
This is a repository copy of How Crossover Speeds Up Building-Block Assembly in
Genetic Algorithms.

White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/93026/

Version: Accepted Version

Article:

Sudholt, D. (2017) How Crossover Speeds Up Building-Block Assembly in Genetic
Algorithms. Evolutionary Computation, 25 (2). pp. 237-274. ISSN 1530-9304

https://doi.org/10.1162/EVCO_a_00171

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse

Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless
indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by
national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of
the full text version. This is indicated by the licence information on the White Rose Research Online record
for the item.

Takedown

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

mailto:eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

How Crossover Speeds Up Building-Block
Assembly in Genetic Algorithms

Dirk Sudholt
Department of Computer Science, University of Sheffield, United Kingdom

Abstract
We re-investigate a fundamental question: how effective is crossover in Genetic Algo-
rithms in combining building blocks of good solutions? Although this has been dis-
cussed controversially for decades, we are still lacking a rigorous and intuitive answer.
We provide such answers for royal road functions and ONEMAX, where every bit is
a building block. For the latter we show that using crossover makes every (µ+λ) Ge-
netic Algorithm at least twice as fast as the fastest evolutionary algorithm using only
standard bit mutation, up to small-order terms and for moderate µ and λ. Crossover
is beneficial because it can capitalize on mutations that have both beneficial and dis-
ruptive effects on building blocks: crossover is able to repair the disruptive effects of
mutation in later generations. Compared to mutation-based evolutionary algorithms,
this makes multi-bit mutations more useful. Introducing crossover changes the opti-

mal mutation rate on ONEMAX from 1/n to (1 +
√
5)/2 · 1/n ≈ 1.618/n. This holds

both for uniform crossover and k-point crossover. Experiments and statistical tests
confirm that our findings apply to a broad class of building-block functions.

Keywords
Genetic algorithms, crossover, recombination, mutation rate, runtime analysis, theory.

1 Introduction

Ever since the early days of genetic algorithms (GAs), researchers have wondered when
and why crossover is an effective search operator. In evolutionary biology, it has been
folklore that crossover can speed up adaptation by bringing together multiple bene-
ficial changes that resulted from independent mutation events, famously illustrated
by Muller (1932, Diagram 1). The same view was taken in evolutionary computation,
where building blocks were regarded as schemata of high fitness, see e. g. Davis (1991,
page 18), Mitchell et al. (1992), and De Jong and Spears (1992). But, as Watson and
Jansen (2007) put it, there has been a considerable difficulty in demonstrating this rigorously
and intuitively.

Many attempts at understanding crossover have been made in the past. Mitchell
et al. (1992) presented so-called royal road functions as an example where, supposedly,
genetic algorithms outperform other search algorithms due to the use of crossover.
Royal roads divide a bit string into disjoint blocks. Each block makes a positive contri-
bution to the fitness in case all bits therein are set to 1. Blocks thus represent schemata,
and all-ones configurations are building blocks of optimal solutions. However, the
same authors later concluded that simple randomized hill climbers performed better
than GAs (Forrest and Mitchell, 1993; Mitchell et al., 1994).

The role of crossover has been studied from multiple angles, including alge-
bra (Rowe et al., 2002), Markov chain models (Vose, 1999), infinite population models

c©200X by the Massachusetts Institute of Technology Evolutionary Computation x(x): xxx-xxx

D. Sudholt

and dynamical systems (see De Jong (2006, Chapter 6) for an overview) and statistical
mechanics (see, e. g. Prügel-Bennett and Rogers (2001); Shapiro (2001) and the refer-
ences therein).

Also in biology the role of crossover is far from settled. In population genetics,
exploring the advantages of recombination, or sexual reproduction, is a famous open
question (Barton and Charlesworth, 1998) and has been called “the queen of problems
in evolutionary biology” by Bell (1982) and others. Evolutionary processes were found
to be harder to analyze than those using only asexual reproduction as they represent
quadratic dynamical systems (Arora et al., 1994; Rabani et al., 1998).

Recent work in population genetics has focussed on studying the “speed of adap-
tation”, which describes the efficiency of evolution, in a similar vein to research in
evolutionary computation (Weissman and Barton, 2012; Weissman et al., 2010). We re-
fer the interested reader to Paixão et al. (2015); Paixao et al. (2015) for steps towards
unifying research in both fields. Furthermore, a new theory of mixability has been pro-
posed recently from the perspective of theoretical computer science (Livnat et al., 2008,
2010), arguing that recombination favours individuals that are good “mixers”, that is,
individuals that create good offspring when being recombined with others.

Several researchers recently and independently reported empirical observations
that using crossover improves the performance of evolutionary algorithms (EAs) on the
simple function ONEMAX (x) =

∑n
i=1 xi (Lässig, 2009; Rowe, 2015), but were unable to

explain why. The fact that even settings as simple as ONEMAX are not well understood
demonstrates the need for a solid theory and serves as motivation for this work.

Runtime analysis has become a major area of research that can give rigorous evi-
dence and proven theorems (Neumann and Witt, 2010; Auger and Doerr, 2011; Jansen,
2013). However, studies so far have eluded the most fundamental setting of building-
block functions. Crossover was proven to be superior to mutation only on constructed
artificial examples like Jumpk (Jansen and Wegener, 2002; Kötzing et al., 2011) and
“Real Royal Road” functions (Jansen and Wegener, 2005; Storch and Wegener, 2004),
the H-IFF problem (Dietzfelbinger et al., 2003), coloring problems inspired by the Ising
model from physics (Fischer and Wegener, 2005; Sudholt, 2005)1, computing unique
input-output sequences for finite state machines (Lehre and Yao, 2011), selected prob-
lems from multi-objective optimization (Qian et al., 2013), and the all-pairs shortest
path problem (Doerr et al., 2012a; Sudholt and Thyssen, 2012; Neumann and Theile,
2010). H-IFF (Dietzfelbinger et al., 2003) and the Ising model on trees (Sudholt, 2005)
consist of hierarchical building blocks. But none of the above papers addresses single-
level building blocks in a setting as simple as royal roads.

Watson and Jansen (2007) presented a constructed building-block function and
proved exponential performance gaps between EAs using only mutation and a GA.
However, the definition of the internal structure of building blocks is complicated and
artificial, and they used a tailored multi-deme GA to get the necessary diversity. With
regard to the question on how GAs combine building blocks, their approach does not
give the intuitive explanation one is hoping for.

This paper presents such an intuitive explanation, supported by rigorous analy-
ses. We consider royal roads and other functions composed of building blocks, such
as monotone polynomials. ONEMAX(x) =

∑n
i=1 xi is a special case where every bit

is a building block. We give rigorous proofs for ONEMAX and show how the main
proof arguments transfer to broader classes of building-block functions. Experiments
support the latter.

1For bipartite graphs, the problem is equivalent to the classical Graph Coloring problem with 2 colors.

2 Evolutionary Computation Volume x, Number x

How Crossover Speeds Up Building-Block Assembly in Genetic Algorithms

Our main results are as follows.

1. We show in Section 3 that on ONEMAX every (µ+λ) GA with uniform crossover and
standard bit mutation is at least twice as fast as every evolutionary algorithm (EA)
that only uses standard bit mutations (up to small-order terms). More precisely, the
dominating term in the expected number of function evaluations decreases from
e·n lnn to e/2·n lnn. This holds provided that the parent population and offspring
population sizes µ and λ are moderate, so that the inertia of a large population does
not slow down exploitation. The reason for this speedup is that the GA can store
a neutral mutation (a mutation not altering the parent’s fitness) in the population,
along with the respective parent. It can then use crossover to combine the good
building blocks between these two individuals, improving the current best fitness.
In other words, crossover can capitalize on mutations that have both beneficial and
disruptive effects on building blocks as crossover is able to repair the disruptive
effects of mutation in later generations.

2. The use of uniform crossover leads to a shift in the optimal mutation rate on ONE-
MAX. We demonstrate this in Section 4 for a simple “greedy” (2+1) GA that always
selects parents among the current best individuals. While for mutation-based EAs
1/n is the optimal mutation rate (Witt, 2013), the greedy (2+1) GA has an optimal
mutation rate of (1 +

√
5)/2 · 1/n ≈ 1.618/n (ignoring small-order terms). This

is because introducing crossover makes neutral mutations more useful and larger
mutation rates increase the chance of a neutral mutation. Optimality is proved by
means of a matching lower bound on the expected optimization time of the greedy
(2+1) GA that applies to all mask-based crossover operators (where each bit value
is taken from either parent). Using the optimal mutation rate, the expected number
of function evaluations is 1.19n lnn±O(n log log n).

3. These results are not limited to uniform crossover or the absence of linkage. Sec-
tion 5 shows that the same results hold for GAs using k-point crossover, for arbi-
trary k, under slightly stronger conditions on µ and λ, if the crossover probability
pc is set to an appropriately small value.

4. The reasoning for ONEMAX carries over to other functions with a clear building
block structure. Experiments in Section 6 reveal similar performance differences as
on ONEMAX for royal road functions and random polynomials with unweighted,
positive coefficients. This is largely confirmed by statistical tests. There is evi-
dence that findings also transfer to weighted building-block functions like linear
functions, provided that the population can store solutions with different fitness
values and different building blocks until crossover is able to combine them. This
is not the case for the greedy (2+1) GA, but a simple (5+1) GA is significantly faster
on random linear functions than the optimal mutation-based EA for this class of
functions, the (1+1) EA (Witt, 2013).

The first result, the analysis for uniform crossover, is remarkably simple and intuitive.
It gives direct insight into the working principles of GAs. Its simplicity also makes it
very well suited for teaching purposes.

This work extends a preliminary conference paper (Sudholt, 2012) with parts of the
results, where results were restricted to one particular GA, the greedy (2+1) GA. This
extended version presents a general analytical framework that applies to all (µ+λ) GAs,
subject to mild conditions, and includes the greedy (2+1) GA as a special case. To this

Evolutionary Computation Volume x, Number x 3

D. Sudholt

end, we provide tools for analyzing parent and offspring populations in (µ+λ) GAs,
which we believe are of independent interest.

Moreover, results for k-point crossover have been improved. The leading constant
in the upper bound for k-point crossover in Sudholt (2012) was by an additive term of
2c

3+3c larger than that for uniform crossover, for mutation rates of c/n. This left open the
question whether k-point crossover is as effective as uniform crossover for assembling
building blocks in ONEMAX. Here we provide a new and refined analysis, which gives
an affirmative answer, under mild conditions on the crossover probability.

1.1 Related Work

The literature on recombination is too vast to be reviewed comprehensively. Sastry et al.
(2005) review early literature and give recommendations on the design of competent
Genetic Algorithms based on building blocks.

In more recent work, Prügel-Bennett (2010) presented five mechanisms that advan-
tage populations with crossover, based on empirical evidence and non-rigorous theory:

1. putting together building blocks from different solutions,

2. focussing search by crossover on variables where parents differ,

3. the ability of a population to act as a low-pass filter of the landscape,

4. hedging against bad luck in the initialization and other decisions made, and

5. the opportunity of learning useful parameter values to balance exploration against
exploitation.

This work explicitly addresses the first mechanism, for which Prügel-Bennett notes “it
is nontrivial to construct a toy problem which demonstrated how the building-block
hypothesis would work” (Prügel-Bennett, 2010, Sec III.A). Here we show that the best
known toy problem, ONEMAX, serves this purpose. We also implicitly address the
second benefit, focussing search, as our analysis will reveal that crossover very quickly
exploits diversity in the population to create improvements on ONEMAX.

In terms of rigorous runtime analysis, Kötzing et al. (2011) considered the search
behaviour of an idealized GA on ONEMAX, to highlight the potential benefits of
crossover under ideal circumstances. If a GA was able to recombine two individuals
with equal fitness that result from independent evolutionary lineages, the fitness gain
can be of order Ω(

√
n). The idealized GA would therefore be able to optimize ONE-

MAX in expected time O(
√
n) (Kötzing et al., 2011). However, this idealization cannot

reasonably be achieved in realistic EAs with common search operators, hence the result
should be regarded an academic study on the potential benefit of crossover.

A related strand of research deals with the analysis of the Simple GA on ONEMAX.
The Simple GA is one of the best known and best researched GAs in the field. It uses a
generational model where parents are selected using fitness-proportional selection and
the generated offspring form the next population. Neumann et al. (2009) showed that
the Simple GA without crossover with high probability cannot optimize ONEMAX in
less than exponential time. The reason is that the population typically contains indi-
viduals of similar fitness, and then fitness-proportional selection is similar to uniform
selection. Oliveto and Witt (2014) extended this result to uniform crossover: the Sim-
ple GA with uniform crossover and population size µ ≤ n1/8−ε, ε > 0, still needs
exponential time on ONEMAX. It even needs exponential time to reach a solution of

4 Evolutionary Computation Volume x, Number x

How Crossover Speeds Up Building-Block Assembly in Genetic Algorithms

fitness larger than (1 + c) · n/2 for an arbitrary constant c > 0. In Oliveto and Witt
(2013) the same authors relaxed their condition on the population size to µ ≤ n1/4−ε.
Their work does not exclude that crossover is advantageous, particularly since under
the right circumstances crossover may lead to a large increase in fitness (cf. (Kötzing
et al., 2011)). But if there is an advantage, it is not noticeable as the Simple GA with
crossover still fails badly on ONEMAX (for the stated moderate population sizes).

One year after Sudholt (2012) was published, Doerr et al. (2013a) presented a
groundbreaking result: they designed an EA that was proven to optimize ONEMAX

(and any simple transformation thereof) in time O(n
√
log n). This is a spectacular re-

sult as all black-box search algorithms using only unbiased unary operators—operators
modifying one individual only, and not exhibiting any inherent search bias—need time
Ω(n log n) as shown by Lehre and Witt (2012). So their EA shows that crossover can
lower the expected running time by more than a constant factor. They call their algo-
rithm a (1+(λ, λ)) EA: starting with one parent, it first creates λ offspring by mutation,
with a random and potentially high mutation rate. Then it selects the best mutant, and
crosses it λ times with the original parent, using parameterized uniform crossover (the
probability of taking a bit from the first parent is not always 1/2, but a parameter of the
algorithm). This leads to a number of O(n

√
log n) expected function evaluations. This

bound was recently tightened to O(n
√

log(n) · log log log(n)/ log log(n)) (Doerr and Do-
err, 2015b) and can be further decreased to O(n) by self-adjusting λ (Doerr and Doerr,
2015a).

The (1+(λ, λ)) EA from Doerr et al. (2013a) is very cleverly designed to work effi-
ciently on ONEMAX and similar functions. It uses a non-standard EA design because
of its two phases of environmental selection. Other differences are that mutation is per-
formed before crossover, and mutation is not fully independent for all offspring: the
number of flipping bits is a random variable determined as for standard bit mutations,
but the same number of flipping bits is then used in all offspring. The focus of this work
is different as our goal is to understand how standard EAs operate, and how crossover
can be used to speed up building-block assembly in commonly used (µ+λ) EAs.

2 Preliminaries

We measure the performance of the algorithm with respect to the number of function
evaluations performed until an optimum is found, and refer to this as optimization time.
For steady-state algorithms this equals the number of generations (apart from the ini-
tialization), and for EAs with offspring populations such as (µ+λ) EAs or (µ+λ) GAs
the optimization time is by a factor of λ larger than the number of generations. Note
that the number of generations needed to optimize a fitness function can often be easily
decreased by using offspring populations or parallel evolutionary algorithms (Lässig
and Sudholt, 2014). But this significantly increases the computational effort within one
generation, so the number of function evaluations is a more fair and widely used mea-
sure.

Looking at function evaluations is often motivated by the fact that this operation
dominates the execution time of the algorithm. Then the number of function evalu-
ations is a reliable measure for wall clock time. However, the wall clock time might
increase when introducing crossover as an additional search operator. Also when in-
creasing the mutation rate, more pseudo-random numbers might be required. Jansen
and Zarges (2011) point out a case where this effect leads to a discrepancy between the
number of function evaluations and wall clock time. This concern must be taken seri-
ously when aiming at reducing wall clock time. However, each implementation must

Evolutionary Computation Volume x, Number x 5

D. Sudholt

be checked individually in this respect (Jansen and Zarges, 2011). Therefore, we keep
this concern in mind, but still use the number of function evaluations in the following.

3 Uniform Crossover Makes (µ+λ) EAs Twice as Fast

We show that, under mild conditions, every (µ+λ) GA is at least twice as fast as its
counterpart without crossover. For the latter, that is, evolutionary algorithms using
only standard bit mutation, the author recently proved the following lower bound on
the running time of a very broad class of mutation-based EAs (Sudholt, 2013). It covers
all possible selection mechanisms, parent or offspring populations, and even parallel
evolutionary algorithms. We slightly rephrase this result.

Theorem 1 (Sudholt (2013)). Let n ≥ 2. Every EA that uses only standard bit mutation with
mutation rate p to create new solutions has expected optimization time at least

min{lnn, ln(1/(p2n))} − ln lnn− 3

p(1− p)n

on ONEMAX and every other function with a unique optimum, if 2−n/3 ≤ p ≤ 1√
n logn

. If

p = c/n, c > 0 constant, this is at least

ec

c
· n lnn · (1− o(1)).

In fact, for ONEMAX the author proved that among all evolutionary algorithms
that start with one random solution and only use standard bit mutations the expected
number of function evaluations is minimized by the simple (1+1) EA (Sudholt, 2013,
Theorem 13). Also the mutation rate p = 1/n is the best possible choice for ONEMAX,
leading to a lower bound of

en lnn− en ln lnn− 3en.

For the special case of p = 1/n, Doerr et al. (2011) recently improved the above bound
towards en lnn−O(n).

We show that for a range of (µ+λ) EAs, as defined in the following, introducing
uniform crossover can cut the dominant term of the running time in half, for the stan-
dard mutation rate p = 1/n.

The only requirement on the parent selection mechanism is that selection does not
favor inferior solutions over fitter ones. Formally, for maximizing a fitness function f ,

∀x, y : f(x) ≥ f(y) ⇒ Prob(select x) ≥ Prob(select y). (1)

This in particular implies that equally fit solutions are selected with the same proba-
bility. Condition (1) is satisfied for all common selection mechanisms: uniform selec-
tion, fitness-proportional selection, tournament selection, cut selection, and rank-based
mechanisms.

The class of (µ+λ) EAs covered in this work is defined in Algorithm 1. All
(µ+λ) EAs therein create λ offspring through crossover and mutation, or just muta-
tion, and then pick the best out of the µ previous search points and the λ new offspring.

In the case of ties, we pick solutions that have the fewest duplicates among the
considered search points. This strategy has already been used by Jansen and Wegener

6 Evolutionary Computation Volume x, Number x

How Crossover Speeds Up Building-Block Assembly in Genetic Algorithms

Algorithm 1: Scheme of a (µ+λ) GA with mutation rate p and uniform crossover with
crossover probability pc for maximizing f : {0, 1}n → R.

1 Initialize population P of size µ ∈ N uniformly at random.
2 while true do
3 Let P ′ = ∅.
4 for i = 1, . . . , λ do
5 With probability pc do
6 Select x1, x2 with an operator respecting (1).
7 Let y := uniform crossover(x1, x2).

8 otherwise do
9 Select y with an operator respecting (1).

10 end
11 Flip each bit in y independently with probability p.
12 Add y to P ′.
13 end
14 Let P contain the µ best individuals from P ∪ P ′; break ties towards

including individuals with the fewest duplicates in P ∪ P ′.
15 end

(2005) in their groundbreaking work on Real Royal Roads; it ensures a sufficient de-
gree of diversity whenever the population contains different search points of the same
fitness.

Before stating the main result of this section, we provide two lemmas showing
how to analyse population dynamics. Both lemmas are of independent interest and
may prove useful in other studies of population-based EAs.

The following lemma estimates the expected time until individuals with fitness
at least i take over the whole population. It generalizes Lemma 3 in Sudholt (2009),
which in turn goes back to Witt’s analysis of the (µ+1) EA (Witt, 2006). Note that the
lemma applies to arbitrary fitness functions, arbitrary values for µ and λ, and arbitrary
crossover operators; it merely relies on fundamental and universal properties of cut
selection and standard bit mutations.

Lemma 2. Consider any (µ+λ) GA implementing Algorithm 1, with any crossover operator,
on any n-bit fitness function. Assume the current population contains at least one individual
of fitness i. The expected number of function evaluations needed for the (µ+λ) GA before all
individuals in its current population have fitness at least i is at most

O((µ+ λ) logµ)

(1− pc)(1− p)n
.

This holds for any tie-breaking rule used in the environmental selection.

Proof. Call an individual fit if it has fitness at least i. We now estimate the expected
number of generations until the population is taken over by fit individuals, which we
call the expected takeover time. As fit individuals are always preferred to non-fit indi-
viduals in the environmental selection, the expected takeover time equals the expected
number of generations until µ fit individuals have been created, starting with one fit
individual.

For each offspring being created, there is a chance that the (µ+λ) GA will simply
create a clone of a fit individual. This happens if, during the creation of an offspring,

Evolutionary Computation Volume x, Number x 7

D. Sudholt

the (µ+λ) GA decides not to perform crossover, it selects a fit individual as parent to be
mutated, and mutation does not flip any bit. The probability for this event is at least

(1− pc) · (1− p)n · number of fit individuals in population

µ

since each fit individual is selected as parent with probability at least 1/µ.
Now we divide the run of the (µ+λ) GA into phases in order to get a lower bound

on the number of fit individuals at certain time steps. The j-th phase, 0 ≤ j ≤
⌈log5 µ⌉ − 1, starts with the first offspring creation in the first generation where the
number of fit individuals is at least 5j . It ends in the first generation where this number
is increased to min{5j+1, µ}. Let Tj describe the random number of generations spent
in the j-th phase. Starting with a new generation with µ ≥ 5j fit individuals in the par-
ent population, we now consider a phase of 8µ/((1 − pc)(1 − p)n) offspring creations,
disregarding generation bounds.

Let Ni denote the random number of new fit offspring created in the phase, then

E(Ni) ≥
8µ

(1− pc)(1− p)n
· (1− pc)(1− p)n · 5

i

µ
= 8 · 5i

and by classical Chernoff bounds (see, e. g. Mitzenmacher and Upfal (2005, Chapter 4))

Prob(Ni < 4 · 5i) ≤ e−E(Ni)/8 ≤ e−5i ≤ e−1.

If Ni < 4 · 5i the phase is called unsuccessful and we consider another phase of
8µ/((1− pc)(1− p)n) offspring creations. The expected waiting time for a successful
phase is at most 1/(1 − e−1) and the expected number of offspring creations until
Ni ≥ 4 · 5i is at most 8µ/((1− pc)(1− p)n(1− e−1)).

Since phases start at generation bounds, we may need to account for up to λ − 1
further offspring creations in between phases. This implies

E(Ti) ≤
8µ

(1− pc)(1− p)n(1− e−1)
+ λ

and the expected takeover time is at most

⌈log5 µ⌉−1
∑

i=0

E(Ti) ≤ ⌈log5 µ⌉ ·
(

8µ

(1− pc)(1− p)n(1− e−1)
+ λ

)

=
O((µ+ λ) logµ)

(1− pc)(1− p)n
.

We also provide the following simple but handy lemma, which relates success
probabilities for created offspring to the expected number of function evaluations
needed to complete a generation where such an event has first happened.

Lemma 3. Consider any (µ+λ) GA implementing Algorithm 1, and assume that in each off-
spring creation there is a probability at least q that some specific event occurs. Then the expected
number of function evaluations to complete a generation where this event first occurs is at most

λ− 1 +
1

q
.

8 Evolutionary Computation Volume x, Number x

How Crossover Speeds Up Building-Block Assembly in Genetic Algorithms

Proof. The expected number of trials for an event with probability q to occur is 1/q. To
complete the generation, at most λ− 1 further function evaluations are required.

Now we are able to prove the main result of this section.

Theorem 4. The expected optimization time of every (µ+λ) GA implementing Algorithm 1
with 0 < pc < 1 constant, mutation probability 0 < p < 1 and µ ≥ 2 on ONEMAX is at most

ln(n2p+ n) + 1 + p

p(1− p)n−1 · (1 + np)
+

O((µ+ λ)n logµ)

(1− p)n
. (2)

If p = c/n, c > 0 constant, and µ, λ = o((log n)/(log log n)), this bound simplifies to

ec

c · (1 + c)
· n lnn · (1 + o(1)). (3)

Both statements hold for arbitrary initial populations.

The main difference between the upper bound for (µ+λ) GAs and the lower bound
for all mutation-based EAs is an additional factor of 1 + pn in the denominator of the
upper bound. This is a factor of 2 for p = 1/n and an even larger gain for larger
mutation rates.

For the default value of p = 1/n, this shows that introducing crossover makes EAs
at least twice as fast as the fastest EA using only standard bit mutation. It also implies
that introducing crossover makes EAs at least twice as fast as their counterparts without
crossover (i. e. where pc = 0).

Proof of Theorem 4. Bound (3) can be derived from (2) using (1−1/x)x−1 ≥ 1/e for x > 1
to estimate

(

1− c

n

)n−1

=
(

1− c

n

)(n/c−1)·c
·
(

1− c

n

)c−1

≥ 1

ec
·
(

1− c2

n

)

= e−c −O(1/n)

as well as ln(cn+ n) + 1 + c/n = (lnn) +O(1). Note that (µ+ λ)n logµ = o(n log n) by
conditions on µ, λ, hence this and all other small-order terms are absorbed in the term
o(1).

In order to prove the general bound (2), we consider canonical fitness levels, i. e.,
the i-th fitness level contains all search points with fitness i. We estimate the time spent
on each level i, i. e., when the best fitness in the current population is i. For each fit-
ness level we consider three cases. The first case applies when the population contains
individuals on fitness levels less than i. The second case is when the population only
contains copies of a single individual on level i. The third case occurs when the popula-
tion contains more than one individual on level i; then the population contains different
“building blocks” that can be recombined effectively by crossover.

All these cases capture the typical behaviour of a (µ+λ) GA, albeit some of these
cases, and even whole fitness levels, may be skipped. We obtain an upper bound on its
expected optimization time by summing up expected times the (µ+λ) GA may spend
in all cases and on all fitness levels.

Case i.1: The population contains an individual on level i and at least one individ-
ual on a lower fitness level.

A sufficient condition for leaving this case is that all individuals in the population
obtain fitness at least i. Since the (µ+λ) GA never accepts worsenings, the case is left
for good.

Evolutionary Computation Volume x, Number x 9

D. Sudholt

The time for all individuals reaching fitness at least i has already been estimated
in Lemma 2. Applying this lemma to all fitness levels i, the overall time spent in all
cases i.1 is at most

O((µ+ λ)n logµ)

(1− pc)(1− p)n
=

O((µ+ λ)n logµ)

(1− p)n
.

Case i.2: The population contains µ copies of the same individual x on level i.
In this case, each offspring created by the (µ+λ) GA will be a standard mutation

of x. This is obvious for offspring where the (µ+λ) GA decides not to use crossover. If
crossover is used, the (µ+λ) GA will pick x1, x2 = x, create y = x by crossover, and
hence perform a mutation on x.

The (µ+λ) GA leaves this case for good if either a better search point is created or if
it creates another search point with i ones. In the latter case we will create a population
with two different individuals on level i. Note that due to the choice of the tie-breaking
rule in the environmental selection, the (µ+λ) GA will always maintain at least two
individuals on level i, unless an improvement with larger fitness is found.

The probability of creating a better search point in one mutation is at least (n− i) ·
p(1− p)n−1 as there are n− i suitable 1-bit flips. The probability of creating a different
search point on level i is at least i(n − i) · p2(1 − p)n−2 as it is sufficient to flip one of i
1-bits, to flip one of n − i 0-bits, and not to flip any other bit. The probability of either
event happening in one offspring creation is thus at least

(n− i) · p(1− p)n−1 + i(n− i) · p2(1− p)n−2

≥ p(1− p)n−1 · (n− i)(1 + ip).

By Lemma 3, the expected number of function evaluations in Case i.2 is at most

λ+
1

p(1− p)n−1 · (n− i)(1 + ip)
.

The expected number of functions evaluations made in all cases i.2 is hence at most

λn+

n−1
∑

i=0

1

p(1− p)n−1 · (n− i)(1 + ip)

= λn+
1

p(1− p)n−1
·
n−1
∑

i=0

1

(n− i)(1 + ip)
. (4)

The last sum can be estimated as follows. Separating the summand for i = n− 1,

n−2
∑

i=0

1

(n− i)(1 + ip)
+

1

1 + (n− 1)p

≤
∫ n−1

i=0

1

(n− i)(1 + ip)
di+

1 + p

1 + np
.

10 Evolutionary Computation Volume x, Number x

How Crossover Speeds Up Building-Block Assembly in Genetic Algorithms

We use equation 3.3.20 in Abramowitz and Stegun (1964) to simplify the integral and
get

[

1

1 + np
· ln
(

1 + ip

n− i

)]n−1

0

+
1 + p

1 + np

=
ln(np+ 1− p) + ln(n)

1 + np
+

1 + p

1 + np

≤ ln(n2p+ n) + 1 + p

1 + np
.

Plugging this into (4) yields that the expected time in all cases i.2 is at most

λn+
ln(n2p+ n) + 1 + p

p(1− p)n−1 · (1 + np)
.

Case i.3: The population only contains individuals on level i, not all of which are
identical.

In this case we can rely on crossover recombining two different individuals on
level i. As they both have different “building blocks”, i. e., different bits are set to 1,
there is a good chance that crossover will generate an offspring with a higher number
of 1-bits.

The probability of performing a crossover with two different parents in one off-
spring creation is at least

pc ·
µ− 1

µ2

as in the worst case the population contains µ− 1 copies of one particular individual.
Assuming two different parents are selected for crossover, let these have Ham-

ming distance 2d and let X denote the number of 1-bits among these positions in
the offspring. Note that X is binomially distributed with parameters 2d and 1/2
and its expectation is d. We estimate the probability of getting a surplus of 1-bits as
this leads to an improvement in fitness. This estimate holds for any d ∈ N. Since
Prob(X < d) = Prob(X > d), we have

Prob(X > d) =
1

2
(1− Prob(X = d)) =

1

2

(

1− 2−2d

(

2d

d

))

≥ 1

4
.

Mutation keeps all 1-bits with probability at least (1− p)n. Together, the probability of
increasing the current best fitness in one offspring creation is at least

pc ·
µ− 1

µ2
· (1− p)n

4
.

By Lemma 3, the expected number of function evaluations in Case i.3 is at most

λ+
4µ2

pc · (µ− 1) · (1− p)n
.

The total expected time spent in all cases i.3 is hence at most

λn+
4µ2n

pc · (µ− 1) · (1− p)n
= λn+

O(µn)

(1− p)n

Evolutionary Computation Volume x, Number x 11

D. Sudholt

as pc = Ω(1).
Summing up all expected times yields a total time bound of

ln(n2p+ n) + 1 + p

p(1− p)n−1 · (1 + np)
+ 2λn+

O(µn) +O((µ+ λ)n logµ)

(1− p)n

=
ln(n2p+ n) + 1 + p

p(1− p)n−1 · (1 + np)
+

O((µ+ λ)n logµ)

(1− p)n
.

The conditions on µ and λ are fairly tight, see Remark 1 in the appendix. The
conditions on pc can be relaxed to include pc = 1, see Remark 2 in the appendix.

It is remarkable that the waiting time for successful crossovers in Cases i.3 is only
of order O((µ + λ)n). For small values of µ and λ, e. g. µ, λ = O(1), the time spent in
all Cases i.3 is O(n), which is negligible compared to the overall time bound of order
Θ(n log n). This shows how effective crossover is in recombining building blocks.

Also note that the proof of Theorem 4 is relatively simple as it uses only elementary
arguments and, along with Lemmas 2 and 3, it is fully self-contained. The analysis
therefore lends itself for teaching purposes on the behavior of evolutionary algorithms
and the benefits of crossover.

Our analysis has revealed that fitness-neutral mutations, that is, mutations creating
a different search point of the same fitness, can help to escape from the case of a pop-
ulation with identical individuals. Even though these mutations do not immediately
yield an improvement in terms of fitness, they increase the diversity in the population.
Crossover is very efficient in exploiting this gained diversity by combining two differ-
ent search points at a later stage. From Prügel-Bennett’s perspective (Prügel-Bennett,
2010), this corresponds to crossover focussing search on bits that differ between par-
ents.

This means that crossover can capitalize on mutations that have both beneficial
and disruptive effects on building blocks: crossover is able to repair the disruptive
effects of mutation in later generations.

An interesting consequence is that this affects the optimal mutation rate on ONE-
MAX. For EAs using only standard bit mutations Witt (2013) recently proved that
1/n is the optimal mutation rate for the (1+1) EA on all linear functions. Recall that
the (1+1) EA is the optimal mutation-based EA (in the sense of Theorem 1) on ONE-
MAX (Sudholt, 2013).

For mutation-based EAs on ONEMAX neutral mutations are neither helpful nor
detrimental. With crossover acting as repair mechanism, neutral mutations now be-
come helpful. Increasing the mutation rate increases the likelihood of neutral muta-
tions. In fact, we can easily derive better upper bounds from Theorem 4 for slightly
larger mutation rates, thanks to the additional term 1 + np in the denominator of the
upper bound.

The dominant term in (3),

ec

c · (1 + c)
· n lnn

is minimized for c being the golden ratio c = (
√
5 + 1)/2 ≈ 1.618. This leads to the

following.

12 Evolutionary Computation Volume x, Number x

How Crossover Speeds Up Building-Block Assembly in Genetic Algorithms

Corollary 5. The asymptotically best running time bound from Theorem 4 is obtained for
p = (1 +

√
5)/(2n). For this choice the dominant term in (3) becomes

e(
√
5+1)/2

√
5 + 2

· n lnn ≈ 1.19n lnn.

4 The Optimal Mutation Rate

Corollary 5 gives the mutation rate that yields the best upper bound on the running
time that can be obtained with the proof of Theorem 4. However, it does not establish
that this mutation rate is indeed optimal for any GA. After all, we cannot exclude that
another mutation rate leads to a smaller expected optimization time.

In the following, we show for a simple (2+1) GA (Algorithm 2) that the upper
bound from Theorem 4 is indeed tight up to small-order terms, which establishes
p = (1+

√
5)/(2n) as the optimal mutation rate for that (2+1) GA. Proving lower bounds

on expected optimization times is often a notoriously hard task, hence we restrict our-
selves to a simple “bare-bones” GA that captures the characteristics of GAs covered by
Theorem 4 and is easy to analyze. The latter is achieved by fixing as many parameters
as possible.

As the upper bound from Theorem 4 grows with µ and λ, we pick the smallest
possible values: µ = 2 and λ = 1. The parent selection is made as simple as possible:
we select parents uniformly at random from the current best individuals in the popu-
lation. In other words, if we define the parent population as the set of individuals that
have a positive probability to be chosen as parents, the parent population only contains
individuals of the current best fitness. We call this parent selection “greedy” because it
is a greedy strategy to choose the current best search points as parents.

In the context of the proof of Theorem 4 greedy parent selection implies that
Cases i.1 are never reached as the parent population never spans more than one fitness
level. So the time spent in these cases is 0. This also allows us to eliminate one further
parameter by setting pc = 1, as lower values for pc were only beneficial in Cases i.1.
Setting pc = 1 minimizes our estimate for the time spent in Cases i.3. So Theorem 4
extends towards this GA (see also Remark 2 in the appendix).

We call the resulting GA “greedy (2+1) GA” because its main characteristics is the
greedy parent selection. The greedy (2+1) GA is defined in Algorithm 22.

Algorithm 2: Greedy (2+1) GA with mutation rate p for maximizing f : {0, 1}n → R.

1 Initialize population P of size 2 uniformly at random.
2 while true do
3 Select x1, x2 uniformly at random from {x ∈ P | ∀y ∈ P : f(x) ≥ f(y)}.
4 Let y := crossover(x1, x2).
5 Flip each bit in y independently with probability p.
6 Let P contain the 2 best individuals from P ∪ {y}; break ties towards

including individuals with the fewest duplicates in P ∪ {y}.
7 end

2Note that in Sudholt (2012) the greedy (2+1) GA was defined slightly differently as there duplicate geno-
types are always rejected. Algorithm 2 is equivalent to the greedy (2+1) GA from Sudholt (2012) for the
following reasons. If the current population contains two different individuals of equal fitness and a dupli-
cate of one of the parents is created, both algorithms reject a duplicate genotype. If the population contains
two individuals of different fitness, both behave like the population only contained the fitter individual.

Evolutionary Computation Volume x, Number x 13

D. Sudholt

The following result applies to the greedy (2+1) GA using any kind of mask-based
crossover. A mask-based crossover is a recombination operator where each bit value is
taken from either parent; that is, it is not possible to introduce a bit value which is not
represented in any parent. All common crossovers are mask-based crossovers: uniform
crossover, including parameterized uniform crossover, as well as k-point crossovers for
any k. The following result even includes biased operators like a bit-wise OR, which
induces a tendency to increase the number of 1-bits.

Theorem 6. Consider the greedy (2+1) GA with mutation rate 0 < p ≤ 1/(
√
n log n) using

an arbitrary mask-based crossover operator. Its expected optimization time on ONEMAX is at
least

min{lnn, ln(1/(p2n))} −O(log log n)

(1 + maxk{ (pn)k

k!k! }) · p(1− p)n
.

Before giving the proof, note that for p = c/n with 0 < c ≤ 4 constant,

maxk{ (pn)k

k!k! } = pn as for 0 < pn ≤ 4 and i ∈ N
(pn)i+1

(i+1)!(i+1)! = pn
(i+1)2 · (pn)i

i!i! ≤ (pn)i

i!i! ,

hence a maximum is attained for k = 1. Then the lower bound from Theorem 6 is

ec

c · (1 + c)
· n lnn−O(n log log n).

This matches the upper bound (3) up to small order terms, showing for the greedy
(2+1) GA that the new term 1+ c in the denominator of the bound from Theorem 4 was
not a coincidence. For p > 4/n, the lower bound is at least

(e+Ω(1)) · n lnn.

Together, this establishes the optimal mutation rate for the greedy (2+1) GA on ONE-
MAX.

Theorem 7. For the greedy (2+1) GA with uniform crossover on ONEMAX mutation rate
p = (1 +

√
5)/(2n) minimizes the expected number of function evaluations, up to small-order

terms.

For the proof of Theorem 6 we use the following lower-bound technique based on
fitness levels by the author.

Theorem 8 (Sudholt (2013)). Consider a partition of the search space into non-empty sets
A1, . . . , Am. For a search algorithm A we say that it is in Ai or on level i if the best individual
created so far is in Ai. If there are χ, ui, γi,j for i < j where

1. the probability of traversing from level i to level j in one step is at most uiγi,j for all i < j,

2.
∑m

j=i+1 γi,j = 1 for all i, and

3. γi,j ≥ χ
∑m

k=j γi,k for all i < j and some 0 ≤ χ ≤ 1,

then the expected hitting time of Am is at least

m−1
∑

i=1

Prob(A starts in Ai) · χ
m−1
∑

j=i

1

uj
. (5)

Proof of Theorem 6. We prove a lower bound for the following sped-up GA instead of
the original greedy (2+1) GA. Whenever it creates a new offspring with the same fitness,

14 Evolutionary Computation Volume x, Number x

How Crossover Speeds Up Building-Block Assembly in Genetic Algorithms

but a different bit string as the current best individual, we assume the following. The
algorithm automatically performs a crossover between the two. Also, we assume that
this crossover leads to the best possible offspring in a sense that all bits where both
parents differ are set to 1 (i. e., the algorithm performs a bit-wise OR). That is, if both
search points have i 1-bits and Hamming distance 2k, then the resulting offspring has
i+ k 1-bits.

Due to our assumptions, at the end of each generation there is always a single best
individual. For this reason we can model the algorithm by a Markov chain representing
the current best fitness.

The analysis follows a lower bound for EAs on ONEMAX (Sudholt, 2013, Theo-
rem 9). As in Sudholt (2013) we consider the following fitness-level partition that fo-
cuses only on the very last fitness values. Let ℓ =

⌈

n−min{n/log n, 1/(p2n log n)}
⌉

.
Let Ai = {x | |x|1 = i} for i > ℓ and Aℓ contain all remaining search points. We know
from Sudholt (2013) that the GA is initialized in Aℓ with probability at least 1− 1/ log n
if n is large enough.

The probability pi,i+k that the sped-up GA makes a transition from fitness i to
fitness i+ k equals

pi,i+k = Prob(k more 0-bits than 1-bits flip) +

Prob(k 0-bits and k 1-bits flip)

According to Sudholt (2013, Lemma 2), for the considered fitness levels i > ℓ the former
probability is bounded by

pk(1− p)n−k · (n− i)k

k!
·
(

1 +
3

5
· i(n− i)p2

(1− p)2

)

.

The latter probability is bounded by

Prob(k 0-bits flip) · Prob(k 1-bits flip)

≤ (n− i)k

k!
· pk(1− p)n−i−k · i

k

k!
· pk(1− p)i−k

≤ (n− i)k

k!
· pk(1− p)n · (pn)k

(1− p)2k · k! .

Together, pi,i+k is at most

(p(n− i))k(1− p)n
(

1 +
3

5
· i(n− i)p2

(1− p)2+k
+

(pn)k

(1− p)2k · k!k!

)

.

We need to find variables ui and γi,i+k along with some 0 ≤ χ ≤ 1 such that all
conditions of Theorem 8 are fulfilled. Define

u′
i := p(1− p)n(n− i)

(

1 +
3

5
· i(n− i)p2

(1− p)3
+

1

(1− p)2
·max

k

(

(pn)k

k!k!

))

and

γ′
i,i+k :=

(

p(n− i)

(1− p)2

)k−1

.

Evolutionary Computation Volume x, Number x 15

D. Sudholt

Observe that, for every k ∈ N,

u′
iγ

′
i,i+k ≥ pk(1− p)n(n− i)k

(

1 +
3

5
· i(n− i)p2

(1− p)1+2k
+

1

(1− p)2k
· (pn)

k

k!k!

)

≥ pk(1− p)n(n− i)k
(

1 +
3

5
· i(n− i)p2

(1− p)2+k
+

(pn)k

(1− p)2k · k!k!

)

≥ pi,i+k.

In order to fulfill the second condition in Theorem 8, we consider the following nor-

malized variables: ui := u′
i ·
∑n

j=i+1 γ
′
i,j and γi,j :=

γ′

i,j∑
n
j=i+1

γ′

i,j

. As uiγi,j = u′
iγ

′
i,j ≥ pi,j ,

this proves the first condition of Theorem 8.
Following the proof of Theorem 9 in Sudholt (2013), it is easy to show that for

χ := 1− 1
(1−p)2 logn we get γi,j ≥ χ

∑m
k=j γi,k for all i, j with j > i (the calculations

in Sudholt (2013, pp. 427–428) carry over by replacing “(1 − p)” with “(1 − p)2”). This
establishes the third and last condition.

As γi,j ≥ χ
∑m

k=j γi,k is equivalent to γ′
i,j ≥ χ

∑m
k=j γ

′
i,k, we get

n
∑

j=i+1

γ′
i,j ≤

γ′
i,i+1

χ
≤ 1

χ
,

which implies, using i(n − i)p2 ≤ n(n − ℓ)p2 ≤ 1
logn (Sudholt, 2013, (12)) as well as

1 + x ≤ 1/(1− x) for x < 1,

ui ≤ p(1− p)n · (n− i) · 1
χ
·
(

1 +
3

5
· i(n− i)p2

(1− p)3
+

1

(1− p)2
·max

k

(

(pn)k

k!k!

))

≤ p(1− p)n−3 · (n− i) · 1
χ
·
(

1 +
3

5 log n
+max

k

(

(pn)k

k!k!

))

≤ p(1− p)n−3 · (n− i) · 1
χ
·
(

1

1− 3
5 logn

+max
k

(

(pn)k

k!k!

)

)

≤ p(1− p)n−3 · (n− i) · 1
χ
·
1 + maxk

(

(pn)k

k!k!

)

1− 3
5 logn

.

Invoking Theorem 8 and recalling that the first fitness level is reached with proba-
bility at least 1− 1/ log n, we get a lower bound of

(

1− 1

log n

)

χ
n−1
∑

i=ℓ

1

ui

≥
(

1− 1

log n

)

χ2 ·
1− 3

5 logn

1 + maxk

(

(pn)k

k!k!

) · (1− p)3

p(1− p)n

n−1
∑

i=ℓ

1

n− i

≥
(

1−O

(

1

log n

))

· 1

1 + maxk

(

(pn)k

k!k!

) · 1

p(1− p)n

n−1
∑

i=ℓ

1

n− i

where in the last step we used that all factors χ, 1 − 3
5 logn , and 1 − p are 1 − O

(

1
logn

)

,

and
(

1− c
logn

)d

≥ 1 − cd
logn for any positive constants c, d. Bounding

∑n−1
i=ℓ

1
n−i ≤

16 Evolutionary Computation Volume x, Number x

How Crossover Speeds Up Building-Block Assembly in Genetic Algorithms

ln(min{n, 1/(p2n)})− ln(log n) as in Sudholt (2013) and absorbing all small-order terms
in the −O(log log n) term from the statement gives the claimed bound.

We also ran experiments to see whether the outcome matches our inspection of the
dominating terms in the running time bounds for realistic problem dimensions. We
chose n = 1000 bits and recorded the average optimization time over 1000 runs. The
mutation rate p was set to c/n with c ∈ {0.1, 0.2, . . . , 4}. The result is shown in Figure 1.

0 1 2 3 4

·1/n

0

2

4

6

8

·104

√
5+1
2

mutation rate

n
u

m
b

er
o

f
ev

al
u

at
io

n
s

(1+1) EA

(2+1) GA+uniform

Figure 1: Average optimization times for the (1+1) EA and the greedy (2+1) GA with
uniform crossover on OneMax with n = 1000 bits. The mutation rate p is set to c/n
with c ∈ {0.1, 0.2, . . . , 4}. The thin lines show mean ± standard deviation.

One can see that for every mutation rate the greedy (2+1) GA has a lower aver-
age optimization time. As predicted, the performance difference becomes larger as the
mutation rate increases. The optimal mutation rates for both algorithms match with
minimal average optimization times. Note that also the variance/standard deviation
was much lower for the GA for higher mutation rates. Preliminary runs for n = 100
and n = 10000 bits gave very similar results. More experiments and statistical tests are
given in Section 6.1.

5 k-Point Crossover

The k-point crossover operator picks k cutting points from {1, . . . , n − 1} uniformly at
random without replacement. These cutting points divide both parents into segments
that are then assembled from alternating parents. That is, for parents x, y and cutting
points 1 ≤ ℓ1 < ℓ2 < · · · < ℓk ≤ n− 1 the offspring will be:

x1 . . . xℓ1 yℓ1+1 . . . yℓ2 xℓ2+1 . . . xℓ3 yℓ3+1 . . . yℓ4 . . .

the suffix being yℓk+1 . . . yn if k is odd and xℓk+1 . . . xn if k is even.
For uniform crossover we have seen that populations containing different search

points of equal fitness are beneficial as uniform crossover can easily combine the good
“building blocks”. This holds regardless of the Hamming distance between these dif-
ferent individuals, and the position of bits where individuals differ.

Evolutionary Computation Volume x, Number x 17

D. Sudholt

The (µ+λ) GA with k-point crossover is harder to analyse as there the probability
of crossover creating an improvement depends on the Hamming distance of parents
and the position of differing bits.

Consider parents that differ in two bits, where these bit positions are quite close.
Then 1-point crossover has a high probability of taking both bits from the same parent.
In order to recombine those building blocks, the cutting point has to be chosen in be-
tween the two bit positions. A similar effect occurs for 2-point crossover also if the two
bit positions are on opposite ends of the bit string.

The following lemma gives a lower bound on the probability that k-point crossover
combines the right building blocks on ONEMAX, if two parents are equally fit and differ
in two bits. The lemma and its proof may be of independent interest.

Lemma 9. Consider two search points x, y with xi = 1, xi+d = 0, yi = 0, yi+d = 1 for 1 ≤
i < i+d ≤ n and xs = ys for s /∈ {i, i+d}. The probability of k-point crossover of x and y, for
any 1 ≤ k ≤ N − 1, where N := n− 1 ≥ 4 is the number of possible cutting points, creating
an offspring with a larger number of 1-bits is at least

d(N − d)

N(N − 1)

and exactly d/N for k = 1.

Proof. We identify cutting points with bits such that cutting point a results in two
strings x1 . . . xa and xa+1 . . . xn. We say that a cutting point a separates i and i + d
if a ∈ {i, . . . , i + d − 1}. Note that the prefix is always taken from x. The claim now
follows from showing that the number of separating cutting points is odd with the
claimed probability.

Let XN,d,k be the random variables that describes the number of cutting points
separating i and i+d. This variable follows a hypergeometric distribution Hyp(N, d, k),
illustrated by the following urn model with red and white balls. The urn contains N
balls, d of which are red. We draw k balls uniformly at random, without replacement.
Then XN,d,k describes the number of red balls drawn. We define the probability of
XN,d,k being odd, for 1 ≤ d ≤ N − 1 and 1 ≤ k ≤ N − 1 as

P (N, d, k) :=

k
∑

x=1, x odd

Prob(XN,d,k = x) =

k
∑

x=1, x odd

(

d
x

)(

N−d
k−x

)

(

N
k

) .

Note that for k = 1

P (N, d, 1) =

(

d
1

)(

N−d
0

)

(

N
1

) =
d

N

and for k = 2

P (N, d, 2) =

(

d
1

)(

N−d
1

)

(

N
2

) =
2d(N − d)

N(N − 1)
.

For all 1 ≤ d ≤ N − 1 and all 1 ≤ k ≤ N − 1 the following recurrence holds. Imag-
ine drawing the first cutting point separately. With probability d/N , the cutting point
is a separating cutting point, and then we need an even number of further separat-
ing cutting points among the remaining k − 1 cutting points, drawn from a random
variable XN−1,d−1,k−1. With the remaining probability (N − d)/N , the number of re-
maining cutting points must be even, and this number is drawn from a random variable

18 Evolutionary Computation Volume x, Number x

How Crossover Speeds Up Building-Block Assembly in Genetic Algorithms

XN−1,d,k−1. Hence

P (N, d, k) =
d

N
· (1− P (N − 1, d− 1, k − 1)) +

N − d

N
· P (N − 1, d, k − 1). (6)

Assume for an induction that for all 2 ≤ k′ < k

d(N − d)

N(N − 1)
≤ P (N, d, k′) ≤ 1− d(N − d)

N(N − 1)
. (7)

This is true for k′ = 2 as, using 3d(N − d) ≤ 3 · (N/2)2 ≤ N(N − 1) for N ≥ 4,

P (N, d, 2) =
2d(N − d)

N(N − 1)
=

3d(N − d)− d(N − d)

N(N − 1)
≤ 1− d(N − d)

N(N − 1)
.

For k > 2, combining (6) and (7) yields

P (N, d, k) =
d

N
· (1− P (N − 1, d− 1, k − 1)) +

N − d

N
· P (N − 1, d, k − 1)

≥ d

N
· (d− 1)(N − d)

(N − 1)(N − 2)
+

N − d

N
· d(N − d− 1)

(N − 1)(N − 2)

=
d(N − d)(d− 1 +N − d− 1)

N(N − 1)(N − 2)

=
d(N − d)

N(N − 1)
.

The upper bound follows similarly:

P (N, d, k) ≤ d

N
·
(

1− (d− 1)(N − d)

(N − 1)(N − 2)

)

+
N − d

N
·
(

1− d(N − d− 1)

(N − 1)(N − 2)

)

= 1− d(N − d)(d− 1 +N − d− 1)

N(N − 1)(N − 2)

= 1− d(N − d)

N(N − 1)
.

By induction, the claim follows.

In the setting of Lemma 9, the probability of k-point crossover creating an im-
provement depends on the distance between the two differing bits. Fortunately, for
search points that result from a mutation of one another, this distance has a favourable
distribution. This is made precise in the following lemma.

Lemma 10. Let x′ result from x by a mutation flipping one 1-bit and one 0-bit, where the
positions i, j of these bits are chosen uniformly among all 1-bits and 0-bits, respectively. Define
a random variable d := |i− j| and consider min{d, n− d}. Then for all 1 ≤ z ≤ n/2,

Prob (min{d, n− d} = z) ≤ 4

n
.

Proof. We first show the following. For any fixed index i and any integer 1 ≤ z < n/2
there are exactly two positions j such that min{d, n−d} = z. If i ∈ {1, . . . , n} and z ∈ N

are fixed, the only values for j that result in either |i − j| = z or n − |i − j| = z are

Evolutionary Computation Volume x, Number x 19

D. Sudholt

i+z, i−z, i+z−n, and i−z+n. Note that at most two of these values are in {1, . . . , n}.
Hence, there are at most 2 feasible values for j for every d ∈ N. Similarly, for z = n/2
there is just one position such that min{d, n− d} = z.

Let ℓ denote the number of 1-bits in x. If ℓ ≥ n/2, we assume that first the 0-bit
is chosen uniformly at random, and then consider the uniform random choice of a
corresponding 1-bit. As each bit has a probability of 1/ℓ of being selected, and at most
two choices lead to a particular value of min{d, n− d}, we have

Prob (min{d, n− d} = z) ≤ 2

ℓ
≤ 4

n
.

The case ℓ < n/2 follows symmetrically by considering the uniform choice of the 0-bit
among n− ℓ ≥ n/2 choices.

Taken together, Lemma 9 and Lemma 10 indicate that k-point crossover has a good
chance of finding improvements through recombining the right “building blocks”.
However, this is based on the population containing potential parents of equal fitness
that only differ in two bits.

The following analysis shows that the population is likely to contain such a
favourable pair of parents. However, such a pair might get lost again if other indi-
viduals of the same fitness are being created, after all duplicates have been removed
from the population. For parents that differ in more than 2 bits, Lemma 9 does not
apply, hence we do not have an estimate of how likely such a crossover will find an
improvement.

In order to avoid this problem, we consider a more detailed tie-breaking rule. As
before, individuals with fewer duplicates are being preferred. In case there are still ties
after considering the number of duplicates, the (µ+λ) GA will retain older individuals.
This refined tie-breaking rule is shown in Algorithm 3. As will be shown in the remain-
der, it implies that once a favourable pair of parents with Hamming distance 2 has been
created, this pair will never get lost.

Algorithm 3: Refined tie-breaking rule “dup-old”.

14 Let P contain the µ best individuals from P ∪ P ′; break ties towards
including individuals with the fewest duplicates in P ∪ P ′. If there are still
ties, break them towards including older individuals.

This tie-breaking rule, called “dup-old” differs from the one used for the experi-
ments in Figure 1 and those in Section 6. There, we broke ties uniformly at random
in case individuals are tied with respect to both fitness and the number of duplicates.
We call the latter rule “dup-rnd”. Experiments for the greedy (2+1) GA comparing
tie-breaking rules dup-old and dup-rnd over 1000 runs indicate that performance dif-
ferences are very small, see Figure 2.3

Note, however, that on functions with plateaus, like royal road functions, retain-
ing the older individuals prevents the (µ+λ) GA from performing random walks on
the plateau, once the population has spread such that there are no duplicates of any

3Even though differences are small, one-sided Mann-Whitney U tests reveal some statistically significant
differences: for 1-point crossover dup-rnd is significantly faster than dup-old on a significance level of 0.001
for mutation rates at least 2.4/n (with two exceptions, 2.8/n and 3.6/n, with p-values still below 0.003).
Contrarily, dup-old was significantly faster for 2-point crossover for mutation rates in the range of 0.8/n to
3/n.

20 Evolutionary Computation Volume x, Number x

How Crossover Speeds Up Building-Block Assembly in Genetic Algorithms

0 1 2 3 4

·1/n

2

4

6

·104

mutation rate

n
u

m
b

er
o

f
ev

al
u

at
io

n
s

(2+1) GA +1-point, dup-rnd

(2+1) GA +2-point, dup-rnd

(2+1) GA +1-point, dup-old

(2+1) GA +2-point, dup-old

Figure 2: Average optimization times on ONEMAX with n = 1000 bits over 1000 runs
for the greedy (2+1) GA with 1- and 2-point crossover using different tie-breaking rules
if individuals are tied with regard to fitness and the number of duplicates. “dup-rnd”
breaks these ties randomly, whereas “dup-old” (Algorithm 3) prefers older individuals.
The mutation rate p is set to c/n with c ∈ {0.1, 0.2, . . . , 4}.

individual. In this case we expect that performance will deteriorate when breaking ties
towards older individuals.

With the refined tie-breaking rule, the performance of (µ+λ) GAs is as follows.

Theorem 11. The expected optimization time of every (µ+λ) GA implementing Algorithm 1
with tie-breaking rule dup-old from Algorithm 3, 2 ≤ µ = O(1), λ < µ, pc = o(1) and pc =
ω(1/ log n), p = c/n for some constant c > 0, and k-point crossover with any 1 ≤ k ≤ n− 2,
on ONEMAX is at most

ec

c · (1 + c)
· n lnn · (1 + o(1)).

This bound equals the upper bound (3) for (µ+λ) GAs with uniform crossover.
It improves upon the previous upper bound for the greedy (2+1) GA from Sudholt
(2012, Theorem 8), whose dominant term was by an additive term of 2c

3+3c ·n lnn larger.
The reason was that for the (2+1) GA favourable parents could get lost, which is now
prevented by the dup-old tie-breaking rule and conditions on pc.

The conditions pc = o(1) as well as µ, λ = O(1) are useful because they allow us to
estimate the probability that a single good individual takes over the whole population
with copies of itself.

In the remainder of this section we work towards proving Theorem 11 and assume
that n ≥ n0 for some n0 chosen such that all asymptotic statements that require a large
enough value of n hold true. For n < n0 there is nothing to prove, as the statement
holds trivially for bounded n.

We again estimate the time spent on each fitness level i, i. e., when the best fit-
ness in the current population is i. To this end, we focus on the higher fitness levels
i ≥ n− n/ log n where the probability of creating an offspring on the same level can be
estimated nicely. The time for reaching these higher fitness levels only constitutes a
small-order term, compared to the claimed running time bound. The following lemma
proves this claim in a more general setting than needed for the proof of Theorem 11. In
particular, it holds for arbitrary tie-breaking rules and crossover operators.

Evolutionary Computation Volume x, Number x 21

D. Sudholt

Lemma 12. For every (µ+λ) GA implementing Algorithm 1 with µ, λ = O(1), pc = 1−Ω(1),
and p = c/n for a constant c > 0, using any initialization and any crossover operator, the
expected time until a fitness level i ≥ n− n/ log n is reached for the first time is o(n log n).

A proof is given in the appendix.
In the remainder of the section we focus on higher fitness levels i ≥ n − n/ log n

and specify the different cases on each such fitness level. The cases i.1, i.2, and i.3 are
similar to the ones for uniform crossover, with additional conditions on the similarity of
individuals in Cases i.2 and i.3. We also have an additional error state that accounts for
undesirable and unexpected behavior. We pessimistically assume that the error state
cannot be left towards other cases on level i.

Case i.1: The population contains an individual on level i and at least one individ-
ual on a lower fitness level.

Case i.2: The population contains µ copies of an individual x on level i.
Case i.3: The population contains two search points x, y with current best fitness i,

where y resulted from a mutation of x and the Hamming distance of x and y is 2.
Case i.error: An error state reached from any Case i.· when the best fitness is i and

none of the prior cases applies.
The difference to the analysis of uniform crossover is that in Case i.2 we rely on

the population collapsing to copies of a single individual. This helps to estimate the
probability of creating a favourable parent-offspring pair in Case i.3 as the (µ+λ) GA
effectively only performs mutations of x while being in Case i.2.

Lemma 13. Consider any (µ+λ) GA as defined in Theorem 11, with parameters 2 ≤ µ = O(1),
λ < µ, pc = o(1) and pc = ω(1/ log n), p = c/n for some constant c > 0. The total expected
time spent in all Cases i.1, i.2, and i.3 across all i ≥ n− n/ log n is at most

ec

c · (1 + c)
· n lnn+ o(n log n).

Proof. We have already analyzed the expected time in Cases i.1 and i.2, across all fitness
levels. As in the proof of Theorem 4, we use Lemma 2 and get that the expected time
spent in all Cases i.1 is at most

O((µ+ λ)n logµ)

(1− pc)(1− p)n
= O(n).

In Case i.2 the algorithm behaves like the one using uniform crossover described in
Theorem 4 as both crossover operators are working on identical individuals. As before,
Case i.2 is left if either a better offspring is created, or if a different offspring with i ones
is created. In the latter case, either Case i.3 or the error state i.error is reached. By the
proof of Theorem 4 we know that the expected time spent in Cases i.2 across all levels i
is bounded by

λn+
ln(n2p+ n) + 1 + p

p(1− p)n−1 · (1 + np)
=

ec

c · (1 + c)
· n lnn+O(n).

Now we estimate the total time spent in all cases i.3. As this time turns out to be
comparably small, we allow ourselves to ignore that fact that not all these cases are
actually reached.

Case i.3 implies that the population contains a parent-offspring pair x, y with
Hamming distance 2. Consider the mutation that has created this offspring and note

22 Evolutionary Computation Volume x, Number x

How Crossover Speeds Up Building-Block Assembly in Genetic Algorithms

that this mutation flips each 1-bit and each 0-bit with the same probability. If a, b with
a < b denote the bit positions where x and y differ, then D := b−a is a random variable
with support {1, . . . , n− 1}. By the law of total expectation,

E(Ti.3) =

n−1
∑

d=1

E(Ti.3 | D = d) · Prob(D = d). (8)

We first bound the conditional expectation by considering probabilities for improve-
ments. If D = d then by crossover is successful if crossover is performed (probabil-
ity pc), if the search point where bit a is 1 is selected as first parent (probability at least
1/µ), if the remaining search point in {x, y} is selected as second parent (probability
at least 1/µ), and if cutting points are chosen that lead to a fitness improvement. The
latter event has probability at least d(N − d)/(N(N − 1)) by Lemma 9, with N := n− 1.
Finally, we need to assume that the following mutation does not destroy any fitness
improvements (probability at least (1 − p)n). The probability of a successful crossover
is then at least, using d(N − d) = min(d,N − d) ·max(d,N − d) ≥ min(d,N − d) ·N/2,

pc(1− p)n

µ2
· d(N − d)

N(N − 1)
≥ pc(1− p)n

µ2
· min(d, (N − d))

2(N − 1)
≥ pc(1− p)n

µ2
· min(d, n− d)− 1

2n
.

Another means of escaping from Case i.3 is by not using crossover, but having mutation
create an improvement. The probability for this is at least

(1− pc) · (n− i)p(1− p)n−1 ≥ γ · n− i

n
(9)

for a constant γ > 0. Applying Lemma 3, we have

E(Ti.3 | D = d) ≤ λ+
1

pc(1−p)n

µ2 · min(d,n−d)−1
2n + γ · n−i

n

. (10)

Note that this upper bound is non-increasing with min(d, n − d). We are therefore
pessimistic when replacing min(d, n−d) by the pessimistic probability estimations from
Lemma 10. Combining this with (8) and (10) yields

E(Ti.3) ≤ λ+

n/4
∑

z=1

4

n
· 1

pc(1−p)n

µ2 · z−1
2n + γ · n−i

n

≤ λ+O(µ2/pc) ·
n/4
∑

z=1

1

z − 1 + n− i
.

The last sum is estimated as follows.

n/4
∑

z=1

1

z − 1 + n− i
=

n/4−1
∑

z=0

1

z + n− i
=

1

n− i
+

n/4−1
∑

z=1

1

z + n− i

≤ 1 +

∫ n/4

z=0

1

z + n− i
dz

= 1 + ln

(

1 +
n/4

n− i

)

.

Evolutionary Computation Volume x, Number x 23

D. Sudholt

Along with λ = O(1), n/4 ≤ n, and O(µ2/pc) = o(log n), we get

E(Ti.3) ≤ o(log n) ·
(

1 + ln

(

1 +
n

n− i

))

.

For the sum T·,3 =
∑n−1

i=0 Ti,3 we then have the following.

E(T·.3) ≤ o(n log n) + o(log n) ·
n−1
∑

i=0

ln

(

1 +
n

n− i

)

= o(n log n) + o(log n) ·
n
∑

i=1

ln
(

1 +
n

i

)

≤ o(n log n) + o(log n) ·
∫ n

i=0

ln
(

1 +
n

i

)

di

= o(n log n)

as the integral is 2 ln(2)n. This completes the proof.

The remainder of the proof is devoted to estimating the expected time spent in the
error state. To this end we need to consider events that take the (µ+λ) GA “off course”,
that is, deviating from situations described in Cases i.1, i.2, and i.3.

Since Case i.3 is based on offspring with Hamming distance 2 to their parents, one
potential failure is that an offspring with fitness i, but Hamming distance greater than 2
to its parent is being created. This probability is estimated in the following lemma.

Lemma 14. For i ∈ {1, . . . , n − 1} let p(i) denote the probability that standard bit mutation
with mutation rate 0 < p ≤ 1/2 of a search point with i 1-bits creates a different offspring with
i 1-bits. If i(n− i)p2(1− p)−2 ≤ 1/2 then

i(n− i)p2(1− p)n−2 ≤ p(i) ≤ i(n− i)p2(1− p)n−2 ·
(

1 +
2i(n− i)p2

(1− p)2

)

.

The probability that, additionally, the offspring has Hamming distance larger than 2 to its parent
is at most

2i2(n− i)2p4(1− p)n−4.

The proof is found in the appendix.
Another potential failure occurs if the population does not collapse to copies of a

single search point, that is, the transition from Case i.1 to Case i.2 is not made. We first
estimate the probability of mutation unexpectedly creating an individual with fitness i.

Lemma 15. The probability that a standard bit mutation with mutation probability 0 < p < 1
creates a search point with i ones out of a parent with less than i ones, is at most

p(n− i+ 1) · e(pn)2/4+1.

Note that for the special case p = 1/n Lemma 13 in Doerr et al. (2012b) gives an
upper bound of (n − i + 1)/n. This is because the highest probability for a jump to
fitness level i is attained when the parent is on level i−1. However, for larger mutation
probabilities this is no longer true in general; there are cases where the probability of
jumping to level i is maximized for parents on lower fitness levels. Hence, a closer

24 Evolutionary Computation Volume x, Number x

How Crossover Speeds Up Building-Block Assembly in Genetic Algorithms

inspection of transition probabilities between different fitness levels is required, see the
proof in the Appendix.

Using Lemma 15, we can now estimate the probability of the (µ+λ) GA not col-
lapsing to copies of a single search point as described in Case i.2.

Lemma 16. Consider any (µ+λ) GA as defined in Theorem 11, with parameters 2 ≤ µ = O(1),
λ < µ, pc = o(1) and pc = ω(1/ log n), p = c/n for some constant c > 0 and fix a fitness
level i < n. The probability that the (µ+λ) GA will reach a population containing different
individuals with fitness i before either reaching a population containing only copies of the same
individual on level i or reaching a higher fitness level, is at most

O(µ logµ) ·
(

pc +
n− i

n

)

.

Proof. We show that there is a good probability of repeatedly creating clones of individ-
uals with fitness i (or finding an improvement) and avoiding the following bad event. A
bad event happens if an individual on fitness level i is created in one offspring creation
by means other than through cloning an existing individual on level i.

The probability of a bad event is bounded as follows. In case crossover is being
used, which happens with probability pc, we bound the probability of a bad event
by the trivial bound 1. Otherwise, such an individual needs to be created through
mutation from either a worst fitness level, or by mutating a parent on level i. The
probability for the former is bounded from above by Lemma 15. The probability for
the latter is at most p(n − i) as it is necessary to flip one out of n − i 0-bits. Using
n − i + 1 ≤ 2(n − i), the probability of a bad event on level i is hence bounded from
above by

pc + (1− pc) ·
(

p(n− i+ 1) · e(pn)2/4+1 + p(n− i)
)

≤ pc +

(

2c(n− i)

n
· ec2/4+1 +

c(n− i)

n

)

= pc + κ · n− i

n
,

where κ := 2c · ec2/4+1 + c is a constant. The (µ+λ) GA will only reach a population
containing different individuals with fitness i as stated if a bad event happens before
the population has collapsed to copies of a single search point or moved on to a higher
fitness level.

Consider the first generation where an individual of fitness i is reached for the first
time. Since it might be possible to create several such individuals in one generation, we
consider all offspring creations being executed sequentially and consider the possibility
of bad events for all offspring creations following the first offspring on level i. Let X be
the number of function evaluations following this generation, before all individuals in
the population have fitness at least i. By Lemma 2 we have

E(X) = O

(

(µ+ λ) logµ

(1− pc)(1− p)n

)

= O(µ logµ).

Considering up to λ further offspring creations in the first generation leading to level i,
and completing the generation at the end of the X function evaluations, we have less
than X + 2λ trials for bad events. The probability that one of these is bad is bounded

Evolutionary Computation Volume x, Number x 25

D. Sudholt

by

(

X
∑

t=1

t · Prob(X = t) + 2λ

)

·
(

pc + κ · n− i

n

)

= (E(X) + 2λ) ·
(

pc + κ · n− i

n

)

= O(µ logµ) ·
(

pc + κ · n− i

n

)

.

Absorbing κ in the O-term yields the claimed result.

Now we are prepared to estimate the expected time spent in all error states i.error
for i ≥ n− n/ log n.

Lemma 17. Consider any (µ+λ) GA as defined in Theorem 11, with parameters 2 ≤ µ = O(1),
λ < µ, pc = o(1) and pc = ω(1/ log n), p = c/n for some constant c > 0. The expected time
spent in all states i.error, for i ≥ n− n/ log n, is at most

O(n+ pc · n lnn) = o(n log n).

Proof. The (µ+λ) GA only spends time in an error state if it is actually reached. So we
first calculate the probability that state i.error is reached from either Case i.1, i.2, or i.3.

Lemma 16 states that the probability of reaching a population with different indi-
viduals on level i before reaching Case i.2 or a better fitness level is

O(µ logµ) ·
(

pc +
n− i

n

)

= O

(

pc +
n− i

n

)

.

We pessimistically ignore the possibility that Case i.3 might be reached if this happens;
thus the above is an upper bound for the probability of reaching i.error from Case i.1.

Recall that in Case i.2 all individuals are identical, so crossover has no effect and
the (µ+λ) GA only performs mutations. First consider the case λ = 1. Note that i ≥
n−n/ log n, along with p = c/n, implies that i(n− i)p2(1−p)−2 ≤ 1/2, hence Lemma 14
is in force. According to Lemma 14 the probability of leaving Case i.2 by creating a
different individual with fitness i is at least i(n − i)p2(1 − p)n−2. The probability of
doing this with an offspring of Hamming distance greater than 2 to its parent is at most
2i2(n− i)2p4(1− p)n−4 (second statement of Lemma 14). So the conditional probability
of reaching the error state when leaving Case i.2 towards another case on level i is at
most

2i2(n− i)2p4(1− p)n−4

i(n− i)p2(1− p)n−2
= 2i(n− i)p2(1− p)−2. (11)

In case λ > 1 note that Case i.3 is reached in case there is a single offspring with fitness i
and Hamming distance 2 to its parent. Such an offspring is guaranteed to survive
as we assume λ < µ and offspring with many duplicates are removed first. Thus,
in case several offspring with fitness i and differing from their parent are created, all
of them need to have Hamming distance larger than 2 in order to reach i.error from
Case i.2. This probability decreases with increasing λ, hence the probability bound (11)
also holds for λ > 1.

Finally, Case i.3 implies that there exists a parent-offspring pair x, y with Hamming
distance 2. In a new generation these two offspring – or at least one copy of each – will
always survive: individuals with multiple duplicates are removed first, and in case
among current parents and offspring more than µ individuals exist with no duplicates,

26 Evolutionary Computation Volume x, Number x

How Crossover Speeds Up Building-Block Assembly in Genetic Algorithms

x and y will be preferred over newly created offspring. So the probability of reaching
the error state from Case i.3 is 0.

In case the error state is reached, according to (9) we have a probability of at least γ ·
n−i
n of finding a better individual in one offspring creation, for a constant γ > 0. Using

Lemma 3 as before, this translates to at most λ+ 1
γ · n

n−i expected function evaluations.

So the expected time spent in Case i.error is at most

λ+

(

2i(n− i)p2(1− p)−2 +O

(

pc +
n− i

n

))

· 1
γ
· n

n− i

= λ+

(

2

γ
· inp2(1− p)−2 +O

(

pc ·
n

n− i
+ 1

))

= O

(

pc ·
n

n− i

)

+O(1)

as both λ = O(1) and inp2(1− p)−2 ≤ (pn)2 · (1− p)−2 = O(1). The total expected time
across all error states is at most

O

(

n+ pc · n ·
n−1
∑

i=0

1

n− i

)

= O(n+ pc · n lnn).

Now Theorem 11 follows from all previous lemmas.

Proof of Theorem 11. The claimed upper bound now follows from adding the upper
bounds on the expected time on the smaller fitness levels (Lemma 12) to the expected
times spent in all considered cases (Lemma 13 and Lemma 17).

We believe that some of the technical conditions from Theorem 11 involving µ, λ,
and pc could be relaxed if it was possible to generalize Lemmas 9 and 10 towards more
than 2 differing bits between individuals of equal fitness.

Figure 3, discussed in the following Section 6, presents further experiments
and statistical tests, which includes a comparison of uniform crossover and k-point
crossover in the greedy (2+1) GA.

6 Extensions to Other Building-Block Functions

6.1 Royal Roads and Monotone Polynomials

So far, our theorems and proofs have been focused on ONEMAX only. This is because
we do have very strong results about the performance of EAs on ONEMAX at hand.
However, the insights gained stretch far beyond ONEMAX. Royal road functions gen-
erally consist of larger blocks of bits. All bits in a block need to be set to 1 in order to
contribute to the fitness; otherwise the contribution is 0. All blocks contribute the same
amount to the fitness, and the fitness is just the sum of all contributions.

The fundamental insight we have gained for neutral mutations also applies to
royal road functions. If there is a mutation that completes one block, but destroys
another block, this is a neutral mutation and the offspring will be stored in the pop-
ulation of a (µ+λ) GA. Then crossover can recombine all finished blocks in the same
way as for ONEMAX. The only difference is that the destroyed block may evolve fur-
ther. More neutral mutations can occur that only alter bits in the destroyed block. Then
the population can be dominated by many similar solutions, and it becomes harder for
crossover to find a good pair for recombination. However, as crossover has generally

Evolutionary Computation Volume x, Number x 27

D. Sudholt

0 1 2 3 4

·1/n

2

4

6

8
·104

mutation rate

(1+1) EA

(2+1) GA+uniform

(2+1) GA+1-point

(2+1) GA+2-point

(a) ONEMAX

0 1 2 3 4

·1/n

1

2

3

4

5

·105

mutation rate

(1+1) EA

GA+uniform
GA+1-point
GA+2-point

(b) Royal road

0 1 2 3 4

·1/n

2

4

6

8

·104

mutation rate

(1+1) EA

GA+uniform
GA+1-point
GA+2-point

(c) Random polynomials

Figure 3: Average optimization times over 1000 runs for (1+1) EA and the
greedy (2+1) GA with various crossover operators on functions with n = 1000 bits:
ONEMAX, a royal road function with block size 5, and random polynomials with 1000
unweighted monomials of degree 5. The mutation rate is c/n with c ∈ {0.1, 0.2, . . . , 4}.

a very high probability of finding improvements, the last effect probably plays only a
minor role.

A theoretical analysis of general royal roads up to the same level of detail as for
ONEMAX is harder, but not impossible. So far results on royal roads and monotone
polynomials have been mostly asymptotic (Wegener and Witt, 2005; Doerr et al., 2013b).
Only recently, Doerr and Künnemann (2013) presented a tighter runtime analysis of
offspring populations for royal road functions, which may lend itself to a generalization
of our results on ONEMAX in future work.

For now, we use experiments to see whether the performance is similar to that on
ONEMAX. We use royal roads with n = 1000 bits and block size 5, i. e., we have 200
pairwise disjoint blocks of 5 bits each. We also consider random monotone polynomi-
als. Instead of using disjoint blocks, we use 1000 monomials of degree 5 (conjunctions
of 5 bits): each monomial is made up of 5 bit positions chosen uniformly at random,

28 Evolutionary Computation Volume x, Number x

How Crossover Speeds Up Building-Block Assembly in Genetic Algorithms

without replacement. This leads to a function similar to royal roads, but “blocks” are
broken up and can share bits; bit positions are completely random. Figure 3 shows the
average optimization times in 1000 runs on all these functions, for the (1+1) EA and the
greedy (2+1) GA with uniform, 1-point, and 2-point crossover. We chose the last two
because k-point crossovers for odd k treat ends of bit strings differently from those for
even k: for odd k two bits close to opposite ends of a bitstring have a high probability
to be taken from different parents, whereas for even k there is a high chance that both
will be taken from the same parent (cf. Lemma 9 for k = 2 and the special case of k = 1).

For consistency and simplicity, we use pc = 1 and the tie-breaking rule dup-rnd in
all settings, that is, ties in fitness are broken towards minimum numbers of duplicates
and any remaining ties are broken uniformly at random. For ONEMAX this does not
perfectly match the conditions of Theorem 11 as they require a lower crossover proba-
bility, pc = o(1), and tie-breaking rule dup-old. But the experiments show that k-point
crossover is still effective when these conditions are not met.

On ONEMAX both k-point crossovers are better than the (1+1) EA, but slightly
worse than uniform crossover. This is in accordance with the observation from our
analyses that improvements with k-point crossover might be harder to find, in case the
differing bits are in close proximity.

(1+1) EA uniform 1-point
ONEMAX uniform p < 10−3

1-point p < 10−3 p < 10−3 for c ≥ 0.4
2-point p < 10−3 p < 10−3 for c ≥ 0.3 p > 10−3 (11 ex.)

Royal road uniform p < 10−3 for c ≥ 0.6
1-point p < 10−3 for c ≥ 0.6 p < 10−3 for c ≥ 0.8 (1 ex.)
2-point p < 10−3 for c ≥ 0.6 p < 10−3 for c ≥ 1.4 (5 ex.) p > 10−3 (6 ex.)

Random uniform p < 10−3 (1 ex.)
Polynomial 1-point p < 10−3 for c ≥ 0.3 (3 ex.) p > 10−3 (13 ex.)

2-point p < 10−3 for c ≥ 0.4 (1 ex.) p > 10−3 (6 ex.) p > 10−3 (6 ex.)

Table 1: Summary of the results of two-sided Mann-Whitney U tests on the data from
Figure 3. For each function the table shows pairwise comparisons between the (1+1) EA
and the greedy GA with uniform, 1-point, and 2-point crossover, resp. Here p is the
p-value output by the statistics package R (version 2.8.1) and c is the constant in the
mutation rate c/n. Each cell describes a rule for p subject to a minimum value of c and
gives the number of exceptions from this rule where applicable.

For royal roads the curves are very similar. The difference between the (1+1) EA
and the greedy (2+1) GA is just a bit smaller. For random polynomials there are vis-
ible differences, albeit smaller. Mann-Whitney U tests confirm that wherever there is
a noticeable gap between the curves, there is a statistically significant difference on a
significance level of 0.001. The outcome of Mann-Whitney U tests is summarized in
Table 1.

For very small mutation rates c/n the tests were not significant. For mutation rates
no less than 0.6/n all differences between the (1+1) EA and all greedy (2+1) GAs were
statistically significant, apart from a few exceptions on random polynomials. For ONE-
MAX the difference between uniform crossover vs. k-point crossover was significant
for c ≥ 0.4. For royal roads the majority of such comparisons showed statistical signifi-
cance, with a number of exceptions. However, for random polynomials the majority of
comparisons were not statistically significant. Most comparisons between 1-point and
2-point crossover did not show statistical significance.

Evolutionary Computation Volume x, Number x 29

D. Sudholt

These findings give strong evidence that the insights drawn from the analysis on
ONEMAX transfer to broader classes of functions where building blocks need to be
assembled.

6.2 Linear Functions

Another interesting question is in how far the theoretical analyses in this work extend
to cases where building blocks have different weights. The simplest such case is the
class of linear functions, defined as

f(x) =

n
∑

i=1

wixi

where wi > 0 are positive real-valued weights.
Doerr et al. (2013a) provided empirical evidence that their (1+(λ, λ)) EA is faster

than the (1+1) EA on linear functions with weights drawn uniformly at random from
[1, 2].

It is an open question whether this also holds for more common GAs, that is, those
implementing Algorithm 1. Experiments in Doerr et al. (2013a) on the greedy (2+1) GA
found that on random linear functions “no advantage of the (2+1) GA over the (1+1) EA
is visible”. We provide an explanation for this observation and reveal why the (2+1) GA
is not well suited for weighted building blocks, whereas other GAs might be.

The reason why the (2+1) GA behaves like the (1+1) EA in the presence of weights
is that in case the current population of the (2+1) GA contains two members with dif-
ferent fitness, the (2+1) GA ignores the inferior one. So it behaves as if the population
only contained the fitter individual. Since the (2+1) GA will select the fitter individual
twice for crossover, followed by mutation, it essentially just mutates the fitter individ-
ual. This behavior of the (2+1) GA then equals that of a (1+1) EA working on the fitter
individual.

The (2+1) GA is more efficient than the (1+1) EA on ONEMAX (and other building-
block functions where all building blocks are equally important) as it can easily gen-
erate and store individuals with equal fitness in the population, and recombine their
different building blocks. However, in the presence of weights, chances of creating in-
dividuals of equal fitness might be very slim, and then the (2+1) GA behaves like the
(1+1) EA.

Theorem 18. As long as the population of the (2+1) GA does not contain two different indi-
viduals with the same fitness, the (2+1) GA is equivalent to the (1+1) EA.

On functions where all search points have different fitness values, the (2+1) GA is equiva-
lent to the (1+1) EA. This includes linear functions with extreme weights like

BinVal(x) :=

n
∑

i=1

2n−ixi

and, more generally, functions where w(i) >
∑n

j=i+1 w
(j) for all 1 ≤ i ≤ n, where w(i) denotes

the i-th largest weight. It also includes, almost surely, random linear functions with weights
being drawn from some real-valued interval [a, b] with a < b.

Proof. The first two statements have been established in the preceding discussion.
For functions where w(i) >

∑n
j=i+1 w

(j) for all 1 ≤ i ≤ n, all search points with a 1

on the bit of weight w(i) have a higher fitness than all search points where this bit is 0,

30 Evolutionary Computation Volume x, Number x

How Crossover Speeds Up Building-Block Assembly in Genetic Algorithms

provided that all bits with larger weights are being fixed. It follows inductively that all
search points have different fitness values.

For random linear functions consider the function being constructed sequentially
by adding new bits with randomly drawn weights. Assume that after adding i bits,
all 2i bit patterns have different fitness values. This is trivially true for 0 bits. When
adding a new bit i+ 1, a fitness value can only be duplicated with these i+ 1 bits if the
i + 1-st weight is equal to any selection of weights from the first i bits. Since there are
at most 2i selections, which is finite, the i + 1-st weight will almost surely be different
from all of these. The statement then follows by induction.

In a sense, the (2+1) GA is not able to benefit from crossover in the settings from
Theorem 18 since its greedy parent selection suppresses diversity in the population.

So, in order for a GA to benefit from crossover, the population needs to be able
to maintain and select individuals with different building blocks and slightly different
fitness values for long enough, so that crossover has a good chance of combining those
building blocks. The (1+(λ, λ)) EA (Doerr et al., 2013a) achieves this using a cleverly
designed two-stage offspring creation process: mutation first creates diversity and the
best among λ mutants is retained and recombined with its parent λ times. However,
this does not explain why crossover is beneficial in common GA designs.

0 1 2 3 4

·1/n

2

4

6

8
·104

mutation rate

(1+1) EA

(5+1) GA+uniform

(5+1) GA+1-point

(5+1) GA+2-point

(a) ONEMAX

0 1 2 3 4

·1/n

2

4

6

8
·104

mutation rate

(1+1) EA

(5+1) GA+uniform

(5+1) GA+1-point

(5+1) GA+2-point

(b) Random linear functions [1, 2]

Figure 4: Average optimization times over 1000 runs for (1+1) EA and a (5+1) GA with
uniform parent selection and various crossover operators on functions with n = 1000
bits: ONEMAX and random linear functions with weights drawn independently, uni-
formly at random from [1, 2], and anew for each run.

A promising common GA design does not need to be sophisticated – Figure 4
shows that already a simple (5+1) GA with uniform parent selection performs sig-
nificantly better than the (1+1) EA (and hence the greedy (2+1) GA). The benefit of
crossover is smaller than that on ONEMAX, but the main qualitative observations are
the same: the average optimization time is smaller with crossover, and mutation rates
slightly larger than 1/n further improve performance.

One-sided Mann-Whitney U tests on a significance level of 0.001 showed that the
(5+1) GA with uniform crossover was significantly faster than the (1+1) EA on random
linear functions, for mutation rates no less than 0.6/n. Both k-point crossovers gave

Evolutionary Computation Volume x, Number x 31

D. Sudholt

mixed results: they were slower than the (1+1) EA for low mutation rates (0.4 ≤ c ≤ 1.2,
except for c = 0.6, for 1-point crossover and 0.9 ≤ c ≤ 1.1 for 2-point crossover), but
faster for high mutation rates (c = 2.3 and c ≥ 2.6 for 1-point crossover, c = 2.0 and
c ≥ 2.2 for 2-point crossover).

This shows that uniform crossover can speed up building-block assembly for
weighted building blocks – albeit not for all (µ+λ) GAs, and in particular not for the
greedy (2+1) GA. Proving this rigorously for random or arbitrary linear functions re-
mains a challenging open problem, and so is identifying characteristics of (µ+λ) GAs
for which crossover is beneficial in these cases.

7 Conclusions and Future Work

We have demonstrated rigorously and intuitively that crossover can speed up build-
ing block assembly on ONEMAX, with evidence that the same holds for a broad class
of functions. The basic insight is that crossover can capitalize on mutations that have
both beneficial and disruptive effects on building blocks: mutants can be stored in the
population and crossover is able to repair the detrimental effects of mutation in a later
generation. This effect makes every (µ+λ) GA with cut selection and moderate pop-
ulation sizes twice as fast as every mutation-based EA on ONEMAX. In other words,
adding crossover to any such (µ+λ) EA halves the expected optimization time (up to
small-order terms). This applies to uniform crossover and to k-point crossover, for ar-
bitrary values of k.

Furthermore, we have demonstrated how to analyze parent and offspring pop-
ulations as in (µ+λ) EAs and (µ+λ) GAs. As long as both µ and λ are moderate, so
that exploitation is not slowed down, we obtained essentially the same results for ar-
bitrary (µ+λ) GAs as for the simple greedy (2+1) GA analyzed in Sudholt (2012). This
work provides novel techniques for the analysis of (µ+λ)-type algorithms, including
Lemmas 2 and 3, which may prove useful in further studies of EAs.

Another intriguing conclusion following naturally from our analysis is that the
optimal mutation rate for GAs such as the greedy (2+1) GA changes from 1/n to
(1 +

√
5)/2 · 1/n ≈ 1.618/n when using uniform crossover. This is simply because

neutral mutations and hence multi-bit mutations become more useful. Experiments
are in perfect accordance with the theoretical results for ONEMAX. For other functions
like royal roads and random polynomials they indicate that the performance differ-
ences also hold in a much more general sense. We have empirical evidence that this
might also extend to linear functions, and weighted building blocks in general, albeit
this does not apply to the greedy (2+1) GA. The discussion from Section 6.2 has shown
that the population must be able to store individuals with different building blocks for
long enough so that crossover can combine them, even though some individuals might
have inferior fitness values and be subject to replacement.

Our results give novel, intuitive and rigorous answers to a question that has been
discussed controversially for decades.

There are plenty of avenues for future work. We would like to extend the theo-
retical analysis of (µ+λ) GAs to royal road functions and monotone polynomials. Also
investigating weighted building blocks, like in linear functions, is an interesting and
challenging topic for future work.

Our (µ+λ) GAs benefit from crossover and an increased mutation rate because cut
selection removes offspring with inferior fitness. As such, cut selection counteracts
disruptive effects of crossover and an increase of the mutation rate. The situation is
entirely different in generational GAs, where Ochoa et al. (1999) reported that intro-

32 Evolutionary Computation Volume x, Number x

How Crossover Speeds Up Building-Block Assembly in Genetic Algorithms

ducing crossover can decrease the optimal mutation rate. Future work could deal with
complementing these different settings and investigating the balance between selection
pressure for replacement selection and the optimal mutation rate.

Acknowledgments

The author was partially supported by EPSRC grant EP/D052785/1 while being a
member of CERCIA, University of Birmingham, UK. The research leading to these re-
sults has received funding from the European Union Seventh Framework Programme
(FP7/2007-2013) under grant agreement no 618091 (SAGE). The author thanks the
reviewers for their detailed and constructive comments that helped to improve the
manuscript and Nick Barton, Lee Altenberg and Joshua Knowles for insightful dis-
cussions at Dagstuhl seminar 15211 “Theory of Evolutionary Algorithms” as well as
references to early related work.

References

Abramowitz, M. and Stegun, I. A. (1964). Handbook of Mathematical Functions with For-
mulas, Graphs, and Mathematical Tables. Dover, New York, ninth Dover printing, tenth
GPO printing edition.

Arora, S., Rabani, Y., and Vazirani, U. V. (1994). Simulating quadratic dynamical sys-
tems is PSPACE-complete. In Proceedings of the 26th ACM Symposium on the Theory of
Computing (STOC), pages 459–467.

Auger, A. and Doerr, B., editors (2011). Theory of Randomized Search Heuristics – Founda-
tions and Recent Developments. Number 1 in Series on Theoretical Computer Science.
World Scientific.

Badkobeh, G., Lehre, P. K., and Sudholt, D. (2014). Unbiased black-box complexity of
parallel search. In 13th International Conference on Parallel Problem Solving from Nature
(PPSN 2014), volume 8672 of LNCS, pages 892–901. Springer.

Barton, N. H. and Charlesworth, B. (1998). Why sex and recombination? Science,
281(5385):1986–1990.

Bell, G. (1982). The masterpiece of nature the evolution and genetics of sexuality. Univ. of
California Press.

Davis, L. (1991). Handbook of genetic algorithms. Van Nostrand Reinhold.

De Jong, K. A. (2006). Evolutionary Computation – A Unified Approach. MIT press.

De Jong, K. A. and Spears, W. M. (1992). A formal analysis of the role of multi-
point crossover in genetic algorithms. Annals of Mathematics and Artificial Intelligence,
5(1):1–26.

Dietzfelbinger, M., Naudts, B., Van Hoyweghen, C., and Wegener, I. (2003). The analysis
of a recombinative hill-climber on H-IFF. IEEE Transactions on Evolutionary Computa-
tion, 7(5):417–423.

Doerr, B. and Doerr, C. (2015a). Optimal parameter choices through self-adjustment:
Applying the 1/5-th rule in discrete settings. In Proceedings of the 2015 Annual Con-
ference on Genetic and Evolutionary Computation (GECCO ’15), pages 1335–1342. ACM.

Evolutionary Computation Volume x, Number x 33

D. Sudholt

Doerr, B. and Doerr, C. (2015b). A tight runtime analysis of the (1+(λ, λ)) Genetic
Algorithm on OneMax. In Proceedings of the 2015 Annual Conference on Genetic and
Evolutionary Computation (GECCO ’15), pages 1423–1430. ACM.

Doerr, B., Doerr, C., and Ebel, F. (2013a). Lessons from the black-box: fast crossover-
based genetic algorithms. In Proceedings of the Genetic and Evolutionary Computation
Conference (GECCO ’13), pages 781–788. ACM.

Doerr, B., Fouz, M., and Witt, C. (2011). Sharp bounds by probability-generating func-
tions and variable drift. In Proceedings of the 13th Annual Genetic and Evolutionary
Computation Conference (GECCO ’11), pages 2083–2090. ACM Press.

Doerr, B., Happ, E., and Klein, C. (2012a). Crossover can provably be useful in evolu-
tionary computation. Theoretical Computer Science, 425(0):17–33.

Doerr, B., Johannsen, D., and Winzen, C. (2012b). Multiplicative drift analysis. Algo-
rithmica, 64:673–697.

Doerr, B. and Künnemann, M. (2013). Royal road functions and the (1+λ) evolutionary
algorithm: Almost no speed-up from larger offspring populations. In IEEE Congress
on Evolutionary Computation (CEC 2013), pages 424–431.

Doerr, B., Sudholt, D., and Witt, C. (2013b). When do evolutionary algorithms optimize
separable functions in parallel? In Foundations of Genetic Algorithms (FOGA 2013),
pages 51–64. ACM.

Fischer, S. and Wegener, I. (2005). The one-dimensional Ising model: Mutation versus
recombination. Theoretical Computer Science, 344(2–3):208–225.

Forrest, S. and Mitchell, M. (1993). Relative building block fitness and the building
block hypotheses. In Proc. of FOGA 2, pages 198–226. Morgan Kaufmann.

Jansen, T. (2013). Analyzing Evolutionary Algorithms – The Computer Science Perspective.
Springer.

Jansen, T., De Jong, K. A., and Wegener, I. (2005). On the choice of the offspring popu-
lation size in evolutionary algorithms. Evolutionary Computation, 13:413–440.

Jansen, T. and Wegener, I. (2002). On the analysis of evolutionary algorithms—a proof
that crossover really can help. Algorithmica, 34(1):47–66.

Jansen, T. and Wegener, I. (2005). Real royal road functions—where crossover provably
is essential. Discrete Applied Mathematics, 149:111–125.

Jansen, T. and Zarges, C. (2011). Analysis of evolutionary algorithms: from computa-
tional complexity analysis to algorithm engineering. In Proceedings of the 11th Work-
shop on Foundations of Genetic Algorithms (FOGA ’11), pages 1–14. ACM.

Kötzing, T., Sudholt, D., and Theile, M. (2011). How crossover helps in pseudo-Boolean
optimization. In Proceedings of the 13th annual conference on Genetic and evolutionary
computation (GECCO ’11), pages 989–996. ACM Press.

Lässig, J. (2009). Personal communication.

34 Evolutionary Computation Volume x, Number x

How Crossover Speeds Up Building-Block Assembly in Genetic Algorithms

Lässig, J. and Sudholt, D. (2014). General upper bounds on the running time of parallel
evolutionary algorithms. Evolutionary Computation, 22(3):405–437.

Lehre, P. and Yao, X. (2011). Crossover can be constructive when computing unique
input–output sequences. Soft Computing, 15(9):1675–1687.

Lehre, P. K. and Witt, C. (2012). Black-box search by unbiased variation. Algorithmica,
64(4):623–642.

Livnat, A., Papadimitriou, C., Dushoff, J., and Feldman, M. W. (2008). A mixability
theory for the role of sex in evolution. Proceedings of the National Academy of Sciences,
105(50):19803–19808.

Livnat, A., Papadimitriou, C., Pippenger, N., and Feldman, M. W. (2010). Sex, mixabil-
ity, and modularity. Proceedings of the National Academy of Sciences, 107(4):1452–1457.

Mitchell, M., Forrest, S., and Holland, J. H. (1992). The royal road function for genetic
algorithms: fitness landscapes and GA performance. In Proc. of the 1st European Con-
ference on Artificial Life, pages 245–254. MIT Press.

Mitchell, M., Holland, J. H., and Forrest, S. (1994). When will a genetic algorithm out-
perform hill climbing? In Advances in Neural Information Processing Systems, pages
51–58. Morgan Kaufmann.

Mitzenmacher, M. and Upfal, E. (2005). Probability and Computing. Cambridge Univer-
sity Press.

Muller, H. J. (1932). Some genetic aspects of sex. The American Naturalist, 66(703):pp.
118–138.

Neumann, F., Oliveto, P. S., and Witt, C. (2009). Theoretical analysis of fitness-
proportional selection: landscapes and efficiency. In Genetic and Evolutionary Com-
putation Conference (GECCO’09), pages 835–842. ACM Press.

Neumann, F. and Theile, M. (2010). How crossover speeds up evolutionary algorithms
for the multi-criteria all-pairs-shortest-path problem. In 11th International Conference
on Parallel Problem Solving from Nature (PPSN 2010), pages 667–676. Springer.

Neumann, F. and Witt, C. (2010). Bioinspired Computation in Combinatorial Optimization
– Algorithms and Their Computational Complexity. Springer.

Ochoa, G., Harvey, I., and Buxton, H. (1999). Error thresholds and their relation to
optimal mutation rates. In Floreano, D., Nicoud, J.-D., and Mondada, F., editors,
Advances in Artificial Life, volume 1674 of Lecture Notes in Computer Science, pages
54–63. Springer.

Oliveto, P. S. and Witt, C. (2013). Improved runtime analysis of the simple genetic
algorithm. In Proceedings of the Genetic and Evolutionary Computation Conference
(GECCO ’13), pages 1621–1628. ACM.

Oliveto, P. S. and Witt, C. (2014). On the runtime analysis of the simple genetic algo-
rithm. Theoretical Computer Science, 545:2–19.

Evolutionary Computation Volume x, Number x 35

D. Sudholt

Paixão, T., Badkobeh, G., Barton, N., Corus, D., Dang, D.-C., Friedrich, T., Lehre, P. K.,
Sudholt, D., Sutton, A. M., and Trubenová, B. (2015). Toward a unifying framework
for evolutionary processes. Journal of Theoretical Biology, 383:28–43.

Paixao, T., Pérez Heredia, J., Sudholt, D., and Trubenova, B. (2015). First steps towards
a runtime comparison of natural and artificial evolution. In Proceedings of the 2015
Annual Conference on Genetic and Evolutionary Computation (GECCO ’15), pages 1455–
1462. ACM.

Prügel-Bennett, A. (2010). Benefits of a population: Five mechanisms that advan-
tage population-based algorithms. IEEE Transactions on Evolutionary Computation,
14(4):500–517.

Prügel-Bennett, A. and Rogers, A. (2001). Modelling genetic algorithm dynamics. In
Kallel, L., Naudts, B., and Rogers, A., editors, Theoretical Aspects of Evolutionary Com-
puting, Natural Computing Series, pages 59–85. Springer Berlin Heidelberg.

Qian, C., Yu, Y., and Zhou, Z.-H. (2013). An analysis on recombination in multi-
objective evolutionary optimization. Artificial Intelligence, 204:99–119.

Rabani, Y., Rabinovich, Y., and Sinclair, A. (1998). A computational view of population
genetics. Random Structures and Algorithms, 12(4):313–334.

Rowe, J. E. (2015). Genetic algorithms. In Kacprzyk, J. and Pedrycz, W., editors, Hand-
book of Computational Intelligence, pages 825–844. Springer.

Rowe, J. E., Vose, M. D., and Wright, A. H. (2002). Group properties of crossover and
mutation. Evolutionary Computation, 10(2):151–184.

Sastry, K., Goldberg, D., and Kendall, G. (2005). Genetic algorithms. In Burke, E. K.
and Kendall, G., editors, Search Methodologies, pages 97–125. Springer US.

Shapiro, J. L. (2001). Statistical mechanics theory of genetic algorithms. In Kallel, L.,
Naudts, B., and Rogers, A., editors, Theoretical Aspects of Evolutionary Computing, Nat-
ural Computing Series, pages 87–108. Springer Berlin Heidelberg.

Storch, T. and Wegener, I. (2004). Real royal road functions for constant population size.
Theoretical Computer Science, 320:123–134.

Sudholt, D. (2005). Crossover is provably essential for the Ising model on trees. In
Proceedings of the Genetic and Evolutionary Computation Conference (GECCO ’05), pages
1161–1167. ACM Press.

Sudholt, D. (2009). The impact of parametrization in memetic evolutionary algorithms.
Theoretical Computer Science, 410(26):2511–2528.

Sudholt, D. (2012). Crossover speeds up building-block assembly. In Proceedings of the
Genetic and Evolutionary Computation Conference (GECCO 2012), pages 689–696. ACM
Press.

Sudholt, D. (2013). A new method for lower bounds on the running time of evolution-
ary algorithms. IEEE Transactions on Evolutionary Computation, 17(3):418–435.

Sudholt, D. and Thyssen, C. (2012). Running time analysis of ant colony optimization
for shortest path problems. Journal of Discrete Algorithms, 10:165–180.

36 Evolutionary Computation Volume x, Number x

How Crossover Speeds Up Building-Block Assembly in Genetic Algorithms

Vose, M. D. (1999). The Simple Genetic Algorithm: Foundations and Theory. MIT press.

Watson, R. A. and Jansen, T. (2007). A building-block royal road where crossover is
provably essential. In Proceedings of the Genetic and Evolutionary Computation Confer-
ence (GECCO ’07), pages 1452–1459. ACM.

Wegener, I. and Witt, C. (2005). On the optimization of monotone polynomials by sim-
ple randomized search heuristics. Combinatorics, Probability and Computing, 14:225–
247.

Weissman, D. B. and Barton, N. H. (2012). Limits to the rate of adaptive substitution in
sexual populations. PLoS Genetics, 8(6):e1002740.

Weissman, D. B., Feldman, M. W., and Fisher, D. S. (2010). The rate of fitness-valley
crossing in sexual populations. Genetics, 186(4):1389–1410.

Witt, C. (2006). Runtime analysis of the (µ+1) EA on simple pseudo-Boolean functions.
Evolutionary Computation, 14(1):65–86.

Witt, C. (2013). Tight bounds on the optimization time of a randomized search heuristic
on linear functions. Combinatorics, Probability and Computing, 22:294–318.

A Appendix

The appendix contains two technical remarks on Theorem 4 and proofs of lemmas omit-
ted from the main part.

Remark 1 (On conditions for µ and λ). The second statement of Theorem 4 requires
µ, λ = o((log n)/(log log n)) in order to establish the upper bound in (3). This condition
seems necessary as for larger values of µ and λ the inertia of a large population slows
down exploitation, at least in the absence of crossover. Note not all EAs covered by
Theorem 4 (after removing crossover) optimize ONEMAX in time O(n log n).

Witt (2006) showed that a (µ+1) EA with uniform parent selection has an ex-
pected optimization time of Ω(µn + n log n) on ONEMAX. For µ = ω(log n), this
lower bound is ω(n log n). Jansen et al. (2005) showed that a (1+λ) EA needs time
ω(n log n) on ONEMAX if λ = ω((log n)(log log n)/(log log log n)). Badkobeh et al.
(2014) showed that every black-box algorithm creating λ offspring, using only stan-
dard bit mutation or other unary unbiased operators, needs time ω(n log n) on ONE-
MAX for λ = ω((log n)(log log n)). This indicates that the threshold in the condition
µ, λ = o((log n)/(log log n)) is tight up to polynomials of log log n.

Remark 2 (On conditions for pc). Theorem 4 assumes 0 < pc < 1 constant, which reflects
the most common choices in applications of EAs. The theorem can be extended towards
smaller or larger values as follows. If pc = o(1) the upper bound on the time spent in
Cases i.3 increases as it contains a factor of 1/pc. The other cases remain unaffected,
and if ((µ+ λ) logµ)/pc = o(log n) we still get the upper bound from (3).

For high crossover probabilities, that is, pc = 1 − o(1) or pc = 1, only Cases i.1
need to be revisited. The time in those cases was derived from Lemma 2, which can
be adapted as follows: the probability for increasing the number of fit individuals is at
least

pc · (1− p)n · (number of fit individuals in population)2

2µ2

Evolutionary Computation Volume x, Number x 37

D. Sudholt

as it suffices to select two fit individuals and generate an average or above-average
number of 1-bits in the offspring, which happens with probability at least 1/2. The
time bound from Lemma 2 then becomes

O(µ2 + λ logµ)

(1− p)n

and the time bound in Theorem 4 becomes

ln(n2p+ n) + 1 + p

p(1− p)n−1 · (1 + np)
+

O(n(µ2 + λ logµ))

(1− p)n
.

For p = c/n, c > 0 constant, and µ, λ = o(
√
log n), this also establishes the upper bound

from (3).

Proof of Lemma 12. If the current population has a best individual of fitness j < i, by
Lemma 2 after an expected number of O((µ + λ) logµ) = O(1) function evaluations
all individuals will have fitness at least j. Then one offspring creation results in an
improvement if no crossover is being used, and mutation flips exactly one out of n− j
0-bits. The probability for this event is

(1− pc) · (n− j)p(1− p)n−1 ≥ γ · n− j

n

for some constant γ > 0, due to our conditions for p and pc.
Using Lemma 3, the expected time until a fitness level i ≥ n − n/ log n is reached

for the first time is therefore at most

n−(n/ logn)−1
∑

j=0

(

O(1) + λ+
n

γ(n− j)

)

= O(n) +
n

γ
·

n
∑

j=(n/ logn)+1

1

j

≤ O(n) +
n

γ
·
∫ n

j=n/ logn

1

j
dj

= O(n) +
n

γ
· (lnn− ln(n/ log n))

= O(n) +
n

γ
· ln(log n)

= o(n log n).

Proof of Lemma 14. In order to create a different search point on the same fitness level,
there must be some integer ℓ ∈ {1, . . . ,min{i, n − i}} such that ℓ 1-bits flip to 0 and ℓ
0-bits flip to 1. This is a necessary and sufficient condition, so

p(i) =

min{i,n−i}
∑

ℓ=1

(

i

ℓ

)(

n− i

ℓ

)

p2ℓ(1− p)n−2ℓ. (12)

The case ℓ = 1 yields the claimed lower bound. For the upper bound we bound the
above term, using

(

n
k

)

≤ nk/(k!) to bound both binomial coefficients:

p(i) ≤ (1− p)n
min{i,n−i}
∑

ℓ=1

iℓ(n− i)ℓ

ℓ!ℓ!
· p2ℓ(1− p)−2ℓ

≤ (1− p)n
∞
∑

ℓ=1

(

i(n− i)p2

(1− p)2

)ℓ

= (1− p)n
i(n−i)p2

(1−p)2

1− i(n−i)p2

(1−p)2

38 Evolutionary Computation Volume x, Number x

How Crossover Speeds Up Building-Block Assembly in Genetic Algorithms

where in the last step we used i(n−i)p2

(1−p)2 ≤ 1/2 < 1, implying that the series converges.

Applying 1
1−x = 1 + x

1−x ≤ 1 + 2x for x ≤ 1/2 to x := i(n−i)p2

(1−p)2 ≤ 1/2 in the above

formula yields

(1− p)n · i(n− i)p2

(1− p)2
·
(

1 +
2i(n− i)p2

(1− p)2

)

and hence the claimed upper bound.
The second statement follows from the upper bound and the fact that the offspring

has Hamming distance 2 in the case ℓ = 1, i. e., with probability i(n−i)p2(1−p)n−2.

Proof of Lemma 15. A search point with i ones is created from a parent with i − d < i
ones if there is a value ℓ such that d+ ℓ 0-bits flip to 1 and ℓ 1-bits flip to 0. The sought
probability therefore is

max
d≥1

(∞
∑

ℓ=0

(

n− i+ d

d+ ℓ

)(

i− d

ℓ

)

pd+2ℓ(1− p)n−d−2ℓ

)

≤ max
d≥1

(∞
∑

ℓ=0

(n− i+ d)d+ℓ

(d+ ℓ)!
· (i− d)ℓ

ℓ!
· pd+2ℓ

)

= max
d≥1

(∞
∑

ℓ=0

(p(n− i+ d))d

(d+ ℓ)!
· (p

2 · (i− d)(n− i+ d))ℓ

ℓ!

)

≤ max
d≥1

(

(p(n− i+ d))d

d!

)

·
∞
∑

ℓ=0

((pn)2/4)ℓ

ℓ!

= max
d≥1

(

(p(n− i+ d))d

d!

)

· e(pn)2/4.

Using 1/(d!) ≤ (e/d)d, we bound the max term as

max
d≥1

(

(p(n− i+ d))d

d!

)

≤ max
d≥1

(

(ep(n− i+ d))

d

)d

≤ max
d≥1

(ep(n− i+ 1))
d
.

Now, if ep(n − i + 1) ≤ 1, the maximum is attained for d = 1, in which case we get a

probability bound of ep(n− i+ 1) · e(pn)2/4 as claimed. If ep(n− i+ 1) > 1 we trivially
bound the sought probability by

1 < ep(n− i+ 1) ≤ ep(n− i+ 1) · e(pn)2/4.

Evolutionary Computation Volume x, Number x 39

