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Abstract

Investors tend to move funds when they are unhappy with their cur-

rent portfolio managers’ performance. We study the effect of the size

of this flow of funds in an agent-based model of the financial market.

The model combines the discrete choice approach from agent-based

modelling, where all capital is mobile, with the evolutionary finance

framework where all growth is endogenous. Our results show that, if

investors exhibit recency bias in evaluating portfolio managers’ perfor-

mance, even a small amount of freely flowing capital has a huge impact

on the market dynamics and the survival of noise traders. We also find

that investors’ intensity of choice is a driving force for excess volatility

and extreme price movements when the size of the flow of funds is

large.
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1 Introduction

Providers of portfolio management services chase excess returns in the asset

market as well as new money from investors. These are two closely inter-

twined goals: A portfolio manager who outperforms many of their peers

tends to see exogenous growth through the inflow of money from new and

existing clients as well as endogenous growth through returns on the capital

employed.1

The exogenous growth of investment funds through the inflow (or out-

flow) of money is at the heart of much of the agent-based literature on

financial markets, see, e.g., the textbook Hommes [26] and the surveys

Hommes [25], Chiarella et al. [14], Hommes and Wagener [28], and Let-

tau [35]. These models are populated by a small number of different in-

vestment styles and an infinite number of clients who move money between

the available styles based on differences in performance, measured, e.g., as a

weighted average of realised excess returns. To capture the impact of port-

folio managers’ performance on the reallocation of investors’ money, this

literature generally employs a discrete choice model. In the absence of bor-

rowing/lending constraints, strategies can lever their positions without limit

and, as a result, have a disproportional short-term price impact. As money

under management does not matter for a fund’s asset allocation, asset prices

are driven by the dynamic of expectations about future excess returns which

can result in excess volatility with consistent deviation of asset prices from

fundamental values.

Endogenous growth through investment returns and its consequences for

asset prices in evolutionary, agent-type finance models have been studied in

Amir et al. [1] and Evstigneev et al. [20, 21]. These models contain a small

number of portfolio managers who aim to grow funds under management

but do not face client attrition. The price impact of investors is proportional

to their funds, and there is no leveraging. A main result in that literature

is that there is only one asset price system that is stable (in the long term)

1See, e.g., the survey papers by Constantinides, Harris and Stulz [16, Chapters 14, 15,
21 and 22] and Anderson and Ahmed [2].
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against the entry of new investment styles. This benchmark price system is

given by the expected value of the discounted sum of relative asset payoffs

(a generalisation of the Kelly investment rule).

This paper combines exogenous and endogenous growth of funds in one

model. Investors can move their funds between portfolio mangers with dif-

ferent styles, but the total amount of freely flowing capital is a model pa-

rameter. There is no leveraging: the more funds a portfolio manager holds,

the stronger its price impact. By varying the size of the flow of funds in this

model, we can explore the relative importance of the two different sources

of growth for asset price dynamics.

The exogenous amount of freely flowing capital in each time period can

be interpreted as the average client’s degree of patience. If the proportion

is small, most investors keep cool heads and tend to stick with their port-

folio manager even during long periods of poor performance. On the other

hand, when this amount is large, clients have itchy feet and tend to desert

an under-performing portfolio manager quickly. There is a substantial dif-

ference between this approach to modelling the flow of funds and the usual

discrete choice formula in agent-based models of financial markets: we can

control the amount of freely flowing capital and thus the general degree of

impatience in the market by varying the level of client attrition. The dis-

crete choice formula is used however to model the destination of the free

capital. The idea of modelling non-switching and switching investors is sim-

ilar to the one of Dieci et al. [18] with the same motivation. However, their

model is based on the framework of Brock and Hommes [8, 9] where the

budget effect and the interdependence between wealth and prices are left in

the background. An exception is Bottazzi and Dindo [5] who study agents

with decision rules that can be driven by past prices.

The agent-based part of the model presented here is most closely related

to that part of this literature that forbids short-selling: Anufriev and Dindo

[3], LeBaron [30, 31, 32, 33] and Levy, Levy and Solomon [36, 37, 38, 39]. In

these papers the budget constraint limits the potential market impact of the

different investment styles. This is in contrast to the models where unlimited

positions are possible (e.g. Chiarella, Dieci and Gardini [13] and Brianzoni,
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Mammana and Michetti [7]) and those where asset prices are driven only

by funds’ expectations about future returns (e.g. Brock and Hommes [8, 9],

Gaunersdorfer and Hommes [23]).

The evolutionary finance part of the model extends Evstigneev et al. [22]

by adding an explicit mechanism that reallocates a certain proportion of

funds between the different portfolio managers. In these models leverage is

excluded and therefore the available budget constrains the positions that a

fund manager can take on as well as their market impact. The hybrid model

presented here bridges the gap between the agent-based and the evolutionary

approach. It can be used as a powerful tool to obtain insightful results

regarding the feedback loop between the exogenous flow of funds with budget

effect, the endogenous growth of wealth, and the price dynamics.

Our paper is also closely related to inquires into the interaction of passive

and active learning dynamics, as defined in LeBaron [34]. Passive learn-

ing refers to the market force by which wealth accumulates on investment

strategies which have done well (in relative terms). Active learning refers to

the switching behaviour by which investors reallocate wealth into strategies

which have performed well in the past. As LeBaron points out, although

both learning types and their consequences on the price dynamics have been

extensively studied in isolation, the interaction between the two remains

largely unexplored.

We are particularly interested in the impact of the size of the flow of

funds on systematic deviations of prices from fundamental values as well

as on excess volatility. This inquiry has both theoretical as well as practi-

cal aspects. Under the discrete choice model, all capital is ready to move

at any time. In evolutionary finance models, all funds stay with the same

portfolio manager. In reality however clients’ behaviour fits neither descrip-

tion. Investors do not continuously monitor the performance of all portfolio

managers and move funds at all times, nor do they ignore performance and

never switch to managers with superior performance. As stressed by Dieci

et al. ([18], p. 520): “Empirical evidence has suggested that, facing different

trading strategies and complicated decision, the proportions of agents relying

on particular strategies may stay at constant level or vary over time.”.
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Since our model separates the clients’ allocation decision from the amount

of freely flowing capital, we look more closely into the relation between be-

havioural aspects, such as differences of opinions, recency bias in perfor-

mance evaluation, conservatism bias (e.g., Edwards [19]) and rational herd-

ing, and the model parameters. We also explore the impact of some of these

behavioural phenomena on the asset price dynamics.

The next section introduces the general framework of the hybrid model

and provides a specification with three investment styles. The detailed nu-

merical study of the model is provided in Section 3. Section 4 concludes.

All proofs are collected in an appendix. The software and data are available

at www.schenk-hoppe.net/software/flow-of-funds/.

2 Model

2.1 General framework

We consider a financial market in which K ≥ 1 risky assets and one risk-

free asset are traded at discrete points in time t = 0, 1, .... Risky assets

k = 1, ...,K pay dividends Dt,k ≥ 0. (Dt,1, ..., Dt,K) is a stationary stochas-

tic process with
∑K

k=1
Dt,k > 0 and EDt,k ≡ D̄k < ∞. Risky assets are in

constant positive supply, normalised to 1, and their prices Pt,k will be deter-

mined through short-run equilibrium of supply and demand. The risk-free

asset k = 0 has a constant price Pt,0 = 1 and pays a constant interest r > 0

per period.

There are I ≥ 1 portfolio managers (funds) in the market which manage

wealth on behalf of their clients. The portfolio held by fund i at time t is

denoted by a vector θi
t = (θi

t,0, θ
i
t,1, ..., θ

i
t,K) representing the number of units

of each asset. The quantity θi
t,k is given by

θi
t,k = (1 − c)

λi
t,kW

i
t

Pt,k

, k = 0, 1, ...,K, (1)

where W i
t is the wealth managed by fund i at time t, 1 − c ∈ (0, 1) is the

fraction of wealth reinvested in every period (the remainder is, e.g., used

5



for management fees or clients’ consumption), and λi
t = (λi

t,0, ..., λ
i
t,K) is

a vector of investment proportions with λi
t,k ≥ 0 and

∑K
k=0

λi
t,k = 1. We

assume that λi
t can depend on past observations of dividends, asset prices

and investment strategies up to time t−1. These strategies can also exhibit

additional, inherent randomness as long as it is independent from dividends

and other strategies at times t, t + 1, ....

The value of fund i’s holdings at the end of investment period [t, t + 1)

is equal to

V i
t+1 =

K
∑

k=1

[Pt+1,k + Dt+1,k]θ
i
t,k + (1 + r)θi

t,0. (2)

Equation (2) describes the endogenous change in an investment fund’s wealth,

i.e., the gains or losses of a fund’s wealth due to the asset returns.

The exogenous change of wealth under management is caused by clients

moving investments between the different funds at the end of each period.

The decision to reallocate investments is driven by observed performance of

funds. We assume that each time period a fraction β ∈ [0, 1] of all invest-

ments is allocated according to some performance measure. The remaining

fraction 1 − β stays with the fund where it is currently invested. Formally,

W i
t+1 = (1 − β)V i

t+1 + qi
tβV̄t+1, (3)

where V̄t+1 =
∑I

i=1
V i

t+1 is the aggregate wealth under management of all

funds and qi
t, i = 1, ..., I, are proportions (qi

t ≥ 0,
∑

i q
i
t = 1) that depend on

the funds’ performance up to time t. Equation (3) says that, after clients’

completed their reallocation of funds, the actual wealth W i
t+1 managed by

an investment fund i at the beginning of the period [t + 1, t + 2), consists of

two parts: the wealth that stays with this fund, (1− β)V i
t+1, and the (new)

wealth received by this fund, qi
tβV̄t+1. The value of W i

t+1 is the budget of

fund i which is available for investment at time t + 1. The parameter β

allows to control the maximum amount of capital that can flow between the

funds. In contrast to other agent-based models, for each $1 of wealth, only

$β will be reallocated.

If clients cannot move investments between funds (β = 0), equation (3)
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implies that each fund’s budget W i
t+1 is equal to the value V i

t+1 of its time

t+1 holdings. Then wealth under management can only grow endogenously.

If clients can move investments between funds (β > 0), the actual budget

W i
t+1 is affected by the exogenous flows of wealth. Depending on the sign

of W i
t+1 − V i

t+1, the net inflow or outflow of wealth into a fund i is given by

β
(

qi
tV̄t+1 − V i

t+1

)

.

Market clearing for each risky asset requires
∑I

i=1
θi
t,k = 1, k = 1, ...K,

which is equivalent to

Pt,k = (1 − c)

I
∑

i=1

λi
t,kW

i
t . (4)

Since the price of the risk-free asset is 1, θi
t,0 = (1 − c)λi

t,0W
i
t is equal to

the amount invested in that asset. With specification (3), we can write the

dynamic of wealth under management as

V i
t+1 =

K
∑

k=1

λi
t,k[(1 − β)V i

t + βqi
t−1V̄t]

〈λt,k, (1 − β)Vt + βqt−1V̄t〉
×

(

(1 − c)
[

(1 − β)〈λt+1,k, Vt+1〉 + β〈λt+1,k, qt〉V̄t+1

]

+ Dt+1,k

)

+(1 + r)(1 − c)λi
t,0

[

(1 − β)V i
t + βqi

t−1V̄t

]

,

with i = 1, ..., I, where 〈x, y〉 =
∑

i xiyi denotes the scalar product, and

(dropping the time index) V = (V 1, ..., V I)T ∈ R
I
+, λk = (λ1

k, ..., λ
I
k)

T ∈ R
I
+,

and q = (q1, ..., qI)T ∈ R
I
+ with R+ denotes the set of non-negative real

numbers. Equivalently, using vector notation,

Vt+1 = Θt

[

(1 − c)
[

(1 − β)Λt+1 + βΛt+1qt1
]

Vt+1 + Dt+1

]

+(1 + r)(1 − c)∆λt,0

[

(1 − β)Vt + βqt−11Vt

]

, (5)

where Λ = (λi
k) ∈ R

K×I
+ , 1 = (1, ..., 1) ∈ R

I , D = (D1, ..., DK)T ∈ R
K
+ , and

∆λ0 ∈ R
I×I
+ has entries λi

0 on the diagonal and zero otherwise. Denoting
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Wt = (W 1
t , ...,W I

t )T ∈ R
I
+, the portfolio matrix Θ ∈ R

I×K
+ is given by

Θik =
ΛkiW

i

(ΛW )k

=
Λki[(1 − β)V i + βqiV̄ ]
[

Λ
(

(1 − β)V + βq1V
)

]

k

.

Conditions ensuring that the dynamic (5) is well-defined are provided

in the following result which is proved in Appendix A. Here R
I
++ = {a ∈

[0,∞)I :
∑I

i=1
ai > 0} denotes the set of non-zero vectors with non-negative

coordinates.

Proposition 2.1. For any Vt ∈ R
I
++, there is a unique Vt+1 ∈ R

I
++ solving

(5) provided there is at least one fund i with V i
t > 0, which is fully diversified

in risky assets, i.e., λi
t,k > 0 and λi

t+1,k > 0 for all k ≥ 1. If β = 1 it is

further required that qi
t > 0.

The proof of this result also yields an explicit expression of the dynamic:

Vt+1 =
[

Id − (1 − c)Θt

(

(1 − β)Λt+1 + βΛt+1qt1
)]−1

×
[

ΘtDt+1 + (1 + r)(1 − c)∆λt,0

[

(1 − β)Vt + βqt−11Vt

]]

(6)

with Id the I-dimensional identity matrix.2 Using this result, each fund’s

budget W i
t+1 can be computed by inserting (6) into the specification (3).

2.2 Benchmark

Assume there is one risky and one risk-free asset, and a single portfolio

manager. Then the dynamic (6) reduces to

Vt+1 =
Dt+1 + (1 + r)(1 − c)λt,0Vt

1 − (1 − c)λt+1,1

(7)

and the risky asset’s price is

Pt+1 = (1 − c)λt+1,1Vt+1. (8)

2Setting β = 0 in (6), one obtains the dynamic studied in Evstigneev et al. [22].
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One therefore finds the recursive equation

Pt+1 =
(1 − c)λt+1,1

1 − (1 − c)λt+1,1

[

Dt+1 + (1 + r)
1 − λt,1

λt,1

Pt

]

. (9)

Let the dividend (Dt) be a stationary process with a finite variance.

Then we have the following result (its proof is given in Appendix A):

Proposition 2.2. Let c ≥ r/(1 + r) and assume that λt,1 ≡ λ ∈ (0, 1] is a

constant and σ2 = V ar(D0) < ∞.

(i) The process

P ∗
t = b

0
∑

n=−∞
a−nDt+n (10)

with

a = (1 + r)
(1 − c)(1 − λ)

1 − (1 − c)λ
, b =

(1 − c)λ

1 − (1 − c)λ
(11)

is a stationary solution to the dynamics (9).

(ii) For each P0 ≥ 0, the price process Pt converges a.s. to the path (P ∗
t )

in the following sense

lim
t→∞

|Pt − P ∗
t | = 0 a.s.

(iii) The expectation and variance of the stationary solution are as fol-

lows

EP ∗
t =

b

1 − a
ED0 =

b

1 − a
D̄, V ar(P ∗

t ) =
b2σ2

1 − a2
.

Interpretation. Suppose c = r/(1 + r). Then the above result shows

that the price of the risky asset converges to a stationary process (P ∗
t ).

Moreover the expectation of this process is equal to the fundamental value:

E(P ∗
t ) =

D̄

r
. (12)

This result holds regardless of the portfolio manager’s investment strategy

λ as long as it is a constant. The volatility of the price process (P ∗
t ) however
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depends on the specific strategy. For c = r/(1 + r), one finds that

V ar(P ∗
t ) =

σ2λ/r

r + (2 + r)(1 − λ)
.

In the particular case σ = 0, the price process becomes deterministic. Then

the condition c = r/(1 + r) implies that the fundamental value is a unique

fixed point of the price process.

To have the fundamental value as an equilibrium benchmark, we set

c = r/(1 + r) throughout the remainder of the paper.

2.3 Model specification

We focus on the model with one risky and one risk-free asset. The investment

proportion for the risky asset can then be expressed by a single number

λt ∈ [0, 1]. Given λi
t, fund i invests according to (1 − λi

t, λ
i
t). We assume

that dividends are i.i.d. with truncated normal distribution N (µ, σ)+, see

Appendix B for details on the implementation.

Investment strategies of portfolio managers. We consider three

investment strategies, each followed by one portfolio manager: fundamental,

trend-following and noise trading. These investment styles are the most

commonly studied in the heterogeneous agent-based literature, see, e.g.,

Hommes [25, 26]. All three strategies are based on subjective forecasts

of expected cum-dividend excess returns. For each investment style, the

forecast F̂t of the excess return of risky over the risk-free asset between the

current and the next period is computed as follows.

The fundamental fund forecasts price reversal to the fundamental value:

F̂F
t =

D̄/r + D̄ − Pt−1

Pt−1

− r =

[

D̄/r

Pt−1

− 1

]

(1 + r).

Here D̄ is the expected dividend payment, and D̄/r the risky asset’s funda-

mental value.

The trend-chasing fund interpolates the trend observed in the last L

10



periods to forecast future excess return:

F̂ T
t = (1/L)

L
∑

j=1

Pt−j + Dt−j − Pt−1−j

Pt−1−j

− r.

The noise-trader fund makes randomly revised forecasts according to an

AR(1) process:

F̂N
t = δF̂N

t−1 + ǫξt, ξt ∼ N(0, 1) (13)

with constants δ ∈ (0, 1) and ǫ > 0.

Given a forecast F̂t, the demand of each fund at time t is determined

by a demand function that maps F̂t into an investment proportion λt. To

ensure the dynamics of funds’ wealth is well-defined (Proposition 2.1), the

value of λt has to be bounded by zero and one, i.e., there is no leverage or

short-selling. On the other hand, we want agents’ portfolio decision to be

proportional to changes in their forecasts.

A natural candidate for the demand function is a symmetric S-shaped

smooth function whose values are in the interval (0, 1) and where the slope

at zero is controlled by a parameter. Similar to Lebaron [29, 30, 31] and

Chiarella, Dieci and Gardini [12, 13], we adopt a sigmoid demand function

to determine the investment proportions of each fund type with respect to

their forecasts of excess returns.3 The value of λt is given by4

λt = (1/π) arctan(αF̂t) + 1/2. (14)

The investment proportions in the risk-free and the risky asset are given

by (1 − λt, λt). The parameter α ∈ (0, 1) describes how strongly the fund

reacts to perceived future excess return. Formula (14) guarantees that for

3LeBaron argues that, in a model with heterogenous agents, deriving optimal demand
from utility maximisation requires an agent to be informed about the states of other agents
which is unrealistic. Agents’ demand is therefore modeled with a simple rule based on
a sigmoid function. Chiarella et al. use sigmoid functions to capture agents’ demand to
capture expectations of an increase in market risk when the absolute value of expected
excess return rises, e.g., during periods of booms or crashes.

4The trigonometric function arctan takes values in (−π/2, +π/2). Hence dividing by
π and adding 1/2 gives values between 0 and 1.
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any forecast the fund takes long positions in both risk-free and risky asset

because λt ∈ (0, 1). The S-shaped demand curve captures a simple but

general heuristic in investment — investors tend to increase (or decrease)

diminishingly their investments in the risky asset along with the increase

(or decrease) in perceived future excess return. Different to models where

investment proportions are derived from utility maximisation (e.g. Levy,

Levy, and Solomon [39] and Chiarella and He [15]) with a purpose to char-

acterise agents’ optimal behaviour, the demand function (14) used here is to

facilitate behaviourally the modelling of the three typical investment styles

mentioned above5.

Flow of clients’ money. We follow Brock and Hommes [9] in assum-

ing that investors reallocate the wealth that is withdrawn from funds in

proportions

qi
t =

exp(γf i
t )

I
∑

j=1

exp(γf j
t )

, (15)

where f i
t is the sum of discounted realised log returns of fund i:

f i
t = log(φi

t) + ρf i
t−1 (16)

with

φi
t =

V i
t

(1 − c)W i
t−1

. (17)

Here φi
t is fund i’s realised return between period t − 1 and t, and ρ ∈ [0, 1]

is the discounting factor. The parameter γ ≥ 0 measures clients’ sensitivity

5Levy, Levy, and Solomon [39] and Chiarella and He [15] may represent two typical ap-
proaches for solving investment proportions via maximising CRRA type utility functions
in agent-based models. Both approaches require ad-hoc assumptions to restrict invest-
ment proportions between zero and one. The former solves investment proportions and
the market clearing price simultaneously by a numerical search procedure. This method is
equivalently to assume that each agent in the market knows others’ investment strategies
so that all agents are able to compute the current market clearing price. The latter de-
rives investment proportions based on a closed-form solution to utility maximisation with
particular assumptions on the wealth dynamics. The resulting investment proportions
depend linearly on expected excess returns. A negative expected excess return will cause
agents to withdraw immediately all investments from the risky asset regardless of their
previous positions.
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to differences in observed performance of portfolio managers.

A key feature of (15) is the heterogeneity of clients’ choices. For every

parameter value γ ∈ [0,∞), some positive (gross) amount of wealth flows

to each investment fund. But the actual net flow is dependent on all funds’

performances. A crucial issue for the model dynamics is therefore which

condition implies an increase or decrease in the proportion qi of a fund i

between time t and t + 1. A short discussion of this neglected issue follows.

Let us look at the sign function sgn(qi
t+1−qi

t) where a positive (negative)

sign of qi
t+1 − qi

t refers to a net increase (decrease) of wealth. Define the

improvement of an investment fund’s strategy i = 1, ..., I during a time

interval [t, t + 1] as:

∆i
t+1 = f i

t+1 − f i
t ,

and the average improvement of all investment funds’ strategies during the

time interval [t, t + 1] as:

∆̄t+1 =
1

I

I
∑

i=1

∆i
t+1.

The condition which triggers the increase or decrease in qi can be char-

acterised in the following proposition.

Proposition 2.3. For each investment fund’s strategy i = 1, ..., I, the sign

of qi
t+1 − qi

t is determined by the sign of ∆i
t+1 − ∆̄t+1:

sgn(qi
t+1 − qi

t) = sgn(∆i
t+1 − ∆̄t+1).

This result shows that clients have a tendency to choose funds whose im-

provements are higher than the average level. Note that a fund j which has

the highest performance measure f j
t+1 at time t+1 does not necessarily have

a higher improvement ∆j
t+1 than the average level. The ‘best performed’

fund type j may lose clients at time t + 1 if its improvement ∆j
t+1 falls be-

low the average. Such a property reveals that clients with itchy feet hold

a different interpretation for the performance measure: the improvement of
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an investment fund. Itchy-feet clients are sensitive to the improvements of

funds and thus liable to overreact to changes in performance when choosing

between funds.

Proposition 2.3 further provides insights into the difference between the

two widely studied type-switching mechanisms: The discrete choice ap-

proach as described by equation (15) and the replicator dynamics used in

evolutionary game theory. Branch and McGough [6] apply the later in the

framework of Brock and Hommes [8]. They find that the replicator dynamics

implies that the proportion qi
t for agents who choose a predictor i at time t

will increase (decrease) at time t+1 if the value of predictor i’s performance

measure is higher (lower) than the value of the average performance measure

across all available predictors. Therefore, under the replicator dynamics, the

use of some predictors will cease over time. But according to Proposition 2.3

under the discrete choice approach, agents’ choice of predictors is sensitive

to the improvement in predictors’ performance measures rather than the dif-

ference between predictors’ performance measures. Hence even predictors

that are dominated can survive if their performance is volatile enough.

2.4 Discussion of behavioural aspects

Clients’ psychology may play an important role in the choice of investment

funds, especially when clients are boundedly rational. By linking to the

behavioural finance literature, we explain and discuss some psychological

elements and behavioural phenomena which are covered by the model.

Differences of opinion. The foundation for the switching mechanism

(15) is the randomized discrete choice framework of McFadden [41], whereas

Brock and Hommes [8, 9] utilised it in dynamic equilibrium models of finan-

cial markets to study the adaptation of investors. In discrete choice studies,

not all agents necessarily choose the option, here the investment fund, which

is indicated (by the model) to have the highest performance measure. Such a

phenomenon corresponds to the case of γ ∈ [0,∞) in (15). The finite value

of γ implies that agents are heterogeneous in making choices of available

options. The reason for such heterogeneity of agents is explained by McFad-
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den [41] as unmodeled idiosyncratic components in agents’ utility function or

randomness in agents’ preferences, while Brock and Hommes [8, 9] attribute

this heterogeneity to agents’ bounded rationality.

Our model characterises various types of differences of opinion among

investors. First, the differences in prior beliefs is modelled by the set of

different fund types. The presence of cool-head investors may reinforce this

type of differences of opinion. Second, the switching mechanism (15) with

γ ∈ [0,∞) is able to capture the differences of opinion in fund selection and

the phenomenon that clients hold different interpretations of the public per-

formance measure (16) of each fund type. When γ ∈ [0,∞), each itchy-feet

investor can be thought as having a private measurement or interpretation

for the performance of each strategy. As revealed by Proposition 2.3, the

improvement of strategy ∆i
t = f i

t − f i
t−1 can be regarded as an example

of this kind of private measurement or interpretation for the performance

of each strategy. This may lead to the phenomenon that some itchy-feet

investors choose fund types according to the value of public performance

measure, i.e., the value of f i
t , while some may make their choices based on

the value of improvement of each fund type, i.e., the value of ∆i
t.

In this switching mechanism, the distribution of clients’ investments

among different fund types becomes more (or less) diversified when the value

of γ becomes low (or high). For this reason, the degree of differences of opin-

ion among investors in strategy selection can be measured by the value of

γ ∈ [0,∞). A lower (or higher) value of γ corresponds to a higher (or lower)

degree of differences of opinion.

Conservatism bias and rational herding. Different degrees of dif-

ferences of opinion in strategy-switching may represent different behavioural

phenomena, such as conservatism bias and rational herding. Edwards [19]

identified the phenomenon of conservatism which describes that people re-

act conservatively to new information, and they are slow to change an es-

tablished view. In the context of performance-driven fund flows, a micro

level foundation for conservatism is that switching investors tend to be less

sensitive to the evidence of the performance of each strategy. A resulting

manifestation on the macro level is that the average amount of the net flows
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of wealth is low. Such a phenomenon can be captured when the value of γ

is low.6

Rational herding refers to the tendency that investors to react to infor-

mation about the behaviour of other investors. According to Bruce [11],

rational herding happens because some investors believe others can perform

better than themselves, therefore they follow or mimic others’ behaviour.

Such a phenomenon can be captured when the value of γ is high, since

a high value of γ implies that investors are less conservative and a large

proportion of investors will switch fast to the best performing investment

strategy.

In our model, the market impact of the differences of opinion in strategy

selection and its related behavioural phenomena can be studied by exploring

how different values of γ in (15) affects the market dynamics.

Recency bias. This cognitive bias is related to the way that individ-

uals digest information. Recency bias refers to the tendency of individuals

to assign more importance to more recent information compared to those

farther in the past. In the behavioural finance literature, recency bias have

been widely studied in relation to asset valuation and evaluation of funds’

performance. For example, as stated in Pompian ([43], p. 216): “one of

the most obvious and most pernicious manifestation of recency bias among

investors pertains to their misuse of investment performance records for mu-

tual funds and other types of funds. Investors track managers who produce

temporary outsized returns during a one-, two-, or three-year period and

make investment decisions based on such recent experience”.

In our model, recency bias in performance evaluation is captured through

the parameter ρ ∈ [0, 1) in (16). Decreasing the value of ρ represents an

increase in the degree of recency bias. In the extreme case ρ = 0, the

6In each time period, the intensity of the actual flow of wealth between investment
strategies is controlled by the value of γ, while the value of β governs the proportion of
the total amount of wealth that is potentially to flow. We refer to conservatism as a
behavioural attribute of itchy-feet investors, as in our model cool-head investors do not
look at the performance of each fund type and their wealth does not participate in the
flow-of-funds. The presence of cool-head investors can be regarded as a form of rational
inattention (e.g. Sims [45]), sticky-information (e.g. Mankiw and Reis [40]), or status quo
bias (e.g. Samuelson and Zeckhauser [44]) in agents’ decision-making.
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performance of each fund is assessed by its most recent realised return. In

contrast, the case ρ = 1 describes clients who have an infinite memory and

are unbiased in performance evaluation. This setting allows us to explore

how investors’ recency bias in performance evaluation affects the market

dynamics.

3 Simulation results

Our numerical analysis of the model focuses on the impact of the flow of

clients’ funds. We explore the effect of the proportion (β) of the total wealth

that is allocated according to observed performance of funds. We also study

the impact of the degree of the recency bias (ρ) in measuring performance

and the role of the intensity of choice (γ).

Table 1 collects the parameter values used in the numerical simulations.

Each time period in the simulation corresponds to a week in real time.

Parameter Value Explanation

r 0.001 Interest rate per week (5.3% p.a.)
c r/(1 + r) Consumption rate

Dt N (µ, σ)+ Dividend i.i.d. random variable
D̄ 1 Mean of dividend process
σ 0.2 Standard deviation of dividend process
L 30 Observation horizon trend-chasing fund
αL L Scaling parameter trend-chasing fund
αF 0.25 Scaling parameter fundamental fund
δ 0.97 Discounting for noise trader fund
ǫ 0.2 Standard deviation for noise trader fund
β {0, 10−8, 10−7, ..., 1} Proportion of freely flowing wealth
γ {1, 2, ..., 10} Intensity of choice
ρ {0.99, 1} Discount rate of observations

Table 1: Parameters and their values

Initial conditions. To ensure a level playing field, the value of each

fund’s performance measure is set to 0 at the initial time t = 0. Aggregate

initial wealth is set to 2,000 and is equally distributed across the three
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funds. To be able to determine the three fund’s investment strategies at the

initial time, we define L observations of the price and dividend for the time

periods t = −L, ...,−1. These data provide an upward trend in the price

with a constant growth rate 0.0015 per period in order to initialise the trend

following behaviour.7 The L dividends are set to their expected value. The

first period where the flow of funds can occur is from time t = 1 to t = 2,

i.e., after the first actual realisation of the performance measure.

3.1 Size of flow of funds

We first explore the effects of the size of the flow of clients’ funds. This

proportion is given by the value of the parameter β which determines the

proportion of the total wealth that is allocated according to funds’ perfor-

mance in any given period of time. In the extreme situation β = 0 all

funds’ growth is purely driven by returns on their investments (the evolu-

tionary finance case where all clients keep a cool head). As the value of β

increases, more capital is ready to move in any period which entail higher

growth rates of wealth under management of better performing funds. Un-

derperforming funds on the other hand will lose investment wealth faster.

The other extreme is β = 1 where all capital is ready to move and funds’

superior performance attracts an inflow of new capital (the agent-based case

where all clients have itchy feet).

3.1.1 No recency bias

Table 2 collects data on the long-run averages of wealth under management

by the three different funds, trading volume, excess return and standard

deviation of the price and excess return. Clients have no recency bias and

weigh all observations equally, i.e., the discount rate applied is ρ = 1.

All quantities in the table are calculated from 10 independent runs of

the model by averaging over N = 1 million time periods after an initial

(discarded) 900,000 time periods. Trading volume per time step is calculated

7These data will not affect the results as the predefined pattern in the price will be
fully cleared by the randomness of the model after L periods from t = 0.
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as Volt =
∑I

i=1
|θi

t − θi
t−1|/2. Excess return per time period is given by

ln(Pt+Dt

Pt−1
) − ln(1 + r). Table 2 reports annualised values.

β
Funds’ wealth (in %)

Std. dev Std. dev Volume Excess ret.
Noise Fund. Trend Price Excess ret. (in %) (in %)

0 0.0505 75.09 24.86 4.4815 0.003137 0.402 0.000418
1E-8 .0199 73.96 26.02 4.4959 0.003157 0.415 -0.000711
1E-7 .0193 77.16 22.82 4.3256 0.003087 0.374 0.000178
1E-6 .0122 84.04 15.95 4.3520 0.003046 0.300 -0.000271
1E-5 .0006 89.52 10.48 4.3583 0.002913 0.206 -0.000051
1‱ 0.0151 86.28 13.71 4.3137 0.002956 0.250 0.000478
1‰ 0.0237 79.41 20.57 4.4111 0.003106 0.362 -0.000332
1% 0.0256 75.82 24.15 4.4101 0.003083 0.348 0.000108
10% 0.0251 74.73 25.24 4.4924 0.003087 0.347 -0.000488
100% 0.0246 75.70 24.28 4.3697 0.003082 0.350 0.000308

Table 2: Market characteristics for different proportions of free flow of funds
(β). Intensity of choice is set to γ = 2. Clients have no recency bias, i.e.,
ρ = 1.

The results in Table 2, columns 1-4, show the average amounts of wealth

under management by the three funds for different values of β. The noise

trader fund holds less than 0.0256% of the total wealth under management,

the fundamental fund has about three-quarters, and the trend-chasing fund

about one-quarter. The noise trader fund therefore has a negligible impact

on the price. Among the two large funds, fundamental investment domi-

nates. Since the trading volume per period is extremely low (column 7), it

follows that both funds essentially hold identical portfolios.

As a consequence of the fact that almost all wealth is held in portfolios

invested according to fundamental values, the price of the risky asset is

very close to the fundamental value (columns 5-6). The excess returns are

almost zero and the volatility of the price is close to its benchmark value

σ∗ = 4.4688 (see Proposition 2.2).

These findings hold true for all values of β. These scenarios range from

no freely flowing capital (β = 0) to all wealth being allocated according to

performance in each period (β = 1). In all of these markets, pricing is in
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line with fundamentals, there is almost no excess volatility, and the noise

trader fund plays a negligible role. We can draw the following conclusion. If

clients have no recency bias (ρ = 1) then the market prices assets according

to fundamental values for all proportions β of freely flowing capital.

3.1.2 Recency bias

We repeat the above exercise but assume that clients exhibit a mild recency

bias by setting ρ = 0.99. Clients discount the realised performance of all

funds, hence place greater weight on more recent observations. In the current

case, the last observation (L = 30) is weighted by a factor of about 74%.

We therefore refer to this scenario as mild recency bias.

Table 3 collects the simulation results. The first observation is that

recency bias has a pronounced effect on the market dynamics. Compared to

Table 2, all but the first row (where the value of ρ is irrelevant as no capital

moves) contain different numbers in Table 3. The fundamental value fund is

the largest throughout but both the trend chasing fund and, in particular,

the noise trader fund increase their wealth under management when β is

larger.

β
Funds’ wealth (in %)

Std. dev Std. dev Volume Excess ret.
Noise Fund. Trend Price Excess ret. (in %) (in %)

0 .0505 75.09 24.86 4.4815 0.003137 0.402 0.000418
1‱ 7.42 63.89 28.69 62.163 0.113713 32.20 0.020348
1‰ 18.05 51.89 30.06 161.88 0.283485 71.03 0.130028
1% 26.62 41.88 31.50 253.23 0.429098 95.70 0.327618
10% 28.37 39.80 31.86 277.10 0.457822 99.56 0.382398
100% 28.84 39.51 31.65 285.83 0.459898 102.79 0.417128

Table 3: Market characteristics for different proportions of free flow of funds
(β). Intensity of choice is set to γ = 2. Clients exhibit a mild recency bias
with ρ = 0.99.

There is excess return in all scenarios where some capital can move (β >

0) and the risky asset’s price is much more volatile than the fundamental

value. The market adds price risk and a risk premium. We also observe a
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considerable trading volume.

Even with a small amount of wealth being allocated according to fund

performance, the noise trader fund plays a substantial role. For instance,

for β = 1‱ the fund on average manages more than 7.4% of all wealth (up

from 0.0151%), which turns out to have a strong impact on price volatility

of the risky asset and trading volume. The standard deviation of the price

increases by an order of magnitude and trading volume increases by a factor

of more than 100.

The larger the value of β, the more pronounced these effects. However,

the increase in the noise trader fund’s wealth, price volatility and trading

volume is strongest for values of β up to 1%. A further increase from 1%

up to 100% of capital being reallocated according to performance has a

comparatively minor impact.

At the maximum level β = 100%, the fundamental value fund manages

less than 40% while the two other funds are roughly of equal size with each

having about 30% of wealth under management. The risk premium (0.417)

is about a thousand times higher than in the case β = 0.

While in the rational market observed in the absence of recency bias

(ρ = 1) was accompanied by a negligible amount of noise trading, the recency

bias creates a tremendous room for the noise trader fund. With a wealth

of 28.84% of the total, the noise trading fund has substantial price impact.

Analogously to the noise trader literature (De Long et al. [17]), one can

conclude that the noise trader fund ‘creates its own space’.

We can draw the following conclusion. Clients’ recency bias, even a mild

one, when combined with small fraction of freely moving capital, can have

a tremendous impact on the price and market dynamics. Noise trading and

trend chasing both are investment styles that are viable over the long term.

The agent-based literature mostly focuses on the case where individ-

ual investors use only the most recent realised return or profit to evaluate

the performance of each investment strategy (i.e., ρ = 0). How investors’

memory biases (such as the recency bias and short memory) in evaluating

and selecting investment strategies can impact the market dynamics has re-

ceived less attention. LeBaron [31, 33] studies the role of investors’ memory
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lengths in strategy evaluation using an agent-based model where the strat-

egy selection mechanism is mainly driven by the discrete choice model as

described by (15). Similar to the model presented here, that model forbids

short-selling and allows the impact of wealth on the price.

LeBaron shows that in a market where investors have heterogeneous

memory lengths in evaluating the performance of each strategy the pres-

ence of investors who exhibit “small sample bias” (short memory length)

increases the market volatility in the long term. The volatility becomes

smaller if more investors with long memory lengths are present in the mar-

ket. Furthermore, it has been reported that if all investors have sufficient

long memory lengths (greater than 28 years) when come to evaluate the per-

formance of each strategy, the price may converge to a rational benchmark

(e.g. the fundamental value).

By comparing our results with those reported by LeBaron [31, 33], the

following important consensus can be reached. First and foremost, the cog-

nitive bias in investors’ memory plays a crucial role in affecting strategy eval-

uation and selection, which may yield a substantial impact on the long-term

market dynamics. Second, the “long memory” of investors in evaluating

and selecting investment strategies tends to stabilise the market in the long

term. Third, recency and small sample bias both point to the conjecture

that investors with relatively short memory in strategy selection may desta-

bilise the market. These “short memory” investors create an evolutionary

space where different investment strategies are able to thrive. Not just those

strategies with good cumulative performance, even those with relatively bad

cumulative performance are viable. As stressed by LeBaron ([31], p. 7206):

“these results contrast sharply with the commonly held wisdom in finance

that “bad” strategies will eventually be driven out of the market”.

However, the situation and result can be quite different in models where

unlimited positions are possible and asset prices are driven only by investors’

expectations about future returns. Hommes [10], for instance, shows that

an increase in memory length, i.e., a larger value of the parameter ρ, of

all investors in strategy evaluation and selection tends to destabilise the

market. Hommes et al. [27] further report that whether memory stabilises
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or destabilises may critically depend on how past performances are weighted.

Changing the weights may reverse the result, that is, an increase in memory

may also stabilise the market.8 Although different conclusions are drawn

in different market contexts, these results reveal that investors’ memory

in evaluating and selecting strategies is a critical behavioural element in

shaping the long term dynamics.

3.2 Intensity of choice

The above results show that all three funds can co-exist in the long run,

provided clients exhibit at least some degree of recency bias. We now turn

to the question whether a higher intensity of choice is to the advantage or

disadvantage of either the noise trading or the trend chasing fund.

The intensity of choice, which is set by the parameter γ, determines

how strongly clients react to differences in fund performance. The higher

the value of γ, the more of the freely flowing capital will go to the better

performing funds. If γ is low, the time average of a fund’s performance

matters more than its volatility. If γ is high, variance in performance carries

a higher penalty in competition for clients’ wealth.

A key feature of the switching mechanism is that, if the value of the

intensity of choice parameter γ is finite, not all clients necessarily choose

the fund type which is indicated (by the model) to have the highest per-

formance measure. Clients may hold different opinions in selecting fund

types. Furthermore, clients under this switching mechanism may have dif-

ferent interpretations of the public performance measure of each fund type

(see Proposition 2.3). The degree of differences of opinion in type-switching

can be measured by the value of parameter γ. Clients’ conservatism bias

and herding type of behaviour are associated with the degree of differences

of opinion in type-switching. Clients’ conservative or herding type of be-

haviour can be observed when the value of γ is relatively low or high. We

8Hommes et al. [27] show that an increase in memory stabilises the market if the
normalisation of performance measure changed to: (1 − ρ)Xi

t + ρY i

t−1 where ρ ∈ [0, 1),
Xi

t is the profit strategy i at time t, and Y i

t−1 is the performance measure of strategy i at
time t − 1.
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investigate how different values of γ impact the market dynamics.

To demonstrate the effect of a higher intensity of choice when clients

exhibit recency bias (ρ = 0.99) we consider 10 scenarios with parameter

values γ = 1, 2, ..., 10. Table 4 summarises the market characteristics of

these scenarios.

γ
Funds’ wealth (in %)

Std. dev Std. dev Volume Excess ret.
Noise Fund. Trend Price Excess ret. (in %) (in %)

1 30.75 36.75 32.50 303.061 0.492027 106.19 0.519018
2 28.83 39.44 31.73 285.309 0.455402 102.04 0.410298
3 27.18 41.91 30.91 269.53 0.434343 100.95 0.345498
4 25.77 43.68 30.55 277.981 0.408359 99.31 0.368258
5 24.82 45.73 29.45 281.61 0.399342 100.77 0.332078
6 23.68 47.76 28.56 302.576 0.392855 101.57 0.408968
7 22.84 50.46 26.70 353.622 0.402047 104.03 0.513918
8 22.02 53.38 24.61 387.082 0.422043 105.50 0.560178
9 21.01 56.46 22.52 435.641 0.443613 105.23 0.675598
10 21.02 58.66 20.32 455.214 0.454744 108.04 0.699088

Table 4: Market characteristics for different values of intensity of choice γ.
Clients exhibit a mild recency bias, ρ = 0.99. β = 1.

The results on the long-run average of wealth under management for the

three funds in Table 4 are interesting. More performance-sensitive clients

benefit investment in fundamentals. When the intensity of choice is very low,

the three funds are of roughly equal size. With an increasing intensity of

choice, the fundamental value fund increases in size at the expense of the two

other funds which are affected almost equally. However, these are average

proportions of wealth under management. Columns 5 and 6 in Table 4 show

that the short-term dynamics gets more volatile when the intensity of choice

γ is high. Indeed average price volatility, trading volume and asset return

all exhibit U-shaped patterns with respect to γ.9

Both a lower and higher values of γ can lead to higher levels of price

9The U-shaped dependence on γ could cause issues in empirical estimations. Here
the knowledge of the funds’ strategies and the size of their wealth under management is
needed to decide whether one is in a low γ or a high γ regime.
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volatility and trading volume. The causes for these observed high price

volatility and trading volume can be quite different. To illustrate the drivers

behind the high price volatility and trading volume, Figure 1 depicts the time

series of the price of the risky asset and the funds’ wealth under management

when γ = 2, and Figure 2 does the same for γ = 8. When the value of γ is

relatively low (γ = 2), itchy-feet clients are less sensitive to the performance

of each fund type leading to a well diversified wealth distribution among the

three fund types. The low level of net flows of wealth which is implied by

the low value of γ serves as a macro level manifestation of the conservatism

bias of the itchy-feet clients. The scenario corresponds to that in the bottom

row of Table 3.

Figure 1 illustrates that for low intensities of choice (γ = 2) the wealth

managed by each of the three funds is almost equal. This can be interpreted

as a high degree of differences of opinion in the population of clients which,

in turn, entails high price volatility and trading volume.

When the intensity is high (γ = 8) clients’ are prone to herding which

can be viewed as less differences of opinion. Herding causes fluctuations of

funds’ wealth under management and thereby drives booms and crashes.

These findings reveal that not only a high degree of differences of opinion

but also herding with a lower degree of differences of opinion can cause high

price volatility and trading volume. This finding points to an alternative

explanation to the differences-of-opinion literature on explaining the high

trading volume observed in real markets.

Moreover, the differences-of-opinion literature usually ignores the evo-

lutionary perspectives of financial markets such as adaptation and market

selection. We have shown that, in a evolutionary context, excess fluctuations

of the price which are caused solely by differences of opinion (in terms of

different investment strategies or prior beliefs, different views in strategy se-

lections and different interpretations of the public performance measure) are

only a temporary market phenomenon. These differences of opinion are not

sufficient to explain the persistence of high trading volume, whereas addi-

tional insights can be obtained by analysing investors’ heuristics and biases

in strategy-switching. Our simulation results show that the high trading
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(a) Price of risky asset

(b) Proportion of wealth under management: fundamental value fund (red,
top), trend-chaser fund (green, middle), noise trader fund (blue, bottom)

Figure 1: Time series of funds’ wealth under management (in proportions
of total wealth) for recency bias (ρ = 0.99), all wealth freely flowing (β = 1)
and low intensity of choice (γ = 2).
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(a) Price of risky asset

(b) Proportion of wealth under management: fundamental value fund (red,
top), trend-chaser fund (green, middle), noise trader fund (blue, bottom)

Figure 2: High intensity of choice (γ = 8) in the scenario of Figure 1.

volume is triggered by differences of opinion and amplified by conservatism

bias or herding behaviour, while it is investors’ recency bias in performance

evaluation which maintains the persistence of differences of opinion and high
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trading volume.

To further illustrate how the values of the intensity of choice impact the

time series of log-returns of the risky asset, Table 5 collects the summary

statistics for 10 different scenarios with γ ranging from 1 to 10. For compar-

ison purpose, the path for the noise fund’s investment proportions and the

path for the dividends are fixed across all the scenarios. For each run, the

time series of log-returns are sampled over 10,000 periods after an initial 1

million periods.

γ Mean Max. Min. Std. dev
p-quantile

Skewness Kurtosis
p = 1% p = 99%

1 0.000020 0.3023 -0.2545 0.0683 -0.1675 0.1693 0.0453 3.4240
2 0.000019 0.2779 -0.2501 0.0636 -0.1561 0.1555 0.0434 3.3740
3 0.000018 0.2620 -0.2453 0.0600 -0.1480 0.1453 0.0392 3.3221
4 0.000016 0.2539 -0.2410 0.0573 -0.1389 0.1374 0.0323 3.2717
5 0.000015 0.2467 -0.2384 0.0554 -0.1349 0.1324 0.0267 3.2822
6 0.000014 0.4605 -0.2653 0.0545 -0.1331 0.1295 0.0895 4.2057
7 0.000012 0.6818 -0.3128 0.0557 -0.1388 0.1368 0.3969 8.7877
8 0.000011 1.1125 -0.3949 0.0594 -0.1459 0.1396 1.4351 30.8357
9 0.000014 1.2360 -0.4941 0.0630 -0.1665 0.1551 1.7602 36.0831
10 0.000008 0.9861 -1.2813 0.0643 -0.1718 0.1698 0.1880 40.4167

Table 5: Summary statistics for the time series of log-returns of the risky
asset (excluding dividend) under different values of intensity of choice γ.
Clients exhibit a mild recency bias, ρ = 0.99. β = 1.

Table 5 shows that increasing γ decreases the mean of log-returns (which

eventually goes to zero). In contrast, the magnitude of maximum and mini-

mum log-returns, standard deviations, the length between 1%-quantile and

99%-quantile, and kurtosis exhibit a U-shaped pattern with respect to γ.

The values of the 1%-quantile and the 99%-quantile show that 98% of re-

turns are bounded in mid ranges with a maximum interval between -17.18%

and 16.98%. These 98% of returns as well as the standard deviation of re-

turns are quite stable over the whole range of γ. However, huge booms and

crashes occur for higher values of γ as evidenced by the large maximum and

minimum returns. The extremely high kurtosis of returns in these cases im-
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plies that increasing γ increases the frequency of small returns (and reduces

that of high returns) but at the same time makes large price movements

more extreme.

The reason for this behaviour is as follows. If the intensity of choice is

relatively low, individual investors are not sensitive to the performance of

each fund type. The aggregate wealth is well diversified across the three

funds most of the time, which leaves some space for a volatile market since

the fundamental investment fund does not have a comparative advantage in

terms of relative wealth. If the intensity of choice is high, investors are sensi-

tive to the performance of each fund. From time to time, large price changes

trigger large shifts of wealth between the funds, and thereby induce further

price changes. These in turn feed back to more changes in funds’ wealth

shares. (This is illustrated in the insets in Figure 2 (a) and (b)). During

these periods, a highly volatile market with booms and crashes ensues. On

the other hand, the high intensity of choice also increases the average wealth

held in the fundamental investment fund (see Table 4 and Figure 2). This

leads to lone periods of time where the market is much less volatile.

Another important question is whether the effect of the intensity of

choice is proportional to the value of β (the proportion of the freely flowing

capital). To this end, we perform the same exercise as in Table 5 but with

β set to 1% (down from 100%). Table 6 depicts the summary statistics for

scenarios with relatively low and high values of γ.

γ Mean Max. Min. Std. dev
p-quantile

Skewness Kurtosis
p = 1% p = 99%

1 0.000021 0.2792 -0.2372 0.0643 -0.1559 0.1563 0.0420 3.3428
2 0.000021 0.2609 -0.2501 0.0597 -0.1443 0.1456 0.0437 3.3596
9 0.000019 0.2059 -0.2453 0.0419 -0.1028 0.1034 0.0484 3.4906
10 0.000019 0.2024 -0.1602 0.0404 -0.0997 0.0991 0.0489 3.5129

Table 6: Summary statistics for the time series of log-returns of the risky
asset (excluding dividend) under different values of intensity of choice γ.
Clients exhibit a mild recency bias, ρ = 0.99. β = 0.01.

Comparing the results in Tables 5 and 6 we find the following. When
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the value of the intensity of choice is low, reducing the value of β by a factor

of one-hundred only has a minor impact on the return series. The standard

deviation in both cases γ = 1 and γ = 2 drops only by 0.4%. Changes in

other the magnitude of the maximum and minimum returns, 1%-quantile

and 99%-quantile, skewness and kurtosis are also very small. In contrast, if

the intensity of choice is high, reducing the value of β substantially affects the

return series. Both skewness and kurtosis are much smaller in Table 6 than

in Table 5 for γ = 9 and γ = 10. The values for the 1% and 99% quantiles are

both closer to zero, and the extremely large booms and crashes disappeared.

Based on these results, we can conclude that the market is much more

sensitive to changes in the intensity of choice when the parameter β is large.

These findings show that in our model the intensity of choice has a pro-

nounced impact on the market dynamics when many investors have itchy

feet. But when the cool heads are much more numerous, the intensity of

choice has very little impact. This observation might be of interest to empiri-

cal researchers. For instance, Boswijk et al. [4] use S&P 500 data to estimate

the intensity of choice in an agent-based model. They find the existence of

two expectation regimes, one fundamentalist and one trend-following. But

the intensity of choice is not significantly different from zero. The authors

stress that this is a common result in type-switching regression models be-

cause large changes in the intensity of choice cause only small variations in

the wealth holdings of the different investment styles. Our model, in con-

trast, shows that the intensity of choice does have a strong impact – but

only if enough investors have itchy feet to generate a sufficient amount of

freely flowing capital. Moreover, based on the data of mutual fund flows,

statistically significant estimates of the intensity of choice parameter are

reported by Goldbaum and Mizrach [24].

4 Conclusion

The paper brings together two strands of literature, agent-based models

of financial markets where investment funds grow exogenously and evolu-

tionary finance where all growth is endogenous. By embedding the discrete
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choice approach into an evolutionary finance framework, the resulting model

allows the coexistence of itchy-feet investors who tend to desert an under-

performing portfolio manager quickly and cool-head investors who would

stick with their portfolio manager even during long periods of poor perfor-

mance. The model separates the clients’ decision problem where to invest

their funds and the amount of capital that flows freely within a period in

time. If many investors have itchy feet, more capital will be reallocated but

if there are many cool heads, client attrition is low and less capital will move

in a period.

Numerical analysis of the model shows that a very small amount of freely

flowing capital can have a huge impact on the market dynamics if clients

exhibit recency bias in evaluating fund performance. In particular, even

with a mild degree of recency bias, the flow of funds is able to create an

evolutionary space where the investment strategies of fundamental trading,

trend chasing and the noise trading all survive in the long-run. Moreover, in

contrast to pure expectations-based type-switching models, the intensity of

clients’ choice is an important factor in driving excess volatility and extreme

price movements if enough investors have itchy feet.

The approach offers several directions for further research. We only look

at the standard one-asset-one-bond model, and we restrict our analysis to

3 decision rules. Further we exclude short-selling and long-leveraging. This

type of constraint is absent in most agent-based models of financial markets

which, in general, use borrowing as a main driver for excess volatility. Em-

pirical issues are not covered in the paper, and it might be interesting to see

how well a calibration can fit stock index dynamics in real markets.
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A Proofs

Proof of Proposition 2.1. Let us first prove an auxiliary result.

Lemma A.1. Let A ∈ R
I×K and B ∈ R

K×I be non-negative matrices.

Suppose

(i)
∑I

i=1
Aik < 1 for all k = 1, ...,K; and

(ii)
∑K

k=1
Bki ≤ 1 for all i = 1, ..., I.

Then the matrix Id − AB is invertible and the inverse has only strictly

positive elements.

Proof. We show that C = Id−AB has a strict column-dominant diagonal:

I
∑

j=1,j 6=i

|Cji| < Cii for all i = 1, ..., I. (18)

Then applying Murata [42, Corollary (p. 22) and Theorem 23 (p. 24)] yields

the assertion.

As

Cji = 1{i=j} −
K
∑

k=1

AjkBki
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and AjkBki ≥ 0, (18) is equivalent to:

I
∑

j=1

K
∑

k=1

AjkBki < 1 for all i = 1, ..., I.

Indeed we find that the term on the left-hand side is bounded by

K
∑

k=1

(

I
∑

j=1

Ajk

)

Bki <

K
∑

k=1

Bki ≤ 1

where we first use assumption (i) and then (ii). �

Proof of Proposition 2.1. Consider the system (5). We apply Lemma A.1

to show that the matrix

Id − (1 − c)Θt

(

(1 − β)Λt+1 + βΛt+1qt1
)

is invertible and that all elements of its inverse are strictly positive. Let

A = (1 − c)Θt and B = (1 − β)Λt+1 + βΛt+1qt1. Since c < 1, one has

I
∑

i=1

Aik = 1 − c < 1.

Further

K
∑

k=1

Bki = (1 − β)
K
∑

k=1

λi
k + β

K
∑

k=1

I
∑

i=1

λi
kq

i ≤ 1 − β + β = 1.

This gives the result because the non-negative vector

ΘtDt+1 + (1 + r)(1 − c)∆λt,0

[

(1 − β)Vt + βqt−11Vt

]

has at least one strictly positive entry. Indeed, by assumption, W i
t = (1 −

β)V i
t + βqiV̄t > 0 and λi

t,k > 0 for all k ≥ 1. Therefore Θi
t,k > 0. Since

Dt+1,k ≥ 0 and
∑K

k=1
Dt+1,k > 0, we finally find

∑K
k=1

Θi
t,kDt+1,k > 0. �

Proof of Proposition 2.2. Recall that the dividend process (Dt) is

stationary. Under the assumption of the proposition, the price dynamics (9)
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can be written as

Pt+1 = aPt + bDt+1 (19)

with a = a(c, r, λ) and b = b(c, r, λ) defined in (11). The price process

has an autoregressive form with a stationary sequence of innovations bDt+1.

Equation (19) has a unique stationary solution if |a| < 1 and the variance

of the innovation is finite. Since a is strictly decreasing in λ, setting λ = 0

one finds that a(c, r, 0) ≤ 1 if and only if c ≥ r/(1 + r). Also, a(c, r, 1) = 0,

hence, 0 ≤ a < 1. To verify that (10) is a stationary solution to (19), observe

that

P ∗
t+1 = b

0
∑

n=−∞
a−nDt+1+n = b

−1
∑

n=−∞
a−nDt+1+n + bDt+1

= ab

0
∑

n=−∞
a−nDt+n + bDt+1 = aP ∗

t + bDt+1.

One has EP ∗
t = b/(1− a)ED0 < ∞ and P ∗

t ≥ 0 (as Dt ≥ 0) therefore P ∗
t is

finite a.s. Denoting v = V ar(P ∗
t ) one obtains the relationship v = a2v+b2σ2

with a unique solution v = b2σ2/(1 − a2).

Consider any price path Pt with P0 ≥ 0. Then

|Pt − P ∗
t | = a|Pt−1 − P ∗

t−1| = · · · = at|P0 − P ∗
0 |

which a.s. converges to zero as t → ∞. �

Proof of Proposition 2.3. Rearranging equation (15) gives:

qi
t =

exp(γft)
I
∑

i=1

exp(γft)

=
1

1 +
∑I

j 6=i exp[γ(f j
t − f i

t )]
. (20)
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Inserting (20) into sgn(qi
t+1 − qi

t) gives:

sgn(qi
t+1 − qi

t) = sgn

(

1

1 +
∑I

j 6=i exp[γ(f j
t+1 − f i

t+1)]
−

1

1 +
∑I

j 6=i exp[γ(f j
t − f i

t )]

)

= sgn
(

I
∑

j 6=i

exp[γ(f j
t − f i

t )] −
I
∑

j 6=i

exp[γ(f j
t+1 − f i

t+1)]
)

= sgn
(

I
∑

j 6=i

[(f i
t+1 − f i

t ) − (f j
t+1 − f j

t )]
)

= sgn
(

I
∑

j 6=i

(∆i
t+1 − ∆j

t+1)
)

= sgn
(

I∆i
t+1 −

I
∑

j=1

∆j
t+1

)

. (21)

Since dividing I > 0 on the right-hand side of (21) does not change its sign,

one has

sgn(qi
t+1 − qi

t) = sgn

(

∆i
t+1 −

∑I
j=1

∆j
t+1

I

)

. (22)

Finally, using ∆̄t+1 =
∑I

j=1
∆j

t+1 in (22) gives:

sgn(qi
t+1 − qi

t) = sgn(∆i
t+1 − ∆̄t+1).

�

B Calibration of dividend distribution

In the numerical analysis the dividends Dt are univariate and i.i.d. with

distribution N (µ, σ2)+ – the normal distribution truncated to non-negative

numbers. We shall show how to choose µ and σ so that the truncated

distribution has a given mean and variance.

Denote by φ+ the density of N (µ, σ2)+. The probability that N (µ, σ2)

random variable takes values in the interval R++ is Φ(∞−µ
σ

)−Φ(0−µ
σ

) with

Φ(·) the cumulative distribution function of the standard normal distribu-
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tion. Therefore, using Bayes theorem the conditional density function is

given by

φ+(x) =
1

σ
φ(x−µ

σ
)

1 − Φ(−µ
σ

)
=

1

σ
φ(x−µ

σ
)

Φ(µ
σ
)

, x ≥ 0,

where φ(x) = e
−

x
2

2√
2π

is the probability distribution function of the standard

normal distribution. The expected value is obtained using the moment gen-

erating function M(τ) and equals

EDt = M ′(τ)|τ=0 = µ + σ
φ(h)

Φ(−h)
(23)

with h = −µ
σ
. The variance is given by:

V arDt = M ′′(τ)|τ=0 − (M ′(τ)|τ=0)
2 = σ2

[

1 +
hφ(h)

Φ(−h)
−

(

φ(h)

Φ(−h)

)2
]

.

(24)

Rewriting the system of equations (23) and (24) gives:

EDt = µ + σ
φ(h)

Φ(−h)
, σ2 = V arDt + EDt(EDt − µ). (25)

Inserting σ from the second equation into the first gives a non-linear equa-

tion for µ which we solved numerically. When the mean of Dt equals to

1 and the standard deviation is 20%, the corresponding parameters for

the truncated normal distribution are µ = 0.9999997026250630 and σ2 =

0.0400002973749369.
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