:

Lemma 5.9. Suppose there exist partitions λ ⊢ n, µ ⊢ n−t (t > 0) with [∆k
µ(n; δ) :

Lk
λ(n; δ)] 6= 0. Then δ ∈ Fp, the prime subfield of k.

Proof. This follows immediately from [1, Theorem 8.2], for if
[∆k

µ(n; δ) : Lk
λ(n; δ)] 6= 0 then µ ∈ Bk

λ(n; δ). But |λ| 6= |µ|, so δ ∈ Fp. �



ON THE DECOMPOSITION MATRIX OF THE PARTITION ALGEBRA IN POSITIVE CHARACTERISTIC17

5.1. δ 6∈ Fp. We will show that in this case the decomposition matrix D(P k
n (δ))

is equal to a block diagonal matrix, with components equal to the decomposition
matrices of symmetric group algebras. A proof of this result can also be found in
[7, Corollary 6.2].

Theorem 5.10 ([7, Corollary 6.2]). Suppose δ 6∈ Fp. Then the decomposition
matrix D(P k

n (δ)) is equal to the block diagonal matrix

(5.1) S =























D(kSn)

D(kSn−1)

. . .

D(kS1)

D(kS0)























.

Proof. By the cellularity of P k
n (δ) we immediately see that [∆k

µ(n) : Lk
λ(n)] = 0 if

|λ| < |µ|.
If |λ| > |µ|, then by Lemma 5.9 we see that as δ 6∈ Fp, the decomposition number

[∆k
µ(n; δ) : Lk

λ(n; δ)] must be zero.
If now |λ| = |µ|, then by localising we have

[∆k
µ(n) : Lk

λ(n)] = [Sµ
k : Dλ

k ],

and the result follows as these are the entries of the decomposition matrix of kS|λ|.
�

5.2. n < p and δ ∈ F×
p . We will see that in this case, any non-zero decom-

position numbers arise from reducing homomorphisms in the characteristic zero
case of the partition algebra PK

n (δ + rp) for some r ∈ Z. Recall from Section
4.2 that we have identified partitions with elements of a real vector space En =
⊕n

i=0 Rεi via λ 7→ λ̂ = −|λ|ε0 +
∑n

i=1 λiεi. If the final node of row i of λ
is a removable node (see Section 3.1), then we will abuse notation and write
λ − εi for the partition obtained by removing this node. In other words, we have
λ − εi = (λ1, . . . , λi−1, λi − 1, λi+1, . . . , λn).

Lemma 5.11. Let n < p and δ ∈ F×
p . If [∆k

µ(n; δ) : Lk
λ(n; δ)] 6= 0 then either λ = µ

or µ →֒δ+rp λ for a unique r ∈ Z.

Proof. By localising we may assume that λ ⊢ n. We will prove this result by
induction on n. If n = 0 then we have λ = µ = ∅ and the result clearly holds by
the cellularity of P k

0 (δ).
Now suppose that n > 0. Since also n < p, we must have

Lk
λ(n; δ) = ∆k

λ(n; δ) ∼= Sλ
k , the Specht module. If we apply the restriction func-

tor to this module, then by the branching rule the result is non-zero:

resnLk
λ(n; δ) = resn∆k

λ(n; δ) ∼=
⊎

i:(λ−εi)⊳λ

∆k
λ−εi

(n − 1
2 ; δ).
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Since (λ−εi) ⊢ n−1 all the modules in this filtration are Specht modules, and since
n < p they are also simple. Thus [∆k

µ(n; δ) : Lk
λ(n; δ)] 6= 0 implies [resn∆k

µ(n; δ) :

Lk
λ−εi

(n − 1
2 ; δ)] 6= 0 for some (λ − εi) ⊳ λ. Recall that we have an exact sequence

0 −→
⊎

ν⊳µ

∆k
ν(n − 1

2 ; δ) −→ resn∆k
µ(n; δ) −→ ∆k

µ(n − 1
2 ; δ) −→ 0,

and therefore a filtration of resn∆k
µ(n; δ) by modules ∆k

ν(n − 1
2 ; δ) with ν ⊳ µ or

ν = µ.
Using the Morita equivalence from Proposition 4.2 we must therefore have [∆k

ν(n − 1; δ − 1) : Lk
λ−εi

(n − 1; δ − 1)]
So by induction on n, ν and λ − εi must be a (δ − 1 + rp)-pair for some r ∈ Z.

Suppose first that ν = µ. Then since µ and λ − εi is a (δ − 1 + rp)-pair there is
some j such that

λ − εi = (µ1, . . . , µj−1, δ − 1 + rp − |µ| + j, µj+1, . . . , µn).

If j = i then
λ = (µ1, . . . , µi−1, δ + rp − |µ| + i, µi+1, . . . , µn),

and so µ →֒δ+rp λ. If j 6= i, then since λ and µ are in the same k-block we must

have µ̂ + ρ(δ) ∼p λ̂ + ρ(δ). We calculate

|λ| = |µ| − µj + (δ + rp − |µ| + j)

= δ + rp − µj + j

and so

λ̂+ρ(δ) = (µj − j−rp, µ1−1, µ2−2, . . . , µi +1− i, . . . , δ−1+rp−|µ|, . . . , µn−n).

By pairing equal elements from λ̂ + ρ(δ) and µ̂ + ρ(δ) we are left with

{µj − j − rp, µi + 1 − i, δ − 1 + rp − |µ|} ∼p {µj − j, µi − i, δ − |µ|}.

Clearly µj − j − rp ≡ µj − j (mod p), so we must have δ − 1 + rp − |µ| ≡ µi − i
(mod p). These are the contents of the final node in row j of λ and the penultimate
node in row i respectively, and since |λ| < p these cannot differ by p or more. Hence
δ − 1 + rp − |µ| = µi − i. But this cannot be true as these are the contents of the
final nodes in different rows of λ − εi.

Suppose now that ν ⊳ µ, so that ν = µ − εk for some k. Then

λ − εi = (µ1, . . . , µj−1, δ + rp − |µ| + j, µj+1, . . . , µk−1, µk − 1, µk+1, . . . , µn).

If k = i, that is we are removing nodes from the same row of λ and µ, then we have

λ = (µ1, . . . , µj−1, δ + rp − |µ| + j, µj+1, . . . , µn)

and so µ →֒δ+rp λ.
If now we suppose k 6= i, j = i, then

λ̂ + ρ(δ) = (µi − i − rp, µ1 − 1, . . . , δ + rp − |µ| + 1, . . . , µk − 1 − k, . . . , µn − n).

Again, by pairing equal elements from λ̂ + ρ(δ) and µ̂ + ρ(δ) we are left with

{µi − i − rp, δ + rp − |µ| + 1, µk − 1 − k} ∼p {δ − |µ|, µi − i, µk − k}.

Therefore we have δ + rp − |µ| ≡ µk − 1 − k (mod p). As in the case ν = µ,
j 6= i these are the contents of nodes in λ, and therefore cannot differ by p or more.
Hence δ + rp − |µ| = µk − 1 − k, a contradiction as these are the contents of the
final nodes in different rows of λ − εi. The case k 6= i, j = k is similar.
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Finally, suppose i, j, k are all distinct. We have

µ̂ + ρ(δ) = (δ − |µ|, . . . , µi − i, . . . , µj − j, . . . , µk − k, . . . )

λ̂ + ρ(δ) = (µj − j − rp, . . . , µi + 1 − i, . . . , δ + rp − |µ|, . . . , µk − 1 − k, . . . ),

and as before by considering the block criterion and pairing equal elements we have

{µj − j − rp, µi + 1− i, δ + rp− |µ|, µk − 1− k} ∼p {δ − |µ|, µi − i, µj − j, µk − k}.

Thus µi − i ≡ µk − k − 1 (mod p), and since these are the contents of nodes in λ
this must be an equality. Therefore the node we remove to obtain λ − εi must lie
directly below the node we remove to obtain µ − εk. But this cannot be true as
λ− εi differs from µ− εk in row j only, so adding a node to row i will not result in
a valid partition. �

Theorem 5.12. Let n < p, δ ∈ F×
p and suppose µ ∈ Λ≤n is such that

∆k
µ(n; δ) 6= Lk

µ(n; δ). Then there is a unique r ∈ Z such that

[∆k
µ(n; δ) : Lk

λ(n; δ)] = [∆K
µ (n; δ + rp) : LK

λ (n; δ + rp)] for all λ ∈ Λ≤n. That

is, ∆k
µ(n; δ) has Loewy structure

Lk
µ(n; δ)

Lk
λ(n; δ)

for a unique λ such that µ →֒δ+rp λ.

Proof. Since ∆k
µ(n; δ) 6= Lk

µ(n; δ) there is some λ 6= µ such that

[∆k
µ(n; δ) : Lk

λ(n; δ)] 6= 0. By Lemma 5.11, there exists a unique r ∈ Z such
that µ →֒δ+rp λ.

Suppose now there is another partition ν 6= λ, µ such that
[∆k

µ(n; δ) : Lk
ν(n; δ)] 6= 0. Again there is a unique r′ ∈ Z such that µ →֒δ+r′p ν. We

will show that this leads to a contradiction.
Consider first the case r = r′. Since both λ and ν are obtained from µ by adding

a single row of nodes, the final node having content δ + rp − |µ|, we immediately
see that we cannot be adding nodes to the same row, otherwise λ = ν. So suppose
we add nodes to row i to obtain λ and to j to obtain ν, with i < j. Then νj − j =
δ+rp−|µ|, and since ν is a partition we must have νm−m = µm−m > δ+rp−|µ|
for all m < j. In particular µi − i > δ + rp − |µ|, and so we cannot add nodes to
this row to obtain λ.

Suppose now that r 6= r′. Assume again that we are adding nodes to row i to
obtain λ, and to row j to obtain ν, with i < j. Therefore λi − i = δ + rp− |µ| and
νj − j = δ + r′p − |µ|. Notice that

δ + rp − |µ| = λi − i

> µi − i

= νi − i

> νj − j

= δ + r′p − |µ|,

and hence r > r′.
The hook in the Young diagram [λ] ∪ [ν] with endpoints the last nodes of rows

i and j contains (r − r′)p + 1 nodes. Since λ and ν differ only in rows i and j, the
part of this hook lying inside [λ] contains (r− r′)p nodes. Therefore |λ| ≥ (r− r′)p,
which cannot happen if n < p.
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We have therefore shown that there cannot be two distinct partitions that ap-
pear as a composition factor of ∆k

µ(n; δ) (other than µ itself). Thus we can apply

Proposition 5.8 to see that [∆k
µ(n; δ) : Lk

λ(n; δ)] = 1, and the result follows. �

Remark 5.13. Theorem 5.12 shows us that the decomposition matrix of P k
n (δ) when

n < p and δ ∈ Fp is obtained by “putting together” all of the characteristic zero
decomposition matrices for each lift of δ to K.

5.3. n ≥ p and δ ∈ F×
p . In this case, the decomposition matrix of the partition

algebra P k
n (δ) is much more complicated. However there is still one sub-case when

we can give a complete description.

Lemma 5.14. Let n ≥ p and δ ∈ Fp. Then there is only one lift of δ ∈ Fp to K
such that the partition algebra PK

n (δ) is non-semisimple if and only if n = p and
δ = p − 1.

Proof. First notice that if δ < 0 then PK
n (δ) is always semisimple, as we can never

have a δ-pair µ →֒δ λ. Combining this with [6, Theorem 3.27] we see that PK
r (δ)

is non-semisimple if and only if 0 ≤ δ < 2n − 1.
Suppose that n = p and δ = p− 1. The lifts of δ to K are p− 1 + rp with r ∈ Z.

Referring to the semisimplicity criterion above, we have precisely one r such that
0 ≤ p − 1 + rp < 2p − 1, namely r = 0.

For the converse, we first shift by multiples of p so that 0 ≤ δ ≤ p − 1. It then
suffices to prove that if n > p or δ < p − 1 then 0 ≤ δ + p < 2n − 1. In both cases
we have

0 ≤ δ + p < (p − 1) + n ≤ 2n − 1,

the strictness of the middle inequality coming either from n > p or δ < p − 1. �

Because of this result, we will henceforth restrict our attention to the the case
n = p and δ = p − 1. We continue by first calculating the decomposition numbers
for the block Bk

∅(p; p − 1).

Lemma 5.15. The block Bk
∅(p; p − 1) contains precisely all partitions with empty

p-core.

Proof. Using Theorem 4.10 we look instead at the orbit Op

∅(p; p − 1), and char-
acterise the partitions therein. This is accomplished by constructing the marked
abacus of ∅ using p beads. Recall the definitions of Γ(λ, p) and Γδ(λ, p) from
(3.3) and (4.10) respectively. The number of beads on each runner is given by
Γ(∅, p) = (1, 1, . . . , 1, 1). The runner v∅ is given by the p-congruence class of
δ − |∅| + p ≡ p − 1, so we therefore have Γp−1(∅, p) = (1, 1, . . . , 1, 2). The block
Bk
∅(p; p − 1) thus contains all partitions λ with Γp−1(λ, p) = (1, 1, . . . , 1, 2).
Let λ be such a partition. If vλ = p − 1, then Γ(λ, p) = (1, 1, . . . , 1, 1) and so λ

has empty p-core. If vλ = m for some 0 ≤ m < p − 1, then

Γ(λ, p) = (1, . . . , 1, 0
︸︷︷︸

(m+1)-th
place

, 1, . . . , 1, 2).

Now let µ be the p-core of λ. Note that we must have |µ| ≤ |λ|. Since
Γ(µ, p) = Γ(λ, p) and all beads are as high up their runners as possible, we can
find µ explicitly. First we see that

β(µ, p) = (2p − 1, p − 1, p − 2, . . . ,m + 1, m − 1, m − 2, . . . , 2, 1, 0)
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and therefore

µ = β(µ, p) + (1, 2, . . . , p) − (p, p, . . . , p)

= (p, 1, 1, . . . , 1, 0, 0, . . . , 0).

It is then clear that |µ| > p. Since |µ| ≤ |λ| we see that |λ| > p and therefore λ
cannot label a P k

p (p − 1) cell module.

Conversely, if λ ⊢ t ≤ p and has empty p-core, then |λ| = p or 0, and

Γp−1(λ, p) = (1, 1, . . . , 1, 2)

= Γp−1(∅, p).

Therefore λ ∈ Bk
∅(p; p − 1). �

Having determined which partitions lie in Bk
∅(p; p − 1), we will now determine

the decomposition matrix of this block.

Lemma 5.16. The composition series of ∆k
∅(p; p − 1) is

0 ⊂ ∆k
(p)(p; p − 1) ⊂ ∆k

∅(p; p − 1).

Proof. Firstly, ∅ →֒p−1 (p) since the partitions differ in one row only and the
final node of this row of (p) has content p − 1 = δ − |∅|. Thus there is a non-
trivial homomorphism ∆K

(p)(p; p − 1) −→ ∆K
∅ (p; p − 1), and so we must have

Hom(∆k
(p)(p; p − 1),∆k

∅(p; p − 1)) 6= 0 by Lemma 2.1.

We must now show that there is no module N such that
∆k

(p)(p; p−1) ( N ( ∆k
∅(p; p−1). By Lemma 5.15 and the cellularity of P k

p (p−1),

any such module N would be a symmetric group module. In particular, the ac-
tion of any element pi,j on N must be zero, and by Proposition 5.7 we see that

N ⊆ Ψ(p, 0) ⊗ S∅
k
∼= Ψ(p, 0). Now from Proposition 5.4 we have a basis for Ψ(p, 0)

given by the set






∑

x∈I(p,0)

µ(y, x)x : y ∈ M(p, 0)






.

But M(p, 0) consists of only one element, namely the diagram with each node in
its own block. Therefore the module Ψ(p, 0) is one-dimensional and is isomorphic to
∆k

(p)(p; p − 1). Thus there can be no module N with

∆k
(p)(p; p − 1) ( N ( ∆k

∅(p; p − 1). �

From Lemma 5.15 we have (p) ∈ Bk
∅(p; p− 1), and Lemma 5.16 shows us that in

fact[∆k
∅(p; p − 1) : Lk

(p)(p; p − 1)] = 1. The remaining partitions in this block are all

p-hook partitions, i.e. are of the form (p − m, 1m) for some
0 < m < p− 1, since these are the only partitions of p with empty p-core. Because
of this, the following result from Peel allows us to complete our description of the
decomposition matrix of the block Bk

∅(p; p − 1).

Theorem 5.17 ([16, Theorem 1]). Let char k = p > 2. A composition series for

S
(p−m,1m)
k , 0 < m < p − 1, is given by

0 ⊂ Im θm−1 ⊂ S
(p−m,1m)
k ,
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where

θm−1 : S
(p−(m−1),1m−1)
k −→ S

(p−m,1m)
k

is a non-trivial kSp-homomorphism. Furthermore, S
(1p)
k

∼= S
(2,1p−2)
k /Im θp−3.

Corollary 5.18. Let char k = p > 2. For 0 < m < p − 1 we have

[∆k
(p−m,1m)(p; p − 1) : Lk

λ(p; p − 1)] =







1 if λ = (p − m, 1m)

or (p − m + 1, 1m−1)

0 otherwise.

For m = 0 we have ∆k
(p)(p; p − 1) ∼= Lk

(p)(p; p − 1).

For m = p − 1 we have ∆k
(1p)(p; p − 1) ∼= Lk

(2,1p−2)(p; p − 1).

Proof. We apply Theorem 5.1 to Theorem 5.17. For m = 0 we use the fact that
P k

p (p − 1) is a cellular algebra. �

We now turn our attention to the other blocks of P k
p (p− 1). The partitions here

must have non-empty p-core, and since all partitions have size at most p, then they
are themselves all p-cores.

Lemma 5.19. Let λ ∈ Λ≤p be a partition with non-empty p-core. If there exists
µ ∈ Bk

λ(p; p − 1)\{λ}, then |λ| 6= |µ|.

Proof. Choose a partition µ ∈ Bk
λ(p; p − 1) with |λ| = |µ|. By the characterisation

of the blocks of the partition algebra we have Γp−1(λ, p) = Γp−1(µ, p). As |λ| = |µ|
we have vλ = vµ, hence Γ(λ, p) = Γ(µ, p) and they have the same p-core. However
since |λ| ≤ p and has non-empty p-core, it must in fact be that p-core. Since we
also have |µ| ≤ p, it follows that µ = λ. �

Theorem 5.20. Let λ ∈ Λ≤p be a partition with non-empty p-core. Then the block
Bk

λ(p; p − 1) has the same decomposition matrix as BK
λ (p; p − 1).

Proof. By Lemma 5.19 we can relabel

Bk
λ(p; p − 1) = {λ(m), λ(m−1), . . . , λ(1)}

where |λ(i)| > |λ(i−1)| for 1 < i ≤ m.
Suppose |λ(m)| 6= p. Then every partition in the block has size strictly less than

p, and so labels a cell module for P k
p−1(p − 1). Since the partition algebras form

a tower of recollement (see [2, Example 1.2(iii)]), the decomposition matrix of the
block Bk

λ(p; p − 1) is the same as that of Bk
λ(p − 1; p − 1). We can therefore use

the results of Theorem 5.12 to conclude that the decomposition numbers [∆k
λ(i)(p−

1; p − 1) : Lk
λ(j)(p − 1; p − 1)] are either 0 or 1, and the latter occurs if and only if

λ(i) →֒p−1+rp λ(j) for some r ∈ Z. But since δ = p − 1 is the only lift of δ to K

that gives a non-semisimple K-algebra, we must have λ(i) →֒p−1 λ(j). Therefore
we have

[∆k
λ(i)(p; p − 1) : Lk

λ(j)(p; p − 1)] = [∆k
λ(i)(p − 1; p − 1) : Lk

λ(j)(p − 1; p − 1)]

= [∆K
λ(i)(p − 1; p − 1) : LK

λ(j)(p − 1; p − 1)]

= [∆K
λ(i)(p; p − 1) : LK

λ(j)(p; p − 1)].

Suppose now that |λ(m)| = p. Then the partitions λ(m−1), λ(m−2), . . . , λ(1) are
all of size strictly less than p, and therefore label cell modules for P k

p−1(p − 1). By
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the same argument as above, the decomposition matrix obtained by removing the
row and column labelled by λ(m) is the same as that of Bk

λ(1)(p− 1; p− 1), which is
the same as in characteristic zero.

It remains to show that the decomposition numbers
[∆k

λ(i)(p; p − 1) : Lk
λ(m)(p; p − 1)] are the same as in characteristic zero. We be-

gin by showing that [∆k
λ(i)(p; p − 1) : Lk

λ(m)(p; p − 1)] = 0 for i < m − 1. Since

λ(m) is the only partition of size p in its block, the simple module Lk
λ(m)(p; p − 1)

is a Specht module. Therefore after applying the restriction functor we have the
following filtration:

respL
k
λ(m)(p; p − 1) ∼=

⊎

ν⊳λ(m)

∆k
ν(p − 1

2 ; p − 1).

Therefore we can apply the same argument as in Lemma 5.11 and see that if
[∆k

λ(i)(p; p − 1) : Lk
λ(m)(p; p − 1)] 6= 0, then either λ(i) = λ(m) or λ(i) →֒p−1 λ(m).

Following the proof of Theorem 5.12 we must then have

[∆k
λ(i)(p; p − 1) : Lk

λ(m)(p; p − 1)] =

{

1 if i = m − 1, m

0 otherwise

and hence [∆k
λ(i)(p; p − 1) : Lk

λ(m)(p; p − 1)] = [∆K
λ(i)(p; p − 1) : LK

λ(m)(p; p − 1)] by
Theorem 4.6. �

Remark 5.21. If we denote again by S the block decomposition matrix of the sym-
metric group algebras over k (see (5.1)), then we can combine Lemma 5.16, Corol-
lary 5.18 and Theorem 5.20 and say that the decomposition matrix D(P k

p (p − 1))

is equal to the product D(PK
p (p − 1))S. In fact, we can compute S explicitly in

this case using Corollary 5.18.

Unfortunately without the restrictions imposed thus far, we encounter exam-
ples of partition algebras whose decomposition matrices are not obtained from the
methods summarised in Remarks 5.13 or 5.21. One such is detailed below.

Example 5.22. We will show the decomposition matrix of P k
4 (1) with

char k = 3 cannot be computed as in Remarks 5.13 or 5.21. We present below
the decomposition matrix of kS4.












D
(4)
k D

(3,1)
k D

(22)
k D

(2,12)
k

S
(4)
k 1 0 0 0

S
(3,1)
k 0 1 0 0

S
(22)
k 1 0 1 0

S
(2,12)
k 0 0 0 1

S
(14)
k 0 0 1 0












We will first show that there exist non-zero decomposition numbers
[∆k

µ(4; 1) : Lk
λ(4; 1)] for which there is no r ∈ Z such that µ →֒1+3r λ, thus not

following Remark 5.13. Indeed, examination of the decomposition matrix of kS4

combined with Theorem 5.1 shows us that ∆k
(22)(4; 1) has a submodule isomorphic

to Lk
(4)(4; 1). Therefore [∆k

(22)(4; 1) : Lk
(4)(4; 1)] 6= 0, but (22) 6⊂ (4) and so there

cannot exist an integer r with (22) →֒δ+rp (4).
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We will now show that the decomposition matrix of P k
4 (1) is not equal to the

product of the decomposition matrices D(PK
4 (1 + 3r))S, for any r ∈ Z. The

semisimplicity criterion of [6, Theorem 3.27] shows us that we must consider r =
0, 1.

Consider first the case r = 0, that is PK
4 (1). We let λ = (2, 12) and µ = (2, 1),

then we have δ − |µ| = −2. Note that these partitions differ by a single node of
content −2 in the third row, and therefore form a 1-pair. By Theorem 4.6 we thus
have [∆K

(2,1)(4; 1) : LK
(2,12)(4; 1)] = 1, and so by Lemma 2.1

(5.2) [∆k
(2,1)(4; 1) : Lk

(2,12)(4; 1)] 6= 0.

Now consider the case r = 1, i.e. PK
4 (4). Let λ = (4) and µ = (1), then we have

δ − |µ| = 3. These partitions differ by a strip of nodes in the first row, the last
of which has content 3, and therefore form a 4-pair. By Theorem 4.6 we see that
[∆K

(1)(4; 4) : LK
(4)(4; 4)] = 1, and so by Lemma 2.1

(5.3) [∆k
(1)(4; 1) : Lk

(4)(4; 1)] 6= 0.

If the decomposition matrix D(P k
4 (1)) was equal to the product

D(PK
4 (1 + 3r))S for some r ∈ Z, we would have the following expansion for every

µ ∈ Λ≤4, λ ∈ Λ∗
≤4:

[∆k
µ(4; 1) : Lk

λ(4; 1)] =
∑

ν∈Λ≤4

[∆K
µ (4; 1 + 3r) : LK

ν (4; 1 + 3r)][Sν
k : Dλ

k ].

First let r = 0, λ = (4) and µ = (1). By examining the decomposition matrix of

kS4, we see that the only partitions ν for which [Sν
k : D

(4)
k ] 6= 0 are ν = (4) and

ν = (22). The above factorisation then becomes

[∆k
(1)(4; 1) : Lk

(4)(4; 1)] = [∆K
(1)(4; 1) : LK

(4)(4; 1)][S
(4)
k : D

(4)
k ]

+ [∆K
(1)(4; 1) : LK

(22)(4; 1)][S
(22)
k : D

(4)
k ]

= [∆K
(1)(4; 1) : LK

(4)(4; 1)] + [∆K
(1)(4; 1) : LK

(22)(4; 1)].

From Theorem 4.6 we know that all non-decomposition numbers in characteristic
zero correspond to δ-pairs. However neither (4) and (1) nor (22) and (1) are 1-pairs,
and therefore both these decomposition numbers are zero. This contradicts (5.3),
and the factorisation must in fact not be valid for r = 0.

Now let r = 1, λ = (2, 12) and µ = (2, 1). Again by examining the decomposition

matrix of kS4, we see that the only partition ν for which [Sν
k : D

(2,12)
k ] 6= 0 is

ν = (2, 12). The factorisation then becomes

[∆k
(2,1)(4; 1) : Lk

(2,12)(4; 1)] = [∆K
(2,1)(4; 4) : LK

(2,12)(4; 4)][S
(2,12)
k : D

(2,12)
k ]

= [∆K
(2,1)(4; 4) : LK

(2,12)(4; 4)].

Again we see that (2, 12) and (2, 1) is not a 4-pair, and therefore this decomposition
number is zero. This contradicts (5.2), and the factorisation is not valid for r = 1.

Since δ = 1 and δ = 4 are the only values of δ such that PK
4 (δ) is non-semisimple,

we see that there is no r ∈ Z that allows us to express the decomposition matrix in
characteristic p as a product as above.
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