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a b s t r a c t

Cold-formed steel (CFS) cross-sections can be optimised to increase their load carrying capacity, leading

to more efficient and economical structural systems. This paper aims to provide a methodology that

would enable the development of optimised CFS beam sections with maximum flexural strength for

practical applications. The optimised sections are designed to comply with the Eurocode 3 (EC3) geo-

metrical requirements as well as with a number of manufacturing and practical constraints. The flexural

strengths of the sections are determined based on the effective width method adopted in EC3, while the

optimisation process is performed using the Particle Swarm Optimisation (PSO) method. To allow for the

development of a new ‘folded-flange’ cross-section, the effective width method in EC3 is extended to

deal with the possible occurrence of multiple distortional buckling modes. In total, ten different CFS

channel cross-section prototypes are considered in the optimisation process. The flexural strengths of the

optimised sections are verified using detailed nonlinear finite element (FE) analysis. The results indicate

that the optimised folded-flange section provides a bending capacity which is up to 57% higher than

standard optimised shapes with the same amount of material.

& 2015 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Cold-formed steel (CFS) cross-sections are used extensively in

the construction industry as secondary load-carrying members,

such as roof purlins and wall girts. In recent years, however, CFS

cross-sections are also increasingly being employed as primary

structural elements. For example, CFS framing systems are used in

low- to mid-rise multi-storey buildings [1] and CFS portal frames

are gaining popularity in single-storey industrial buildings with

short to intermediate spans [2,3]. In both cases, CFS members are

employed as the primary load-bearing members and consequently

have to meet increased demands in terms of span length and load-

carrying capacity. Compared to hot-rolled members, CFS thin-

walled members offer several advantages of economy and effi-

ciency, including a high strength for a light weight, a relatively

straightforward manufacturing process and an ease of transpor-

tation and erection. Above all, CFS sections offer flexibility and

versatility in producing a variety of cross-sectional shapes, which

are obtained by bending relatively thin metal sheets using either a

cold-rolling or a press-braking process at room temperature. Fig.1

illustrates this by showing a series of relatively complex com-

mercially available CFS sections and profiled sheets. The flexibility

of the manufacturing process in obtaining various shapes means

that there is a great potential for CFS sections to be optimised to

meet specific objectives, thereby bringing practical benefits to

both manufacturers and structural designers.

Due to their typically large flat width-to-thickness ratios, CFS

sections are inherently susceptible to local, distortional and global

buckling modes, resulting in a complex optimisation process.

Previous studies on the optimisation of CFS elements have mainly

been limited to varying the dimensions of standard cross-sections

such as lipped channel beams [4], channel columns with and

without lips [5,6] and hat, I- and Z- cross section CFS beams [7].

Taking the elastic buckling strength as an optimisation criterion,

Magnucki et al. [8,9] developed optimum CFS beams with a mono-

symmetrical open cross-section and sinusoidally corrugated flan-

ges, as well as optimum I-shaped sections with box-shaped flan-

ges. A CFS channel beam with closed hollow flanges was proposed

and optimised with respect to its member capacity by Magnucka-

Blandzi [10]. Analytical formulas were thereby developed to cal-

culate the local and global buckling strengths in a process to ob-

tain feasible solutions in a design space constrained by geometric

conditions. The results of their study indicated a better flexural

performance compared to the traditional lipped or plain channel

sections. More recently, CFS compression and bending members

[11,12] were optimised with respect to their capacity according to

EC3 [13] using Genetic Algorithms. The researchers investigated

the influence of the column length and the shift of the effective
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centroid, induced by local/distortional buckling, on the optimal

design solutions. The shapes of the cross-section were thereby

limited to the conventionally used lipped channels.

In order to obtain ‘global optimum’ solutions, research at Johns

Hopkins University and Griffith University was conducted on the

free form optimisation of CFS cross-sections without placing any

prior constraints on the shape of the cross-section. The finite strip

method (FSM) and the direct strength method (DSM [14]) were

thereby combined with Genetic Algorithms (GA) to obtain opti-

mum shapes for open CFS cross section columns [15–17]. While

this led to some innovative new geometries, the resulting cross-

sections were not ‘pre-qualified’ according to the DSM approach,

thus casting some doubt on the optimisation procedure. Ad-

ditionally, these studies did not consider any manufacturing or

construction constraints and, therefore, highly complex shapes

were obtained which cannot be deemed suitable for practical

applications due to a complex (or unfeasible) manufacturing pro-

cess and the obvious difficulty in connecting the cross-section to

other elements. Leng et al. [18] later advanced this work by in-

corporating some end-user constraints and by limiting the num-

bers of rolling passes in the manufacturing process. CFS columns

with different lengths were optimised and more practical shapes

were obtained, which, however, still did not meet the DSM pre-

qualification criteria.

Recent experimental and numerical research on CFS moment

resisting connections [19] at the University of Sheffield has de-

monstrated that CFS channel sections with curved flanges (Fig. 2a)

display a higher flange buckling load and also possess higher

strength, stiffness and ductility compared to channels with flat

flanges. However, this type of cross-section is difficult to connect

to a typical floor system, allowing just a point contact. Practically,

the curved flange can be substituted with a folded flange which

approximates it, as shown in Fig. 2(b). However, the EC3 guidelines

[13,20,21] do not provide a direct procedure for the design of such

cross-sections. In particular, there is a need to develop a design

procedure that can account for the multiple distortional buckling

modes which may occur in the folded-flange section. This study

aims to develop such a design methodology in order to subse-

quently use it to optimise the CFS folded-flange section. The effi-

ciency of the folded-flange beam section is investigated alongside

nine more conventional channel prototypes which are aimed at

investigating the effects of intermediate web stiffeners, return lips

and inclined lips. All sections are optimised by maximising the

cross-sectional flexural capacity for a given thickness and coil

width (equal to the total developed length of the cross-section). A

brief overview of the effective width method adopted in EC3 [13]

is first given in Section 2. This method is then extended to deal

with the presence of multiple distortional buckling modes in the

folded-flange cross-section. The particle swarm optimisation (PSO)

method, used to solve the optimisation problem, is described in

Section 3 and the optimum solutions are presented in Section 4.

The accuracy of the proposed design model and the efficiency of

the optimisation procedure are investigated through detailed

nonlinear FE modelling in Section 5. A comprehensive comparison

of the optimised results is provided in Section 6.

2. Design of CFS members based on EC3

The CFS sections to be optimised are evaluated according to the

cross-sectional strength and stability provisions in EN1993-1-3

(EC3) [13] accounting for both local and distortional buckling

modes. The “notional flat widths” [19] of the plate assemblies are

used to determine the cross-sectional properties, which are then

reduced by a factor (δ) to account for the influence of the rounded

corners. A brief description of the EC3 provisions for the design of

CFS members is provided in the following subsections.

2.1. Local buckling

In EC3, the effect of local buckling is considered through the

effective width concept. It recognises the fact that local buckling of

the plates constituting the cross-section has the effect of shifting

the load-bearing stresses towards the corner zones, in the process

Fig. 1. Examples of commercially available CFS sections with complex shapes.

Fig. 2. CFS beams with (a) curved flanges and (b) folded flanges.

Fig. 3. Local buckling mode of a folded-flange cross-section: (a) buckled shape, (b) effective area of the cross-section for local buckling, (c, d) web under stress gradient.
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reducing the effectiveness of the central parts in carrying com-

pressive stresses. The cross-section is consequently idealised as an

“effective cross-section”, shown in solid black line in Fig. 3(b). This

effective area is assumed to resist the full bending action applied

to the section. According to Eurocode 3, Part 1–5 [21], the effective

width of a (doubly supported) plate is given by:
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where b and be are the total and the effective width of the plate,
respectively. ψ = f f/2 1 is the stress ratio of the plate, as shown in

Fig.3(c) and (d). An equation similar to Eq. (1) is also provided for

outstand elements. The slenderness ratio for local buckling, λl,
relates the material yield stress, fy, to the elastic local buckling

stress of the plate, σcr . In Eq. (3), v and E are the Poisson's ratio and
the Young’s modulus of the plate, respectively, and k is the

buckling factor calculated using Eurocode 3, Part 1–5 [21] based on

the boundary conditions and the stress ratio ψ . For a doubly

supported plate subjected to uniform compression k¼4, while for

an outstand element under uniform compression k¼0.43. The

Eurocode thus assumes, for the purpose of calculating scr, that

every plate element is simply supported along its fold-lines, ne-

glecting any interaction with adjacent plates. It is also worth

noting that, in principle, the Eurocode always calculates the ef-

fective cross-section, Weff , based on the yield stress, fy, while some

other design standards (e.g. the AISI [14] and AS/NZS [22] speci-

fications) use the stress at global buckling.

2.2. Distortional buckling

Distortional buckling of CFS members is linked to any buckling

mode causing a distortion of the shape of the cross-section, but

excludes those deformations related to local buckling (Fig. 4(a)). As

a result, distortional buckling is always associated with the dis-

placement of one or more of the fold-lines of the section out of

their original positions. Distortional buckling can also be inter-

preted as global (flexural or flexural-torsional) buckling of plate

subassemblies within the cross-section. In line with this latter

view, EC3 [13] bases the design for distortional buckling on the

assumption that the plate subassembly at risk of buckling (which

could be a stiffened web or a compressed flange-lip assembly)

behaves as a strut continuously supported by elastic springs of

stiffness K along its centroid axis. These springs replace the re-

straint experienced by the plate assembly from the omitted parts

of the cross-section and therefore depend on the flexural stiffness

of the adjacent plates. The buckling behaviour can then be studied

by considering an equivalent strut on an elastic foundation, as

shown in Fig. 4(b). The elastic critical buckling stress of the strut

σcr s, is:

σ =
( )
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A

2

4
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,

where E is the Young's modulus, Is is the second moment of the

area of the stiffener about the axis through its centroid parallel to

the plate element being stiffened, K is the spring stiffness per unit

length, and As is the effective cross-sectional area of the edge

stiffener. The stiffness K is determined by applying a unit load u¼1

(per unit length) at the centroid of the effective part of the edge

stiffener assembly, as shown in Fig. 4(a) for the case of a double-

fold stiffener. The stiffness of the equivalent springs thus depends

on the flexural stiffness of the adjacent plane elements.

This procedure cannot directly be applied to the design of the

folded-flange cross-section shown in Fig. 2(b), because of the

possibility of not one, but two distinctively different distortional

buckling modes occurring, depending on the relative lengths of

the flange segments. As illustrated in Fig. 5, when the length of

flange segment 2 is relatively large compared to segment 1, dis-

tortional buckling type 1 is dominant (i.e. buckling of the assembly

consisting of flange segment 2 and the lip). However, for sections

where flange segment 1 is much longer than segment 2, distor-

tional buckling of type 2 (illustrated in Fig. 6) is critical (i.e.

buckling of the assembly consisting of flange segments 1 and

2 and the lip). Considering the two structural systems shown in

Figs. 5 and 6 (and ignoring any second order effects), the deflec-

tions δ1 and δ2 produced by concentrated forces u1 and u2, re-

spectively, can be determined to be:
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where the bending rigidity of the plate, D, is determined by:

u=1

Edge Stiffener

Is,As

Spring stiffness, K

Spring stiffness, K

Intermediate Stiffener

Is,As

Fig. 4. Distortional buckling mode of a channel section with intermediate and edge

stiffeners (a) distortionally buckled shape and (b) equivalent struts.

Fig. 5. (a) Actual system, and (b) simplified model to analyse distortional buckling

of type 1.
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In the above equations, e is the distance between the centroid

of the edge stiffener (shown in Figs. 5(b) and 6(b)) and the pivot

point (which is the web-to-flange junction for type 2 buckling and

the junction between flange segments 1 and 2 for type 1 buckling),

h is the height of the web, b is the length of flange segment 1 and

θ1 is the angle between flange segment 1 and segment 2 (see

Figs. 5(a) and 6(a)). Furthermore, t is the plate thickness and E and

v are the modulus of elasticity and the Poisson’s ratio, respectively.

Distortional buckling is taken into account in EC3 [13] using a

reduction factor Xd on the thickness of the stiffeners. This method

can be extended to deal with folded-flange cross-sections by de-

termining the elastic distortional buckling stress σcr s, , with Eq. (4),

using a stiffness K obtained from Eqs. (5 and 6) as K¼u/δ. The

effective cross-section needs to be calculated separately for each of

the two distortional modes, yielding two effective cross-section

moduli. For a particular cross-section, the effective section mod-

ulus is then taken as the minimum value of the two.

The design model developed for the folded-flange section is

further used during the optimisation process in Sections 3 and 4.

3. Description of the particle swarm optimisation process

Particle swarm optimisation (PSO) is a population-based

method which is inspired by the swarming behaviour of biological

populations such as the motion of bird flocks or schools of fish

[23]. Its mechanism has some parallels with evolutionary com-

putation techniques, such as Genetic Algorithms (GA). An initial

population of solutions is randomly generated, but unlike GA,

solutions are optimised by updating generations without any

evolution operators such as crossover or mutation. The potential

solutions in PSO, called particles, move in the problem space by

following the current optimum particles. This usually leads to a

better efficiency in terms of computational time and cost and,

therefore, a faster convergence rate compared to GA [24,25].

A swarm comprises of N particles moving around a D-dimen-

sional search space, in which each particle represents a potential

solution to the optimisation problem. The position and velocity

vectors of ith particle are ρ ρ ρ ρ ρ= { }, , ... , , ... ,i i i ij iD1 2

and = { }V v v v v, , ... , , ... ,i i i ij iD1 2 , respectively, where

=i N1, 2, 3, ... . The particles fly through the feasible region in

search for the global optimal solution. In each iteration step, the

ith particle updates its position and velocity based on a combi-

nation of: (a) its personal best position over its history, and (b) the

position of the particle within the swarm with the best position in

the previous iteration. This can mathematically be expressed as:
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where the subscripts i and k denote the particle and the iteration

number, respectively, and Δt is the time increment. The vectors

= { }P p p p p, , ... , , ... ,best i i i ij iD, 1 2 and = { }G g g g g, , ... , , ... ,j Dbest 1 2

denote the best position of the ith particle over its history up to

iteration k, and the position of the best particle in the swarm in

iteration k, respectively. Also, c1 is a cognitive parameter indicating

the degree of confidence in the solution Pbest,i obtained from each

individual particle, whereas c2 is a social parameter to reflect the

confidence level that the swarm as a whole has reached a fa-

vourable position. In addition, r1 and r2 are two independent

random numbers uniformly distributed between 0 and 1, adding a

random searching aspect within the feasible region, and w is the

inertial weight factor used to preserve part of the previous velocity

of the particles. According to Perez [26], the convergence condi-

tions for PSO can be expressed as:
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To improve the global versus local search behaviour, a dynamic

variation of the inertial weight is used in this study by linearly

decreasing w with successive iterations as follows [27]:

= −
−

( )
+w w

w w

k
k

12
k 1 max

max min

max

where kmax is the total iteration number andwmax and wmin are the

maximum and minimum values of the inertial weight factor,

respectively.

4. Optimisation procedure

4.1. Problem definition

The optimisation procedure in this study aimed to maximise

the bending capacity of CFS cross-sections. The optimisation pro-

blem can thus be formulated as:

( )= ( )⋅ ≤ ≤ = ( )M W x f d x d i Nmax for 1, ... , 13c Rd eff y i, min max

where Mc Rd, is the moment resistance of a cross-section about its

major axis and ( )W xeff is the effective section modulus. The ef-

fective section modulusWeff is calculated about the major principal

axis through the centroid of the effective area. The effective width

and the effective thickness of each plate element are first calcu-

lated according to the procedure outlined in Sections 2.1 and 2.2 to

account for both local and distortional buckling. The effective

second moment of area of the cross section Ieff is then computed

from the contributions of all effective parts of the cross-section

and divided by the maximum distance from the effective centroid

to the edge of the cross-section to obtain Weff. For each design

variable, xi, lower and upper bounds, dmin and dmax, were de-

termined based on a combination of the constraints imposed by

EC3 [13] and certain manufacturing limitations and practical

considerations, which will be explained further in this section.

Throughout the optimisation process, the thickness of the cross-

sections was kept constant at 1.5 mm and the total developed

length of the cross-section (the coil width) was also maintained at

415 mm. These values were taken from a commercially available

channel section, shown in Fig. 7, which was used as a benchmark

Fig. 6. (a) Actual system, and (b) simplified model to analyse distortional buckling

of type 2.

J. Ye et al. / Thin-Walled Structures 101 (2016) 1–134



and to which the performance of the optimised sections will be

compared in Section 4.2.

The values of the radius of the rounded corners (measured

along the heart-line), the elastic modulus and the Poisson's ratio

were taken as 3 mm, 210 GPa and 0.3, respectively. The yield stress

of the CFS material was assumed to be fy¼450 MPa. It is again

noted that the optimisation was carried out with respect to the

cross-sectional capacity, excluding lateral-torsional buckling. This

situation is representative, for instance, of purlins connected to a

steel deck with concrete topping, where the compression flange is

continuously supported, or even of roof purlins where the lateral

and rotational stiffness of the roof diaphragm and/or the presence

of sufficient bridging prevent any out-of-plane effects.

To ensure the practicality of the optimised sections, the fol-

lowing additional constraints were imposed:

(1) The basic overall shape of all the cross-sections was restricted

to a channel. Channel sections are currently the most widely

used CFS beams in practical applications. The fact that they are

composed of flat plate elements both allows for a straight-

forward manufacturing process and facilitates the connections

to trapezoidal steel decking or roof/wall systems, as well as

bridging, cleat plates, etc… Ten different prototypes were

optimised, which are shown in Table 1. They include nine

relatively conventional sections and the newly proposed

folded-flange channel section. All prototypes are based on a

channel shape, but they allow the addition of a single web

stiffener, double web stiffeners, inclined lips and double-fold

(return) lips. These features are commonly encountered with-

in commercially available sections and do not impose any

excessive demands on the fabrication process. Each prototype

was individually optimised, after which the overall optimum

among the ten optimised prototypes was identified.

(2) In practice, additional constraints of a very concrete nature

typically come into play. These constraints may be quite case-

dependent and may, for instance, be related to the ability to

connect the beam to other elements, or be imposed by the

manufacturing process itself. In this particular case, the fol-

lowing constraints were imposed:

a) The width of the flanges was required to be at least 50 mm in

order to connect trapezoidal decking or plywood boards to the

beam by means of screws. This width was determined after

consultation with the industrial partner on the project. In the

case of the folded flange section, it was the flat width of the

central horizontal segment which was restricted to a mini-

mum of 50 mm.

b) The lip needs to be of a sufficient length. A lip of, for instance,

1 mm length cannot be rolled or brake-pressed. The industrial

partner on the project suggested a minimum length of 5–

15 mm. Therefore, as indicated in Table 1, cZ15 mm was

imposed for a single lip and combined with dZ5 mm for a

return lip.

c) The height of the web was specified to be at least 100 mm in

order to allow a connection to be made (e.g. to a cleat plate)

with at least two bolts and/or for bridging to be installed. An

upper bound of 350 mm was also imposed limit the total floor

depth.

d) The ratio R (see Table 1) was restricted so that the intermedi-

ate web stiffener would be physically positioned within the

web.

One of the major advantages of the PSO algorithm is that these

constraints can easily be accommodated and others added. The

constraints merely result in a restriction of the search space of the

particle swarm.

In addition to the practical constraints mentioned above, the

EC3 design rules [13] also impose certain limits on the plate

width-to-thickness ratios, the relative dimensions of the cross-

section and the angle of the edge stiffeners. These constraints

were also taken into account in the optimisation procedure and

are listed in Table 1 under the heading ‘Constraints based on EC3’.

Finally, the opening angle and the leg length of the inter-

mediate stiffeners were limited to π/6 and 15 mm, respectively.

4.2. Optimisation solutions

To facilitate the optimisation process, both the design proce-

dure and the optimisation algorithm were implemented in Matlab

[28]. The population size of the particle swam N was taken as 100,

and 100 iterations kmax were used to obtain the optimum results.

The maximum and minimum inertial weight factors wmax andwmin

were taken as 0.95 and 0.4, respectively, as recommended in [27].

Each of the prototypes was optimised 3 times using a different set

of random initial particles and the result with the maximum

bending capacity was retained as the optimum section. As an ex-

ample, Fig. 8 shows the iteration history of the bending capacity of

prototype ⑩, where the convergence was practically achieved

after about 50 steps.

Table 2 summarises the dimensions and the bending capacity

of the optimised cross-sections corresponding to each of the

prototypes presented in Table 1. Table 3 illustrates the effective

cross-section of the optimised prototypes, maintaining the same

scale for all cross-sections. A thick black line represents a fully

effective part of the cross-section, while a line with intermediate

thickness indicates that the thickness has been reduced to account

for distortional buckling.

It is clear from Table 3 that, in general, the optimised cross-

sections tend to adopt the minimum specified flange width of

50 mm and, hence, have a large height-to-width ratio. However,

prototypes ① to ③, which have the largest height, still show the

75

1
7

1
7

75

2
3

1
3

Fig. 7. Selected commercial CFS beam cross-section (dimensions in mm).
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Table 1

Selected prototypes, design variables and constraints.

Prototype Prototype section Design variables Constraints based on EC3 Manufacturing & practical limitations

① x¼c/b b/tr50 bZ50

h/tr500 100rhr350

② x1¼c/b b/tr50 bZ50

x2¼b/L h/tr500 100rhr350

x3¼R 0.1rRr0.9

③ x1¼c/b b/tr50 bZ50

x2¼b/L h/tr500 100rhr350

x3¼R 0.2rc/br0.6 0.1rRr0.9

④ x1¼c/b b/tr60 bZ50

x2¼b/L c/tr50 100rhr350

x3¼θ1 h/tr500 cZ15

π/4rθ1r3/4π

⑤ x1¼c/b 0.2rc/br0.6 bZ50

x2¼b/L b/tr60 100rhr350

x3¼R c/tr50 cZ15

x4¼θ1 h/tr500 0.1rRr0.9

π/4rθ1r3/4π

⑥ x1¼c/b 0.2rc/br0.6 bZ50
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Table 1 (continued )

Prototype Prototype section Design variables Constraints based on EC3 Manufacturing & practical limitations

x2¼b/L b/tr60 100rhr350

x3¼R c/tr50 cZ15

x4¼θ1 h/tr500 0.1rRr0.4

π/4rθ1r3/4π

⑦ x1¼c/b 0.2rc/br0.6 bZ50

x2¼d/b 0.1rd/br0.3 100rhr350

x3¼b/L b/tr90 cZ15

x4¼ θ1 c/tr60 dZ5

d/tr50

h/tr500

π/4rθ1r3/4π

⑧ x1¼c/b 0.2rc/br0.6 bZ50

x2¼d/b 0.1rd/br0.3 100rhr350

x3¼b/L b/tr90 cZ15

x4¼R c/tr60 dZ5

x5¼θ1 d/tr50 0.1rRr0.9

h/tr500

π/4rθ1r3/4π

⑨ x1¼c/b 0.2rc/br0.6 bZ50

x2¼d/b 0.1rd/br0.3 100rhr350

x3¼b/L b/tr90 cZ15

x4¼R c/tr60 dZ5

x5¼θ1 d/tr50 0.1rRr0.4

h/tr500

π/4rθ1r3/4π

⑩ x1¼ θ1 h/tr500 hZ100
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lowest bending capacity (one which is even lower than the stan-

dard non-optimised section taken as a starting point). This is due

to the fact that the flanges without edge stiffeners are highly

susceptible to local buckling and, therefore, the strength can only

be marginally enhanced by adding intermediate stiffeners to the

web in prototype ③. However, the optimised lipped channel sec-

tion ④ shows that adding an edge stiffener can improve the

bending capacity by more than 25%.

Adding an intermediate stiffener in prototype ⑤ increased the

bending capacity of the optimum section by only 2%, compared to

prototype ④. However, using two intermediate stiffeners in the

web (prototype ⑥) actually reduced the flexural capacity of the

optimum CFS section by 5.2% compared to the optimum lipped

channel with no stiffener (prototype④). This is due to the fact that

folding the intermediate stiffeners into the section (while keeping

the total developed length constant) causes a reduction in total

height, which impacts negatively on the effective modulus of the

section. Moreover, in this symmetric arrangement the web stif-

fener in the tension zone is completely ineffective. It can be con-

cluded in general terms that for CFS beam sections, edge stiffeners

are much more efficient in increasing the section capacity than

intermediate web stiffeners.

The results also indicate that, using the same amount of material,

the newly developed folded-flange section (prototype ⑩) provides

the maximum flexural strength compared to the other prototypes.

Moreover, this cross-section can easily be manufactured and satisfies

all the practical constraints which were imposed.

It is also noted that the practical constraints imposed on the

floor depth h of the sections (listed in the rightmost column of

Table 1) never turned out to be critical. However, other practical

restraints, in particular the minimum flange width and the re-

strictions on the ratio R and the angle θ1, were often found to

govern the cross-sectional shape.

5. FE analysis

Detailed geometric and material non-linear FE analyses were

performed using ABAQUS [29] to evaluate the flexural behaviour

and capacity of the optimised cross-sections for the ten considered

prototypes (see Table 2) as well as the standard lipped channel

Table 1 (continued )

Prototype Prototype section Design variables Constraints based on EC3 Manufacturing & practical limitations

x2¼ θ2 7/12πrθ1r5/6π hþ2b-sinθ1r350

x3¼b π/4rθ2r3/4π

x4¼c 30 rbr48;

x5¼d 50r cr60;

x1¼ θ1 15 rdr60

Fig. 8. Iteration history of the maximum bending capacity of prototype ⑩.

Table 2

Geometrical details and bending capacities of the optimised sections.

Section h (mm) b (mm) c (mm) d (mm) θ1 (deg) θ2 (deg) R Bending capacity (kN m)

① 315 50 – – – – – 9.84

② 305 50 – – – – 0.856 11.08

③ 295 50 – 0.186 9.92

Standard (Fig.7) 231 75 17 – 90 – – 10.30

④ 270 50 23 – 91 – – 13.38

⑤ 263 50 21 – 92 – 0.79 13.66

⑥ 234 50 20 – 90 – 0.223 12.69

⑦ 242 50 29 7.5 90 – – 15.11

⑧ 240 50 25 7 135 – 0.9 14.62

⑨ 232 50 25 6.5 135 – 0.1 13.41

⑩ 185 48 50 17 105 95 – 16.12
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taken as a starting point (Fig. 7). The main purposes of the FE

analyses were: (a) to examine the accuracy of the method pro-

posed in Section 2 for the flexural design of folded-flange cross-

sections; and (b) to investigate the overall effectiveness of the

developed optimisation framework in obtaining sections with in-

creased capacity.

5.1. FE modelling and parameters

The FE models were developed in ABAQUS [29] using the

general-purpose S4R element (Fig. 9). This element is a 4-node

quadrilateral shell element with reduced integration. Through a

sensitivity analysis, a mesh size of 5 mm�5 mm for the flat plate

sections, with smaller elements used in the rounded corner sec-

tions was found to be appropriate. No significant change in the

ultimate capacity was observed by further reducing the mesh size.

The stress–strain behaviour of the CFS plate material was si-

mulated using the constitutive model proposed by Haidarali and

Nethercot [30]. This model is comprised of the basic Ramberg-

Osgood stress–strain relationship up to the 0.2% proof stress, fol-

lowed by a straight line with a constant slope of E/50 (where E

stands for the initial elastic modulus). Mathematically, the re-

lationship between stress, σ , and strain, ε, is expressed as:

⎛

⎝
⎜

⎞

⎠
⎟ε

σ σ

σ
σ σ

ε ε
σ σ

σ σ

= + ≤

= +
( − )

≥
( )

E
for

E
for

0.002

50

14

n

0.2
0.2

0.2
0.2

0.2

where σ0.2 is the 0.2% proof stress, ε0.2 is the total strain at a stress

σ0.2, n is a shape parameter (recommended to be taken as 28 for

steel with a yield strength of 350 MPa or 450 MPa [31]) and E was

assumed to be equal to 210 GPa.

The effects of geometric imperfections were included in the FE

analysis by scaling the local and distortional modes to specific

amplitudes and superposing them onto the initial perfect geo-

metry. The cross-sectional deformations of the critical buckling

modes were obtained using CUFSM, a finite strip based software

[32] and then extruded in the longitudinal direction using a si-

nusoidal shape with a wavelength equal to the critical wavelength

of the relevant mode (although this wavelength was slightly

Table 3

Effective cross-sections of the optimised beams, presented at the same scale.

Fig. 9. FE model of the folded-flange beam subjected to local/distortional buckling.
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modified to obtain an integer number of half-waves along the

member). The magnitudes of the local/distortional geometric im-

perfections were obtained from the cumulative distribution func-
tion (CDF) values presented by Schafer and Pekӧz [33]. In parti-

cular, local and distortional imperfections with a CDF value of 50%

were considered, corresponding to values of d1/t and d2/t equal to

34% and 94%, respectively, with d1 and d2 illustrated in Fig. 10.

To simulate pin-ended boundary conditions with prevented

warping (consistent with the assumptions made in the optimisa-

tion process), the nodes of each end section of the CFS member

were coupled to the central point of the web (acting as the master

node) [34]. The external load was then applied in the form of

uniform rotations of the end sections about the major axis, using a

displacement control regime. The boundary conditions and the

applied loading are illustrated in Fig. 9. Large deformation effects

were included in the element formulation and a geometric non-

linear analysis was carried out in order to be able to accurately

track the post-buckling behaviour of the CFS beams. It is worth

mentioning that the modelling techniques utilised in this study,

including the type of elements, the material behaviour, the

meshing and the imperfection modelling borrow heavily from the

work by Haidarali and Nethercot [30] and Shifferaw and Schafer

[34]. These techniques have been extensively verified against ex-

perimental results [35, 36], demonstrating excellent predictive

capability with an average error typically less than 4%.

5.2. FE analysis of folded-flange sections with varying dimensions

This section presents the results of FE analyses aimed at eval-

uating the accuracy of the design approach proposed in Section 2

to calculate the flexural strength of folded-flange CFS cross-sec-

tions. To achieve this, six folded-flange sections with a range of

different dimensions were investigated. Table 4 provides the

geometric details of all selected sections. The ratio b/c of the flange

segment lengths (Table 1) and the angles of the inclined lips were

varied. The sections failed by local buckling and/or distortional

buckling of the two possible types described in Section 2.2. Since

the CFS beams in the current study were laterally restrained,

however, lateral-torsional buckling did not occur. As proposed by

Galambos [37], the lengths of the FE models were taken as three

times the (longest) distortional buckling half-wave length.

The flexural strengths of the selected sections obtained from

the FE analyses are compared to those calculated using the pro-

posed design method (Section 2) in Table 4. The results indicate

that the proposed design methodology predicts the flexural ca-

pacity of the folded-flange sections with a high degree of accuracy

and reliability. The average and the standard deviation of the ratios

of the FE results to the EC3 predictions are 1.02% and 8%, respec-

tively, as shown in Table 4.

For illustrative purposes, the effective cross-sections calculated

according to EC3, as well as the failed shapes at the ultimate load

obtained from the FE analyses, are presented in Table 5. With re-

spect to the effective cross-sections it should be noted that the

reduction in thickness of the black lines, in accordance with EC3

philosophy, indicates distortional buckling of the section. These

results show that the type 2 distortional buckling mode (see Fig. 6)

is dominant for the folded-flange cross-section M2002, where the

length of flange segment 1 is around two times the length of

segment 2. For all other folded-flange sections in Table 4, distor-

tional buckling of type 1 (see Fig. 5) is critical. This result was

predicted by the proposed design methodology and confirmed by

the FE analysis results.

The moment-rotation responses of the folded-flange sections

obtained from FE analysis are plotted in Fig. 11. It is seen that, with

the exception of section M2503, all sections display, to a varying

degree, some sort of “snap-back” behaviour past the peak load.

This is a phenomenon which is not commonly observed in regular

lipped channel sections and is more reminiscent of the post-peak

behaviour of, for instance, cylindrical shells or strongly curved

plates under compression (Fig. 12). It appears that replacing the

semi-circular flange shape in Fig. 2 by a segmental approximation

for practical reasons causes the folded-flange section to ‘inherit’

some of the typical snap-back behaviour of the former.

5.3. FE analysis of optimised cross-sections

The bending moment capacities of the standard channel (Fig. 7)

and the optimised prototypes (Table 2) were determined using FE

analysis. The adopted boundary conditions were identical to those

in the FE models of the folded-flange sections previously de-

scribed, and the load was again applied as uniform rotations at

both ends. The lengths of the modelled beams (Table 6) were ta-

ken as three times the distortional buckling half-wave length. For

prototypes without edge stiffeners (prototypes ①, ②, ③) only the

local buckling imperfection was incorporated, since local buckling

was the dominant mode. Table 6 shows the bending capacities of

d1

d2

Fig. 10. Geometric imperfections: (a) local buckling, and (b) distortional buckling.

Table 4

Dimensions of the folded-flange cross-sections and bending capacity obtained from EC3 and FEM.

Sections Thickness

(mm)

Depth

(mm)

θ1 (deg) θ2 (deg) Flange1 b

(mm)

Flange2 c

(mm)

Lip d

(mm)

Corner radius

(mm)

Capacity (kN�m) FEM/EC3

EC3 FEM

M2001 1.4 200 135 135 18 66 18 2.8 10.14 10.06 0.99

M2002 1.4 200 135 135 66 30 18 2.8 13.74 15.20 1.11

M2003 1.4 200 135 135 40 40 18 2.8 12.71 11.77 0.93

M2501 1.6 250 135 135 18 85 18 3.2 16.50 15.09 0.91

M2502 1.6 250 120 90 30 61 30 3.2 19.76 21.30 1.08

M2503 1.6 250 150 45 30 61 30 3.2 19.43 21.11 1.09

Average Standard

deviation

1.02

0.08
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the optimised and the standard cross-sections obtained from the

FE analyses and compares them to those determined based on the

EC3 effective width method. Even though the results obtained

from EC3 are slightly unconservative compared to the FE predicted

capacities, this study shows that the effective width method is

generally reliable and provides a reasonable prediction for the

bending moment capacities of the selected CFS prototypes. The

average ratio of the capacity determined using FEM to the capacity

calculated using EC3 was 0.95 with a standard deviation of 5%. The

failed shapes at the ultimate load, obtained from FE analysis, are

also illustrated in Fig. 13.

Table 5

Effective cross-sections and buckled shapes of the folded-flange beams (presented at a consistent scale).
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Fig. 11. Moment-rotation curve of the folded-flange sections.

Fig. 12. Schematic view of the behaviour of axially compressed panels (adapted

from [38]).
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6. Comparison of the results and discussion

Fig. 14 compares the EC3 predicted capacities of the optimised

sections to the results obtained from detailed FE analysis. As a

general conclusion, the FE results follow the trends predicted by

EC3 very well and confirm the reliability of the proposed optimi-

sation method. The results also indicate that, for the same amount

of material, the optimisation procedure can significantly increase

the bending moment capacity of the CFS cross-sections.

It is shown specifically in Fig. 14 that by only optimising the

relative dimensions of the plates and the angles of the inclined lips

(i.e. prototype ④), the bending capacity of the commercially

available channel section taken as a starting point can be increased

by more than 30%. A comparison between the optimum results of

prototypes ①, ④ and ⑦ indicates that the bending capacity of CFS

channel sections can be significantly increased (by up to 55% in

this case) by adding edge stiffeners which suppress the distor-

tional mode. On the other hand, comparing the bending capacity

of the prototypes ④ and ⑤, and also ⑦ and ⑧, it can be seen that

adding intermediate stiffeners in the web does not necessarily

increase the optimal bending capacity of the sections. This is also

illustrated by the sections with two web stiffeners (prototypes ⑥

and ⑨), where the flexural capacity of the section with stiffeners

was up to 13% less than the optimum channel section without web

stiffeners (prototype ④). The main reason for this behaviour is

that, when placing the stiffener at the centre of the web or in a

symmetric arrangement with one stiffener ending up in the ten-

sion zone of the beam, the stiffeners are not at their full effec-

tiveness. At the same time, the total developed length of the cross-

section is kept constant, so that folding the stiffeners into the

section reduces the total height of the cross-section and, therefore,

its bending capacity. For practical reasons, however, it is not

Table 6

Comparison of the bending moment capacities of the optimised and standard

sections obtained from EC3 and FE analysis.

Section Buckling half-wave

lengths

Modelling

length

(mm)

Bending mo-

ment capa-

city (kN m)

FEM/EC3

Local

(mm)

Distortional

(mm)

EC3 FEM

Standard

channel

100 600 1800 10.3 10.4 0.99

① 200 – 600 9.84 9.11 1.08

② 200 600 11.08 11.22 0.99

③ 200 – 600 9.92 9.41 1.05

④ 140 600 1800 13.38 12.73 1.05

⑤ 50 600 1800 13.66 12.08 1.13

⑥ 50 600 1800 12.69 11.15 1.14

⑦ 120 800 2400 15.11 14.09 1.07

⑧ 100 800 2400 14.62 12.99 1.13

⑨ 100 800 2400 13.41 12.33 1.09

⑩ 100 800 2400 16.12 15.52 1.04

Average

Standard

deviation

0.95

0.05

Fig. 13. Failed shapes of optimised and standard sections.

Fig. 14. Comparison of the moment capacities of different prototypes.
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recommended to place the stiffeners in an asymmetric config-

uration since errors during the installation of the beams would

almost be inevitable. Fig. 14 also highlights the increased efficiency

of the proposed folded-flange prototype compared to any other

prototype considered. It is shown that, for the same amount of

material, prototype ⑩ leads to a maximum flexural capacity which

is around 57% higher than the standard commercially available

channel section and 22% higher than the optimum lipped channel

section (prototype ④). Folded-flange sections are also easy to

manufacture and connect to typical floor systems and, hence, are

ideal candidates for practical CFS beam sections.

7. Summary and conclusions

In this paper, a practical framework is proposed to optimise CFS

beam cross-sections while considering code-based design con-

straints as well as manufacturing issues and practical limitations.

Using the framework, a commercially available CFS lipped channel

section was optimised based on ten different prototypes, including

a folded-flange cross-section, while keeping the material use

constant. A slight modification of the EC3 design methodology was

first developed in order to account for the multiple distortional

buckling modes which may occur in the folded-flange cross-sec-

tion. The particle swarm optimisation algorithm was then used to

obtain the solutions with the maximum flexural strength. The

accuracy of the modified design model and the effectiveness of the

proposed optimisation framework were also evaluated using de-

tailed non-linear FE analysis. The following conclusions can be

drawn:

� The FE simulations of the folded-flange sections confirm that

the proposed additions to the effective width based design

method in EC3 to account for the multiple distortional buckling

modes in the folded-flange section lead to accurate predictions

of the ultimate bending capacity.
� By applying the proposed optimisation framework to laterally

braced beams, the bending capacity of a commercially available

CFS beam was increased by 30% by only optimising the relative

dimensions of the flat plates and the inclination of the lips. The

results also indicate that flanges with double fold lips have the

potential to considerably increase the flexural capacity of CFS

beams (by up to 50%), while using intermediate stiffeners in the

web does not necessarily increase the capacity of the sections.

As expected, plain CFS channel cross-sections provided the

minimum flexural capacity, even when adding intermediate

web stiffeners.
� Folded-flange sections, which can be easily designed and

manufactured due to their simple sequence of straight plate

segments with a relatively small number of folds, are shown to

be viable and even superior alternatives to typical lipped

channel sections. For the same amount of material (i.e. the same

total coil width and plate thickness), the folded-flange section

possesses a flexural capacity which is 57% and 22% higher than

the selected commercial section and the optimum lipped

channel section, respectively.
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