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1. Introduction and main results

The goal of this paper is to give broad sufficient conditions for the differentiability
of solutions to stationary Fokker–Planck–Kolmogorov equations

∂xi
∂xj

(aijα µα)− ∂xi
(biαµα) = 0

with respect to a parameter. In particular, we obtain sufficient conditions for the dif-
ferentiability of invariant measures of diffusion processes with respect to a parameter.
Our conditions are expressed in terms of Lyapunov functions and apply to unbounded
coefficients. The results of [18] and [23], where the problem was first studied, are gen-
eralized and reinforced in the case of one-fold differentiability: substantially broader
assumptions about the coefficients are considered, the main novelty is that rapidly
growing coefficients are allowed. Dependence of solutions on parameters, in particu-
lar, differentiability and continuity with respect to parameters, obviously belongs to
questions of general interest, which are important both for the theory and diverse
applications such as control theory (see, e.g., [1] and [17]). However, the case of equa-
tions on the whole space has not been studied in sufficient generality so far (except
for the already cited pioneering papers [18] and [23], where the case of bounded coef-
ficients was examined). The results of this paper are new even in the one-dimensional
case. Our conditions become especially simple in the case where aijα and ∂αa

ij
α are uni-

formly bounded and ∂xi
aijα , ∂α∂xi

aijα , b
i
α, ∂αb

i
α have at most polynomial growth: just

the relation lim
|x|→∞

supα〈bα(x), x〉 = −∞ for the drift coefficient bα is needed. Some

auxiliary results obtained below on solvability of non-homogeneous Fokker–Planck–
Kolmogorov equations and related a priori estimates can be useful in other problems
such as discrete approximations.

Let us explain our framework. Suppose first that we are given a single second order
elliptic operator

Lϕ = aij∂xi
∂xj

ϕ+ bi∂xi
ϕ,

1



2

where the usual summation with respect to repeated indices is meant, aij and bi are
real Borel functions on R

d, and the matrix A(x) = (aij(x))i,j≤d is positive-definite
for each x. We say that a bounded Borel measure µ satisfies the stationary Fokker–
Planck–Kolmogorov equation

∂xi
∂xj

(aijµ)− ∂xi
(biµ) = 0,

or, in a shorter form,

L∗µ = 0 (1.1)

on a domain Ω in R
d (in our main results Ω = R

d) if the coefficients aij and bi are
locally integrable in Ω with respect to the measure |µ| (which holds automatically for
locally bounded coefficients) and we have the integral identity

∫
Lϕdµ = 0 ∀ϕ ∈ C∞

0 (Ω).

For example, this equation holds for stationary probabilities of the diffusion process
governed by the stochastic equation

dξt =
√
2A(ξt)dwt + b(ξt)dt.

Suppose now that for every α ∈ [0, 1] we are given a second order elliptic operator

Lαϕ = aijα ∂xi
∂xj

ϕ+ biα∂xi
ϕ

with coefficients satisfying certain conditions specified below. Suppose also that for
each α there is a unique probability measure µα satisfying the stationary Fokker–
Planck–Kolmogorov equation

L∗
αµα = 0 (1.2)

in the sense explained above. The goal of this paper is to provide broad sufficient
conditions for the continuity and differentiability of µα and its density ̺α with respect
to the parameter α. In particular, if there is a diffusion ξα,t with generator Lα and
a stationary distribution µα, our results provide broad conditions for the continuity
and differentiability of the density of µα with respect to the parameter α.

Recall that the Sobolev classW p,1(U) on a domain U in R
d consists of all functions

f ∈ Lp(U) having generalized derivatives ∂xi
f ∈ Lp(U) and is equipped with the

Sobolev norm

‖f‖p,1 = ‖f‖p + ‖∂x1
f‖p + · · ·+ ‖∂xd

f‖p,
where ‖ · ‖p denotes the Lp-norm. The class Ck

b (Ω) consists of functions on Ω with
k bounded continuous derivatives and C∞

b (Ω) is the intersection of these classes.
It is known (see [4], [6]) that if for every ball U in Ω there exists a number p =

p(U) > d such that aij |U ∈ W p,1(U), bi|U ∈ Lp(U) and infU detA > 0, then any
solution µ to equation (1.1) has a continuous density ̺ whose restriction to every
ball U belongs to the Sobolev class W p,1(U) with the corresponding p = p(U) > d.
Moreover, if µ ≥ 0 is not identically zero and Ω is connected, then ̺ > 0.

In this case the equation L∗µ = 0 can be written as the equation

∂xi
∂xj

(aij̺)− ∂xi
(bi̺) = 0

for ̺ (understood in the sense of distributions) and further transformed into the
divergence form equation

div (A∇̺− (b− divA)̺) = 0, divA = (∂xj
a1j , . . . , ∂xj

adj).
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There is a vast literature devoted to the theory of such equations, see, e.g., [16], [21],
[22], and references in [6].

A sufficient condition for the existence of a probability solution to (1.1) on the whole
space under the local assumptions mentioned above is the existence of a Lyapunov
function V ∈ C2(Rd) such that V (x) → +∞ and LV (x) ≤ −κ < 0 outside of a
compact set, see [10] or a somewhat weaker result in [7].

A sufficient condition for the uniqueness of a probability solution to (1.1) under
the same local assumptions is the existence of a Lyapunov function V ∈ C2(Rd) such
that V (x) → +∞ and LV (x) ≤ qV (x) for some number q ≥ 0, see [6], [9], and [12].
In particular, the existence condition above ensures also the uniqueness.

In case of coefficients depending on a parameter α ∈ [0, 1], we need uniformity in
α of the above conditions. Namely, we assume throughout that we deal with real
coefficients aijα and biα on R

d, Borel measurable in (x, α) and satisfying the following
conditions:

the matrices Aα(x) = (aijα (x))i,j≤d are symmetric and for every ball U ⊂ R
d we

have

sup
α

‖aijα ‖Wp,1(U) ≤M1(U) <∞, sup
α

‖biα‖Lp(U) ≤M2(U) <∞, (1.3)

where p = p(U) > d, and for all x we have

Aα(x) ≥ c0I, c0 > 0, (1.4)

where I is the unit operator and c0 is a constant (independent of U).
Unlike the case of a boundary value problem on a bounded domain with a nice

boundary, where the differentiability of solutions with respect to a parameter un-
der our basic assumptions follows relatively easily from suitable a priori estimates
and compactness of embeddings (see, e.g., [14, Chapter X, Section 5, Theorem 15,
Chapter III, Section 6]), the case of the whole space is more subtle and much less
studied. Already in the one-dimensional case with Aα = 1 (where a probability so-
lution is unique) and smooth bα(x) the continuity of the density in α can fail (see
Example 1.8).

The lack of compactness will be compensated by suitable Lyapunov functions. The
concept of uniform tightness of families of measures will be useful.

Recall that a family M of probability measures is uniformly tight if, for each r > 0,
there is a compact set K such that µ(Rd\K) ≤ r for all µ ∈ M. A necessary and
sufficient condition for the uniform tightness is the existence of a locally bounded
Borel function W ≥ 0 such that lim

|x|→∞
W (x) = +∞ and

sup
µ∈M

∫

Rd

W dµ <∞.

The case of continuity is much easier and here we have the following result (in
which (1.4) is replaced by a local bound).

Proposition 1.1. Suppose that (1.3) holds, infα,x∈U detAα(x) > 0 for every ball U
and that the family of measures µα (that are unique probability solutions to the corre-

sponding equations (1.2)) is uniformly tight. Assume also that, for every ball U , the

restrictions of aijα and biα to U are continuous in α in the space L1(U). Then, one can

choose densities ̺α of µα such that the function ̺α(x) will be jointly continuous. In
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addition, the mapping α 7→ ̺α with values in L1(Rd) is continuous, i.e., the mapping

α 7→ µα is continuous in the variation norm.

A sufficient condition for the uniform tightness of the measures µα is the existence
of a single Lyapunov function V such that V (x) → +∞ and supα LαV (x) = −∞
as |x| → ∞. Certainly, this condition ensures also the existence and uniqueness of
solutions. In order to have the local continuity in L1 it is enough to have the usual
continuity of the coefficients in α along with their uniform integrability on balls.

The case of differentiability is much harder and requires some auxiliary results
presented in the next section.

Recall that a mapping α 7→ fα from (0, 1) to Lp(U) is differentiable if there is a
mapping α 7→ gα from (0, 1) to Lp(U) such that (fα+s−fα)/s→ gα in Lp(U) as s→ 0
for each fixed α ∈ (0, 1). If α 7→ gα is continuous, then fα is said to be continuously
differentiable in Lp.

Suppose that for every ball U there is a number p0 = p0(U) > d such that the
mappings

α 7→ aijα |U and α 7→ biα|U are continuously differentiable in Lp0(U). (1.5)

Note that this condition is fulfilled if, in addition to (1.3), the functions aijα , ∂xk
aijα

and biα are differentiable in α and their derivatives in α are continuous in α and locally
bounded in both variables.

Set
Ai

α := (ai1α , . . . , a
id
α ), divAα := (divA1

α, . . . , divA
d
α),

Bα := ∂αbα = (∂αb
1
α, . . . , ∂αb

d
α),

Sα := ∂αAα = (∂αa
ij
α )i,j≤d, Ri

α = ∂α∂xj
aijα , Rα := (R1

α, . . . , R
d
α) = divSα.

We assume that
sup
α,x

‖Sα(x)‖ ≤ λ0 <∞. (1.6)

This condition is obviously fulfilled if Aα(x) does not depend on α or is uniformly
Lipschitzian in α.

Condition (1.6) implies that in (1.5) actually a stronger condition on the diffusion
coefficient is fulfilled: the functions α 7→ aijα |U are continuously differentiable in every

Lp1(U) with p1 <∞. In particular, we can take p1 = p1(U) >
dp

p− d
, where p = p(U)

is the number from (1.3).
Our main theorem is this.

Theorem 1.2. Let (1.3), (1.4), (1.5), and (1.6) hold. Suppose that V ∈ C2(Rd) and
W is a locally integrable function such that

lim
|x|→∞

V (x) = +∞, lim
|x|→∞

W (x) = +∞, sup
α
LαV (x) ≤ −W (x) if |x| ≥ R (1.7)

for some R > 0. Assume also that for some numbers CV > 0,m ≥ 1 we have

sup
α

(
|A−1/2

α (bα − divAα)|2 + |A−1/2
α (∂αbα − ∂αdivAα)|2 + |LαV |

)

≤ CV + CV V
mW, (1.8)

Finally, assume that for some ε < 1/(4m+ 1) there is a ball outside of which

sup
α

〈Aα∇V,∇V 〉 ≤ εV W. (1.9)
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Then ∂α̺α exists and for each α ∈ (0, 1) satisfies the equation

L∗
α∂α̺α = div (Bα̺α −Rα̺α − Sα∇̺α). (1.10)

In addition, the mapping α 7→ ̺α with values in L1(Rd) is differentiable.

Finally, if the diffusion matrix A does not depend on α, then (1.8) can be replaced

by the simpler condition supα(|A−1/2∂αbα|2 + |LαV |) ≤ CV + CV V
mW .

Thus, the theorem employs seven conditions (1.3)–(1.9) (or four global conditions
(1.6)–(1.9) once we fix our local assumptions), but if Aα = I, |bα| and |∂αbα| have
polynomial bounds, then, by taking V (x) = |x|2, it suffices to have only one condition
that lim

|x|→∞
supα〈bα(x), x〉 = −∞.

Let us briefly comment on the hypotheses of this theorem.

Remark 1.3. (i) As explained above, condition (1.7) ensures the existence and
uniqueness of probability solutions to (1.2) for each α. It also ensures the uniform
boundedness of the integrals of W with respect to the measures µα; moreover, in
Lemma 2.2 we shall see that for each k < 4m+1 the integrals of V kW against µα are
uniformly bounded. It is worth noting that, as shown in [11], the existence of a certain

Lyapunov function of class W d,2
loc (R

d) is necessary for the existence of a probability
solution µ to (1.1) such that |aij(x)|/(1 + |x|2), |bi(x)|/(1 + |x|) are µ-integrable.

(ii) Note also that if A is constant (independent of α) and nondegenerate, then
(1.4) and (1.6) are fulfilled (along with the first condition in (1.3)) and Rα = Sα = 0.

(iii) If Aα is Lipschitzian in α, then (1.8) implicitly yields that bα is locally bounded
outside of some ball, since, on every bounded set where supα LαV ≤ −W , the right-
hand side of (1.8) is dominated by C+C supα |bα|, while the left-hand side dominates
a multiple of supα |bα|2. However, the last assertion of the theorem allows locally
unbounded drifts in the case of the diffusion matrix independent of α.

(iv) It follows from (1.4) that (1.8) is ensured by the estimate

sup
α

(
|bα − divAα|2 + |∂αbα − ∂αdivAα|2 + |LαV |

)
≤ CV + CV V

mW.

However, for growing diffusion coefficients the operators A
−1/2
α in (1.8) can help.

Certainly, for uniformly bounded Aα both estimates are equivalent.

Let us briefly explain the idea of our proof. Given a sequence hk → 0, we consider
the differences δk̺ = (̺α−̺α−hk

)/hk and observe that they satisfy non-homogeneous
equations

L∗
αδk̺ = divFk

with certain vector fields Fk. It would be nice to obtain some uniform bounds on
these solutions and their appropriate convergence. It turns out that our rather general
assumptions about the coefficients do not allow to justify this procedure directly (at
least, we have not managed to do this), which leads to an additional technical step at
which the above plan is realized for less general coefficients. However, an appropriate
approximation brings our proof to the end. This plan requires a preliminary study
of the above non-homogeneous equation, which has already been investigated in [5],
however, here we obtain new existence results for this equation along with certain
a priori estimates that can be useful for other purposes.
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Immediate examples are cases with uniformly elliptic diffusion matrices and polyno-
mial or exponential bounds on the drift coefficients possessing a sufficient dissipativity.
In these examples, rather technical conditions (1.8) and (1.9) are easily verified.

Corollary 1.4. Suppose that Aα, A
−1
α and ∂αAα are uniformly bounded, (1.5) holds

and that for all i, j, l we have

|∂xl
aijα (x)|+ |∂α∂xl

aijα (x)|+ |biα(x)|+ |∂αbiα(x)| ≤ C + C|x|k ∀x, α
for some constants C and k. Assume also that

lim
|x|→∞

sup
α

〈bα(x), x〉 = −∞.

Then ̺α(x) is differentiable in α and ∂α̺α(x) satisfies the equation indicated in the

theorem.

Proof. Let us take V (x) = |x|2 and W (x) = − supα〈x, bα(x)〉. Then
LαV (x) = 2traceAα(x) + 2〈x, bα(x)〉 ≤ −W (x)

outside of some ball. Clearly, for each ε > 0 outside of some ball we also have

〈Aα(x)∇V (x),∇V (x)〉 = 4〈Aα(x)x, x〉 ≤ ε|x|2W (x).

In addition, there is a number C1 such that

|LαV (x)| ≤ C1 + C1|x|2k+1.

Therefore, all hypotheses of the theorem are satisfied (with m = k + 1/2). �

Corollary 1.5. Suppose that the operator norms of Aα, A
−1
α and ∂αAα are uniformly

bounded, condition (1.5) holds and that for all i, j, l we have

|∂xl
aijα (x)|+ |∂α∂xl

aijα (x)|+ |biα(x)|+ |∂αbiα(x)| ≤ C exp(q|x|β) ∀x, α
for some positive numbers C, q, and β. Assume also that there is a number

γ > (9 sup
α,x

‖Aα(x)‖+ 1/4)qβ

such that outside of some ball we have

sup
α

〈bα(x), x〉 ≤ −γ|x|β .

Then ̺α(x) is differentiable in α and ∂α̺α(x) satisfies the equation indicated in the

theorem.

Proof. Let us take V (x) = exp(q|x|2s), s = β/2, c = supα,x ‖Aα(x)‖. We have

V (x) = f(V0(x)), where V0(x) = |x|2, f(u) = exp(qus). Hence

f ′(u) = qsus−1f(u), f ′′(u) = qs(s− 1)us−2f(u) + q2s2u2s−2f(u),

which gives the equality

LαV (x) = qs〈x, x〉s−1V (x)LαV0(x)

+ 4
(
qs(s− 1)〈x, x〉s−2V (x) + q2s2〈x, x〉2s−2V (x)

)
〈Aα(x)x, x〉

= qs〈x, x〉s−1V (x)
(
LαV0(x) + 4(s− 1)〈Aα(x)x/|x|, x/|x|〉+ qs〈x, x〉s

)
.
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Therefore, once qs < 2γ, the right-hand side is dominated outside of some ball by the
function

W (x) := −κ〈x, x〉2s−1V (x) = −κ〈x, x〉β−1V (x), where κ = qs(2γ − qs).

On the other hand, for each δ > 0 there is Cδ > 0 such that

|LαV (x)| ≤ Cδ + CδV
2+δ(x),

since |LαV0(x)| ≤ 2traceAα(x) + 2C|x|V (x). Finally,

|A1/2
α ∇V (x)|2 ≤ 4q2s2|x|2β−2V 2(x) ≤ εV (x)W (x)

outside of a sufficiently large ball depending on a given ε < (4m+1)−1, wherem = 2+δ
and δ > 0 is small enough so that 4cqs < ε(2γ − qs); such a choice is possible, since
4cqs < (2γ − qs)/9 due to the estimate γ > (9c+ 1/4)qβ. �

Example 1.6. Let A = I, b(x) = −x + hα(x), where supα,x |hα(x)| < ∞, hα(x)

is continuously differentiable in α, and |∇hα(x)| ≤ C exp(q|x|2), q < 1/20. Then
probability solutions µα to the corresponding equations (1.2) exist, are unique and
have densities ̺α differentiable in α.

Example 1.7. (The case considered in [18] and [23].) Let the coefficients aijα (x) and
biα(x) be of class C1

b in both variables, let A−1
α (x) be uniformly bounded, and let

supα〈bα(x), x〉 → −∞ as |x| → ∞. Then ̺α(x) is continuously differentiable in both
variables.

Note that in applications of these results to stationary distributions of diffusions
governed by stochastic equations dξα,t = σα(ξα,t)dwt+bα(ξα,t)dt the hypotheses must
be checked for the matrices Aα = σασ

∗
α/2.

Let us consider examples showing that certain additional assumptions, besides
smoothness of the coefficients, are needed to guarantee even the continuity of densities
with respect to the parameter.

Example 1.8. One can find a bounded function bα(x), (x, α) ∈ R× R, of class C∞

in both variables such that the integral

Jα =

∫ +∞

−∞

exp

∫ x

0

bα(y) dy dx

exists, but is not continuous at α = 0. It is not difficult to give explicit examples of
such functions; it suffices to take a positive integrable smooth function g such that
g′/g is bounded (say, (1 + x2)−1) and set g(α, x) = g(x) + αg(αx); in this case the
integral in x is not continuous in α at the origin. Then the probability density

̺α(x) = J−1
α exp

∫ x

0

bα(y) dy, bα(x) = ∂xg(α, x)/g(α, x),

satisfies the equation ̺′′α − (bα̺α)
′ = 0, but ̺α(x) is discontinuous in α at α = 0 for

all x. A bit more involved example (see the next example) provides bounded bα(x)
that is Lipschitzian in α (in the example above ∂αbα(x) is not uniformly bounded). It
is also worth noting that if we consider our equation with a parameter as an equation
with an extra variable (or pass to a system of equations), then we obtain a degenerate
equation.
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Example 1.9. Let us give an explicit example (suggested by I.S. Yaroslavtsev) of a
uniformly bounded Lipschitzian function bα(x) (in particular, with bounded ∂αbα(x))
such that the probability solution ̺α(x) to the corresponding equation L∗

α(̺αdx) = 0
is not continuous in α.

Set bα(x) = −(x+ 1)/(|x|+ 1) + α if x < 0, α ∈ [0, 1) and define bα(x) for x ≥ 0,
α ∈ [0, 1) as follows. Let b0(x) = −(x + 1)−1/2. Set ϕ1(x) = 2(x + 1)−1/2 and
ϕ2(x) = 2ϕ1(x).

On the domain α ≤ ϕ1(x), that is, 0 ≤ x ≤ 4α−2 − 1, we set

bα(x) = −(x+ 1)−1/2 + α.

On the curve (x, ϕ1(x)) our function equals (x+ 1)−1/2. Let us observe that

∫ 4α−2−1

0

exp

∫ x

0

bα(y) dy dx =

∫ 4α−2−1

0

exp
(
αx− 2(x+ 1)1/2

)
dx

≥ e−4/α

∫ 4α−2−1

0

eαx dx =
1

α
(e−α − e−4/α),

which tends to +∞ as α→ 0. This yields that, independently of how we define b on
the remaining domain, the integral Jα introduced in the previous example tends to
+∞ as α → 0. Therefore, the density ̺α defined by the expression in that example
tends to zero as α→ 0, which ensures the desirable discontinuity at α = 0.

Finally, on the domain ϕ1(x) < α < ϕ2(x) we set

bα(x) = −(x+ 1)−1/2 − (α− ϕ2(x))

and on the domain α ≥ ϕ2(x) we set bα(x) = −(x+1)−1/2. It is clear that |bα(x)| ≤ 2,
b is Lipschitzian separately in x and in α, hence is Lipschitzian in both variables, and
|∂αbα(x)| ≤ 1, more precisely, in the interiors of the domains bounded by the two
curves defined above ∂αbα(x) is 1, −1 and 0, respectively (and is 1 for x < 0). For
α < 0 we set bα = b|α|. The corresponding solution ̺α(x) is discontinuous at α = 0,
as explained above. This property can be retained by smoothing b and making it
differentiable in α everywhere with uniformly bounded partial derivatives ∂αbα(x)
and ∂xbα(x).

It is instructive to see which conditions of the theorem cannot be ensured in this
example. Here Corollary 1.4 almost applies with V (x) = x2 and for any fixed α we
have bα(x)x < −|x|1/2/2 outside of some interval, depending on α, but there is no
uniformity in α.

2. Auxiliary results

A useful fact employed below is that in the case where LV (x) ≤ −1 outside of a
ball and µ is a probability solution to the equation L∗µ = 0, we have |LV | ∈ L1(µ).
Actually, the following is true (see [6]): if

LV ≤ Ψ− Φ,

where Ψ and Φ are Borel functions such that Ψ ∈ L1(µ) and Φ ≥ 0, then
∫

Rd

Φ dµ ≤
∫

Rd

Ψ dµ. (2.1)



9

It will be important below that if a function u on a domain Ω satisfies the equation

∂xi
(aij∂xj

u) + ∂xi
(biu) = divG,

where G = (Gi) is a measurable vector field and

‖aij‖Wp,1(Ω) + ‖bi‖Lp(Ω) + sup
Ω

| det(aij)|−1 ≤ K

with some p > d, then for every ball U with compact closure in Ω there is a constant
C(p,K,U,Ω) that depends only on p, K, U and the distance from U to the boundary
of Ω such that

‖u‖Wp,1(U) ≤ C(p,K,U,Ω)
(
‖u‖L1(Ω) + ‖G‖Lp(Ω)

)
. (2.2)

The Sobolev embedding theorem yields also a bound

sup
U

|u| ≤ C ′(p,K,U,Ω)
(
‖u‖L1(Ω) + ‖G‖Lp(Ω)

)
, (2.3)

where C ′ depends on the same objects as C. In particular, having a family of solutions
to different equations with a common bound K, we obtain the uniform boundedness
in the Sobolev norm on any inner ball, provided we have their uniform boundedness
in L1 on a slightly larger ball along with a common bound for the Lp-norms of the
right-hand sides on that larger ball. A detailed proof can be found, e.g., in [20].

If G = 0 and u ≥ 0 in Ω, then, according to Harnack’s inequality,

sup
x∈U

u(x) ≤ H(K,U,Ω) inf
x∈U

u(x), (2.4)

where the number H(K,U,Ω) depends only on p, K, U and the distance from U to
the boundary of Ω.

Lemma 2.1. Suppose that (1.3) holds, the family {µα} is uniformly tight, and, for

each closed ball U , we have infα,x∈U detAα(x) > 0 and the mappings α 7→ aijα |U and

α 7→ biα|U with values in L1(U) are continuous. Then, for every ball U , the continuous

versions of the densities ̺α satisfy the estimate

inf
α

min
x∈U

̺α(x) ≥ m(U) > 0,

where m(U) does not depend on α.

Proof. Suppose that there is a sequence αn → α in [0, 1] for which minx∈U ̺αn
(x) → 0.

It follows by (2.4) and (2.2) that passing to a subsequence we can assume that the
functions ̺αn

converge locally uniformly to some function ̺. By the uniform tightness,
we have also convergence in L1(Rd) and ̺ is a probability density. It is readily seen
that L∗

α̺ = 0, since Lαn
ϕ→ Lαϕ in L1(Rd) for each smooth ϕ with compact support.

Hence ̺ is positive by Harnack’s inequality, which leads to a contradiction. �

We need also the following a priori estimate for a probability solution µ of the
equation L∗µ = 0.

Lemma 2.2. Let k ≥ 1. Suppose that

LV ≤ −W and 〈A∇V,∇V 〉 ≤ εV W

outside of some compact set S0, where 0 ≤ ε < k−1. Then∫

Rd\S0

V kW dµ ≤ (k + 1)−1(1− kε)−1

∫

S0

|LV k+1| dµ. (2.5)
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Proof. Let us consider the function V0 = V k+1. We have

LV0 = (k + 1)V kLV + k(k + 1)V k−1〈A∇V,∇V 〉 ≤ −(k + 1)(1− kε)V kW

outside of S0. Hence we can apply estimate (2.1) with functions Ψ = |LV k+1|IS0
and

Φ = (k + 1)(1− kε)V kWIRd\S0
. �

Once a probability solution µ to the equation L∗µ = 0 exists, it satisfies (under our
local assumptions about A and b, see (1.3) and (1.4)) the following estimate (see [5]):
∫

Rd

∣∣∣
A1/2∇̺

̺

∣∣∣
2

dµ ≤
∫

Rd

|A−1/2(b−divA)|2 dµ, divA := (∂xj
a1j , . . . , ∂xj

a1j), (2.6)

provided the right-hand side is finite and

lim inf
r→∞

∫

r≤|x|≤2r

[
r−2|aij |+ r−1|∂xk

aij |
]
dµ = 0. (2.7)

The last assumption is fulfilled, e.g., if the mapping A is Lipschitzian or, more gener-
ally, if the functions |aij(x)|/(1 + |x|2) and |∂xk

aij(x)|/(1 + |x|) are µ-integrable. In
particular, this condition is satisfied if aij and ∂xk

aij are µ-integrable on the whole
space. However, it is not known whether (2.6) is satisfied for all solutions without the
extra assumption (2.7). For this reason, we show in the next lemma that in the pres-
ence of a suitable Lyapunov function even without (2.7) there is a unique probability
solution satisfying (2.6).

Lemma 2.3. Suppose that the coefficients aij and bi satisfy our local assumptions

(see (1.3) and (1.4)) and there is a function V ∈ C2(Rd) such that lim
|x|→∞

V (x) = +∞
and outside of some ball

LV (x) ≤ −1, ψ(|x|)|A−1/2(b− divA)(x)|2 ≤ |LV (x)|,
where ψ is a locally bounded Borel function on [0,+∞) with lim

t→+∞
ψ(t) = +∞. Then

there is a unique probability solution µ to the equation L∗µ = 0 such that (2.6) holds

provided the right-hand side is finite.

Proof. It is known that for almost every t ∈ R the compact set Ut = {V ≤ t} has
boundary of finite perimeter (see [15, Section 5.5] and [24, Chapter 5]; certainly, if we
had V ∈ Cd(Rd), then by Sard’s theorem V −1(t) would be a C1-surface for almost
each t, but we do not assume such a regularity of V ). Hence there is an increasing
sequence tn → +∞ of points with this property. Set Un = Utn . Let

f i = bi − ∂xj
aij , h = ∂xi

f i.

According to [21] (see also [22]), for each n, there is a solution wn ∈W 2,1
0 (Un) to the

Dirichlet problem
∂xi

(aij∂xj
wn)− ∂xi

(f iwn) = h,

where W 2,1
0 (Un) is the closure of C∞

0 (Un) in W
2,1(Un). Therefore, the function

̺n := wn + 1

satisfies the homogeneous equation L∗̺n = 0 in Un and the boundary condition
̺n|∂Un

= 1 in the sense that ̺n − 1 ∈ W 2,1
0 (Un). Let us observe that it follows

from [22] (Theorem 2 applies with γ = 0) that ̺n ≥ 0 and consequently by Harnack’s
inequality ̺n > 0 in Un. Indeed, the hypotheses of [22] are satisfied due to our choice of
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tn which makes possible to use the Gauss–Green formula for Un (see [24, Section 5.8]).
Let us normalize our solutions in such a way that ̺n becomes a probability density
on Un for all n. Then, due to the existence of a Lyapunov function, by a standard
procedure (see, e.g., [6] and [7]), one can select a subsequence in {̺n} that locally
uniformly converges to a probability solution ̺ of the equation L∗̺ = 0. It is also
known that in this situation there is a number M such that

∫

Un

|LV |̺n dx ≤M ∀n. (2.8)

This can be derived from (2.1) applied to Ψ = |LV |IUn1
and Φ = |LV |IRd\Un1

for a
suitable number n1.

Finally, we verify (2.6) for this particular solution. To this end, we multiply the
equation for ̺n by log ̺n−cn, where cn is the constant boundary value of ̺n (obtained
after normalization, so that it need not be 1 anymore), and integrate by parts (which
is possible due to the above choice of Un) obtaining the equality

∫

Un

〈A∇̺n, ̺−1
n ∇̺n〉 dx =

∫

Un

〈b− divA,∇̺n〉 dx

=

∫

Un

〈A−1/2(b− divA), ̺−1
n A1/2∇̺n〉̺n dx,

where we used that ∇(log ̺n−cn) = ∇̺n/̺n and canceled ̺n where possible. Apply-
ing the Cauchy inequality to the right-hand side, we arrive at the uniform estimate

∫

Un

∣∣∣
A1/2∇̺n

̺n

∣∣∣
2

̺ndx ≤
∫

Un

|A−1/2(b− divA)|2 ̺ndx. (2.9)

Let us show that

lim
n→∞

∫

Un

|A−1/2(b− divA)|2 ̺ndx =

∫

Rd

|A−1/2(b− divA)|2 ̺dx. (2.10)

Let ε > 0. Take R > 0 such that |A−1/2(b−divA)(x)|2 ≤ ε|LV (x)| whenever |x| > R.
Then ∫

|x|>R

|A−1/2(b− divA)(x)|2̺n(x) dx ≤ εM.

By Fatou’s theorem the same is true for ̺ in place of ̺n. Since ̺n → ̺ locally
uniformly, we obtain equality (2.10). For every smooth compactly supported vector
field v we have ∫

Rd

〈∇̺
̺
, v
〉
̺ dx = lim

n→∞

∫

Un

〈∇̺n
̺n

, v
〉
̺n dx,

since the left-hand side is the integral of −̺div v, which is the limit of the integrals of
−̺ndiv v. Combined with (2.9) and (2.10) this yields (2.6). Finally, as noted above,
the uniqueness of a probability solution follows from the estimate LV ≤ −1 outside
of a ball. �

Having an operator L satisfying the same local assumptions as Lα (see (1.3) and
(1.4)), let us consider the equation

L∗w = div (̺F ), (2.11)
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where ̺ is a probability solution of the equation L∗̺ = 0 and F is a Borel vector field
such that |A−1/2F |2̺ ∈ L1(Rd). We arrive at this equation by formally differentiating
(1.2) in α.

Writing w = v̺, we obtain the following equation on v:

div (̺A∇v) + div (vb0) = div (̺F ), bi0 = ∂xj
(aij̺)− bi̺. (2.12)

Let us observe that

div (vb0) = 〈∇v, b0〉.
Indeed,

div b0 = 0

due to the equality ∂xi
∂xj

(aij̺)− ∂xi
(bi̺) = 0. Therefore, (2.12) can be rewritten as

div (̺A∇v) + 〈∇v, b0〉 = div (̺F ). (2.13)

In the next section we use the results of this section on equation (2.11) in the
situation where ̺ = ̺α and

F = Bα −Rα − Sα
∇̺α
̺α

,

Bα = (∂αb
1
α, . . . , ∂αb

d
α), Rα = (R1

α, . . . , R
d
α), Ri

α = ∂α∂xj
aijα , Sα = (∂αa

ij
α )i,j≤d.

Note that vector fields F of such a form appear in the equations satisfied by the
derivatives ∂α̺α.

Proposition 2.4. Suppose that v is a solution to (2.13) on the domain Ω = {V < R},
where V ∈ C2(Ω) is a nonnegative function such that there exist a measurable func-

tion W ≥ 1, a measurable function Ψ ≥ 0 and a number R0 ∈ (0, R) such that

LV (x) ≤ Ψ(x)−W (x) if V (x) ≥ R0.

Then ∫

R0<V<R

v2W̺dx ≤ 2

∫

V <R0

v2|LV |̺ dx+ 6R

∫

V <R

|A1/2∇v|2̺ dx

+ 2

∫

R0<V<R

v2Ψ̺ dx+ 2R

∫

V <R

|A−1/2F |2̺ dx

+ 4

∫

V <R

|A−1/2F |2|A1/2∇V |2W−1̺ dx. (2.14)

If |A1/2∇V |2 ≤ CV VW + CV with some number CV ≥ 1, then
∫

R0<V<R

v2W̺dx ≤ 2

∫

V <R0

v2|LV |̺ dx+ 6R

∫

V <R

|A1/2∇v|2̺ dx

+ 2

∫

R0<V<R

v2Ψ̺ dx+ CV (6R+ 1)

∫

V <R

|A−1/2F |2̺ dx. (2.15)

Proof. We multiply equation (2.13) by vψ, where ψ ∈ C∞
0 (Ω), integrate by parts

(which is possible due to our assumptions about the coefficients yielding the Sobolev
regularity of all solutions) and obtain the equality
∫

Ω

|A1/2∇v|2ψ̺ dx =
1

2

∫

Ω

v2Lψ ̺dx+

∫

Ω

〈F,∇ψ〉v̺ dx+

∫

Ω

〈F,∇v〉ψ̺ dx, (2.16)
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in which we used the intermediate equalities
∫

Ω

div (̺A∇v)vψ dx = −
∫

Ω

〈A∇v,∇v〉ψ̺ dx−
∫

Ω

v〈A∇v,∇ψ〉̺ dx

= −
∫

Ω

〈A∇v,∇v〉ψ̺ dx−
∫

Ω

〈∇(v2/2), A∇ψ〉̺ dx

= −
∫

Ω

〈A∇v,∇v〉ψ̺ dx+

∫

Ω

v2

2
div (A∇ψ) ̺ dx+

∫

Ω

v2

2
〈A∇ψ,∇̺〉 dx

= −
∫

Ω

〈A∇v,∇v〉ψ̺ dx+

∫

Ω

v2

2
div (A∇ψ) ̺ dx+

∫

Ω

v2

2
〈∇ψ,A∇̺〉 dx,

∫

Ω

〈∇v, b0〉vψ dx =

∫

Ω

〈∇(v2/2), b0〉ψ dx = −
∫

Ω

v2

2
〈b0,∇ψ〉 dx,

where in the latter identity we used the condition that div b0 = 0. Finally,

div (A∇ψ)− 〈b0,∇ψ〉 = Lψ.

Let R0 < N < R1 < R. Let us take ψ = ζN (V ) − R1, where ζN ∈ C2(R), ζN (t) = t
if t ≤ N , ζN (t) = (R1 + N)/2 if t ≥ R1, and 0 ≤ ζ ′N ≤ 1, ζ ′′N ≤ 0. Note that the
function ψ belongs to the class C2(Rd) and vanishes if V ≥ R1. Taking into account
that ψ ≤ 0, ∇ψ = ζ ′N (V )∇V , Lψ = LV on Ω0 and that outside of

Ω0 = {V < R0}
we have

Lψ = ζ ′N (V )LV + ζ ′′N (V )〈A∇V,∇V 〉 ≤ ζ ′N (V )LV ≤ ζ ′N (V )Ψ− ζ ′N (V )W,

we conclude that (2.16) yields the estimate
∫

Ω\Ω0

v2ζ ′N (V )W̺dx ≤
∫

Ω0

v2|LV |̺ dx+ 2

∫

Ω

|A1/2∇v|2|ψ|̺ dx

+

∫

Ω\Ω0

v2Ψ̺ dx+ 2

∫

Ω

〈F,∇ψ〉v̺ dx+ 2

∫

Ω

〈F,∇v〉ψ̺ dx.

Since

2

∫

Ω

〈F,∇ψ〉v̺ dx ≤
∫

Ω

ζ ′N (V )
[1
2
v2W + 2W−1〈F,∇V 〉2

]
̺ dx,

2

∫

Ω

〈F,∇v〉ψ̺ dx ≤
∫

Ω

[
|A1/2∇v|2|ψ|+ |A−1/2F |2|ψ|

]
̺ dx,

we arrive at the estimate
∫

Ω\Ω0

v2ζ ′N (V )W̺dx ≤ 2

∫

Ω0

v2|LV |̺ dx+ 6

∫

Ω

|A1/2∇v|2|ψ|̺ dx

+ 2

∫

Ω\Ω0

v2Ψ̺ dx+ 4

∫

Ω

|A−1/2F |2|A1/2∇V |2W−1̺ dx

+ 2

∫

Ω

|A−1/2F |2|ψ|̺ dx,

which completes the proof by letting N → R, since |ψ| ≤ R. �
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Corollary 2.5. Suppose that v is a solution to (2.13) on the domain Ω = {V < R},
R ≥ 1, where V ∈ C2(Ω) is a nonnegative function and there exist a measurable

function W ≥ 1 and a number R0 ∈ (0, R) such that

LV (x) ≤ −W (x) if V (x) ≥ R0.

If |A1/2∇V |2 ≤ CV +CV VW with some number CV ≥ 1, then for any k ≥ 0 we have
∫

R0<V<R

v2V kW̺dx

≤M(R0)CVR
k+1

(
sup

{V <R0}

(̺v2) +

∫

V <R

[
|A1/2∇v|2 + |A−1/2F |2

]
̺ dx

)
, (2.17)

where the number M(R0) is independent of v and depends only on R0 and the bounds

on the coefficients on {V < R0}.
In the formulation of the next proposition two numbers P (Ω0) and H0 = H0(Ω0)

are employed. The first one depends only on the domain Ω0 = {V < R0}, where
R0 > 0 will be picked later. This is the number in the Poincaré inequality

∫

Ω0

ϕ2 dx ≤ P (Ω0)

∫

Ω0

|∇ϕ|2 dx

valid for every function ϕ ∈ W 2,1(Ω0) with zero integral over Ω0. There is also a
refined version of this inequality: if S0 is a fixed ball containing the closure of Ω0 (for
the later use we assume also that dist(Ω0, ∂S0) = 1), then

∫

S0

ϕ2 dx ≤ P (S0,Ω0)

∫

S0

|∇ϕ|2 dx

for every function ϕ ∈W 2,1(S0) with zero integral over Ω0 (see [24, Theorem 4.4.2]).
The second number H0 = H0(Ω0, S0) is Harnack’s constant for the operator L on

the same ball S0. With this constant one has (2.4) for every positive solution u of the
equation L∗u = 0 on S0, namely,

sup
x∈U

u(x) ≤ H0 inf
x∈U

u(x) (2.18)

for each ball U ⊂ Ω0. This number depends only on S0, Ω0, and the coefficients of L
through the W p,1(S0)-norms of aij , the Lp(S0)-norms of bi, and infS0

detA.

Proposition 2.6. Suppose that there exist a function V ∈ C2(Rd), a locally integrable

function W ≥ 1 and a number CV ≥ 1 such that

lim
|x|→+∞

V (x) = +∞, 〈A∇V,∇V 〉 ≤ CV + CV VW

and for some R0 > 0 we have

LV (x) ≤ −W (x) if x 6∈ Ω0 := {V < R0}.
Let ̺ be the unique probability solution of the equation L∗̺ = 0. Assume also that

∫

Rd

|A−1/2F |2̺ dx ≤MF <∞ (2.19)

and for some numbers m ≥ 1 and t > 1
∫

Rd

V 2m+1+tW̺dx ≤M0 <∞. (2.20)
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Then, there exists a solution w of equation (2.11) with the following property:
∫

Rd

WV m|w| dx ≤ (M∗MF )
1/2 1

t− 1
+ (M∗MF )

1/222m+1+tM0, (2.21)

where M∗ is a number that depends only on the constants in (1.3) and (1.4) for a fixed

ball S0 containing the closure of Ω0, say, a fixed ball S0 such that dist (S0,Ω0) = 1,
and also on the integral of |W | over {V ≤ 1}.

Proof. We seek for a solution w of the form

w = v̺,

where v satisfies equation (2.13). Let Un = {V < n}, n > R0. Let vn be the solution
to the Dirichlet problem

div(̺A∇vn) + 〈b0,∇vn〉 = div(F̺), vn|∂Un
= 0.

This solution exists due to our assumptions about the coefficients, see [21]. Multiply-
ing the equation by vn, integrating over Un and using the integration by parts formula
we obtain the equality

−
∫

Un

|A1/2∇vn|2̺ dx+

∫

Un

vn〈b0,∇vn〉 dx = −
∫

Un

〈vn, F 〉 ̺ dx,

where the second term on the left vanishes, since div b0 = 0 and vn∇vn = ∇(v2n)/2.
The integrand on the right is estimated by |A1/2∇vn|2/2+ |A−1/2F |2/2, which yields
the estimate ∫

Un

|A1/2∇vn|2̺ dx ≤
∫

Un

|A−1/2F |2̺ dx.

Therefore, ∫

Un

|A1/2∇vn|2̺ dx ≤MF . (2.22)

We now change the function vn (keeping the same notation) by subtracting its integral
over the domain Ω0 = {V < R0}, which yields a function satisfying the same equation
(but not the boundary condition, of course) and having the zero integral over Ω0.
Obviously, these new functions vn satisfy (2.22). The Poincaré inequality (see above)
yields the bound

∫

Ω0

v2n̺ dx ≤ sup
Ω0

̺

∫

Ω0

v2n dx ≤ P (Ω0) sup
Ω0

̺

∫

Ω0

|∇vn|2 dx

≤ c(Ω0)P (Ω0) sup
Ω0

̺ (inf
Ω0

̺)−1

∫

Ω0

|A1/2∇vn|2̺ dx

≤ c(Ω0)P (Ω0)H0MF . (2.23)

However, we need more: we need a bound on the integral of |vn|2(|LV |+1) over Ω0.
Since |LV |+ 1 is integrable on Ω0, it suffices to have a uniform bound on supΩ0

|vn|.
The desired bound is ensured by (2.3), where we take U = S0 (a ball whose interior
contains the closure of Ω0) and Ω = S1 is the ball with the same center and the radius
increased by 1. Again by the Poincaré inequality we obtain

‖vn‖2L1(S1)
≤ ‖vn‖2L2(S1)

|S1| ≤ c(S1)P (S1,Ω0)H0MF .
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So we have

sup
Ω0

|vn|2 ≤M1MF , M1 = C ′(p,K, S0, S1)
2c(S1)P (S1,Ω0)

2|S1|,

where the number K is determined by (1.3) and (1.4) according to (2.3).
By the previous proposition (see (2.17)) we arrive at the following estimate for

all k ≥ n:∫

Un\Ω0

v2kW ̺dx ≤ 2

∫

Ω0

v2n|LV |̺ dx+ 6nMF + CV (6n+ 1)MF

≤ 2M1MF

∫

Ω0

|LV |̺ dx+ 6nMF + CV (6n+ 1)MF ≤M2MFn,

where M2 is a number determined by the regarded norms of the coefficients on the
ball S1, supS1

̺, infS1
detA, and also some universal constants (entering through the

Poincaré, Sobolev, and Harnack inequalities). Increasing M2 we can assume that
∫

Un

v2kW ̺dx ≤M3n ∀n, k ≥ n. (2.24)

It follows by (2.22), (2.23) and the Poincaré inequality that on every fixed ball U the
sequence of functions vn with n ≥ n(U) is bounded in the Sobolev norm of W 2,1(U).
Since these functions satisfy the elliptic equation whose coefficients satisfy the above
mentioned conditions, we conclude by (2.2) that this sequence is bounded also in
the Sobolev space W p,1(U), where p = p(U) > d, hence is uniformly bounded and
contains a subsequence convergent uniformly on U to some function v. Using the
diagonal procedure we pick a subsequence convergent locally uniformly to a common
function v such that v ∈W p,1(U) for every ball U with the respective p = p(U) > d.
It is also possible to ensure that on each ball the restrictions of vn converge to the
restriction of v weakly in the respective W p,1(U). Obviously, v satisfies the desired
equation on the whole space. By Fatou’s theorem and (2.24) we have

∫

Un

v2W ̺dx ≤M3n ∀n. (2.25)

We now show that WV mv̺ is integrable on the whole space. For any n > 1, by
the Cauchy inequality and (2.25) we have

∫

n−1≤V≤n

WV m|v|̺ dx ≤ nm

∫

n−1≤V≤n

W |v|̺ dx

≤M
1/2
3 nm+1/2

(∫

n−1≤V≤n

W̺dx

)1/2

≤M
1/2
3 n−t +M

1/2
3 n2m+1+t

∫

n−1≤V≤n

W̺dx

≤M
1/2
3 n−t +M

1/2
3 22m+1+t

∫

n−1≤V≤n

V 2m+1+tW̺dx.

The integral of WV m|v|̺ over {V ≤ 1} is dominated by the square root of M3

multiplied by the integral of W̺ over {V ≤ 1}. Therefore, increasing M3, we arrive
at the estimate∫

Rd

WV m|v|̺ dx ≤M
1/2
3

1

t− 1
+M

1/2
3 22m+1+t

∫

Rd

V 2m+1+tW̺dx,
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which is the desired bound. �

Proposition 2.7. If F = 0, then any solution w of equation (2.11) satisfying the

condition ∫

Rd

(|LV |+ 〈A∇V,∇V 〉) |w| dx <∞

has the form w = λ̺, where λ is a constant. Therefore, a solution to (2.11) in the

class of functions satisfying the above condition is unique up to adding functions of

the form λ̺.

Proof. It suffices to show that any solution w of the homogeneous equation is propor-
tional to ̺, because ̺ is a solution. Let v = w/̺. Then v satisfies equation (2.13). Let
f be a smooth function on [0,+∞) and let ψ ∈ C2

0 (R
d). We have (see [3, Lemma 1])

∫

Rd

|
√
A∇v+|2f ′′(v+)ψ̺ dx =

∫

Rd

f(v+)Lψ ̺dx− f ′(0)

∫

Rd

v−Lψ ̺ dx,

where v+ = max{v, 0} and v− = −min{v, 0}. Set f(t) = (1+t)−1 and ψN = ϕ(V/N),
where ϕ ∈ C∞

0 (Rd), 0 ≤ ϕ ≤ 1, ϕ(x) = 1 if |x| ≤ 1, |ϕ′| ≤ 1, |ϕ′′| ≤ 1. Then

LψN = N−1ϕ′(V/N)LV +N−2ϕ′′(V/N)〈A∇V,∇V 〉.
Hence

2

∫

Rd

|
√
A∇v+|2(1 + v+)−3ψN̺ dx

≤ N−1

∫

Rd

(|LV |+ 〈A∇V,∇V 〉)̺ dx+N−1

∫

Rd

(|LV |+ 〈A∇V,∇V 〉)|w| dx.

The right-hand side tends to zero as N → ∞. In addition, ψN → 1. Hence ∇v+ = 0
a.e., so v+ = const. Replacing w by −w, we conclude that v− = const. Thus,
v = const. �

Note that the integrability condition required in this proposition is fulfilled if we
have the estimate |LV |+ 〈A∇V,∇V 〉 ≤ CV +CV V

mW assumed in the main theorem
and V mW is integrable.

It should be also observed that the uniform bound (1.4) was never used in this
section in its full strength: it would suffice to require this lower bound on each ball
U with a constant c(U) depending on U .

3. Proofs

We first prove the continuity result, which is very simple.

Proof of Proposition 1.1. Let αn → α in [0, 1]. As explained in the previous section,
it follows from our assumptions that, for every ball U , the restrictions of the densities
̺α to U are uniformly bounded in the Sobolev norm of W p,1(U), hence are uniformly
bounded and uniformly Hölder continuous. Therefore, there is a subsequence {αnj

}
such that the functions ̺α with the respective indices converge uniformly on balls to
some continuous function ̺. Since the measures µα are uniformly tight by assumption,
we conclude that ν = ̺ dx is a probability measure. By convergence of densities we
obtain convergence in variation, i.e. convergence of densities in L1(Rd). It is clear
that ν satisfies the equation L∗

αν = 0 (here the local L1-continuity of the coefficients
in α is used to take limits under the integral sign), whence by the assumed uniqueness
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we have ν = µα. Since this is true for any subsequence in the original sequence, our
assertion is proven. �

Remark 3.1. A similar (and even simpler) proof yields an alternative continuity
result under incomparable conditions: if the functions (x, α) 7→ aijα (x) and (x, α) 7→
biα(x) are continuous, the matrix A(x) is nonnegative-definite (possibly degenerate),
the family {µα} is uniformly tight, and for each α the measure µα is a unique proba-
bility solution to the equation L∗

αµ = 0, then the mapping α 7→ µα is continuous with
values in the space of measures with the weak topology.

Remark 3.2. In the situation of the theorem one can deal with parameters α be-
longing to a compact interval [τ, τ1] in (0, 1). Since by our assumption the mapping
α 7→ bα|U is Lp-differentiable for every ball U , it is possible to choose versions of
the functions bα that are absolutely continuous in α, namely, one can use the version
given by

bα(x) = bτ (x) +

∫ α

τ

∂sbs(x) ds.

For this version we have

|bα(x)| ≤ |bτ (x)|+
∫ τ1

τ

|∂sbs(x)| ds,

hence supα |bα(x)| is locally integrable (this function is Lebesgue measurable, since
the coefficients are jointly Borel measurable, see [2, Corollary 2.12.8]), moreover, it
is locally in Lp. Then the function supα |LαV (x)| is locally integrable, because the
terms with second derivatives of V are locally uniformly bounded in x and α. Hence
in (1.7) without loss of generality we can assume that supα LαV (x) ≤ −W (x) on the
whole space. However, it will be more convenient to redefine W by 1 on a suitable
ball.

Proof of Theorem 1.2. We can assume that V ≥ 1. By assumption,

LαV (x) ≤ −W ≤ −1

outside of some ball. Since V is continuous and lim
|x|→∞

V (x) = +∞, we can assume

that this holds outside of the set Ω0 = {V ≤ R0} for some R0 ≥ 1. Let us set
W (x) = 1 if x ∈ Ω0. Then W ≥ 1.

Let us prove the differentiability with respect to α in the special case where Aα(x)
and bα(x) do not depend on α for all x outside of some common ball U , i.e.,

Aα+h(x) = Aα(x), bα+h(x) = bα(x) for all h and all x /∈ U .

Suppose that α is fixed and a sequence of nonzero numbers hk tends to zero. Set

δk̺ = h−1
k (̺α − ̺α−hk

), δkb = h−1
k (bα − bα−hk

),

δka
ij = h−1

k (aijα − aijα−hk
), δkA = (δka

ij)i,j≤d

Of course, these functions depend also on α, which is suppressed in our notation,
since α is a fixed point where the differentiability is verified. Observe that δka

ij = 0
and δkb = 0 outside of U for all k. Each function δk̺ satisfies the equation

L∗
αδk̺ = div(Fk̺α), (3.1)

where
Fk̺α = −δkA∇̺α−hk

− δk∂xi
Ai̺α−hk

+ δkb̺α−hk
,
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δk∂xi
Ai = h−1

k (∂xi
ai1α − ∂xi

ai1α−hk
, . . . , ∂xi

aidα − ∂xi
aidα−hk

).

The vector field Fk vanishes outside of U and its Lr(U)-norm is bounded by a number
C(U) independent of k for some r = r(U) > d. Indeed, by (2.2) the functions ̺α−hk

are uniformly bounded on U . By Proposition 1.1 they converge to ̺α in L1(U)
and pointwise, hence also in Lq(U) for each q < ∞. According to (1.5), for some
p0 = p0(U) > d, the mappings δk∂xi

Ai and δkb converge in Lp0(U) to ∂α∂xi
Ai

α and
∂αb, respectively. Therefore,

−δk∂xi
Ai̺α−hk

+ δkb̺α−hk
→ −∂α∂xi

Ai
α̺α + ∂αb̺α

in Lp0(U). In addition, again by (2.2) the mappings∇̺α−hk
are uniformly bounded in

Lp(U), where p = p(U) > d, and by convergence of ̺α−hk
to ̺α they weakly converge

in Lp(U) to ∇̺α. Next, according to (1.5) and the comment made below (1.6), the
mappings δkA converge to ∂αAα in Lp1(U) for some p1 = p1(U) > dp/(p − d). By
Hölder’s inequality the mappings δkA∇̺α−hk

are uniformly bounded in Ls(U) with
s = p1p/(p1 + p). Note that s > d. Recall also that by Lemma 2.1 the functions
̺α are locally uniformly separated from zero. Therefore, we have the following weak
convergence in Ls(U) with s > d:

Fk → F := −∂αAα∇̺α/̺α − ∂α∂xi
Ai

α + ∂αb.

Note also that δk̺ satisfies the following conditions:
∫

Rd

δk̺ dx = 0,

∫

Rd

(|LαV |+ 〈Aα∇V,∇V 〉)|δk̺| dx <∞.

Indeed, by Lemma 2.2 for every α the function V mW̺α is integrable, where m is the
number from the hypotheses of the theorem, moreover,

sup
α

∫

Rd

V mW̺α dx ≤M1 <∞. (3.2)

According to the results of the previous section (see Proposition 2.6 and Proposi-
tion 2.7), for each k, there are a solution uk to the equation L∗

αuk = div(Fk̺α) and
a constant λk such that

δk̺ = uk − λk̺α

and ∫

Rd

V mW |uk| dx ≤M,

where M does not depend on k. The latter follows by (2.21), since we have (2.20)
and (2.19) holds for F = Fk with a constant independent of k due to the fact that
the fields Fk have supports in U and are uniformly bounded in Lp(U). It is clear that

λk =

∫

Rd

uk dx.

Hence |λk| ≤ ‖uk‖L1(Rd) ≤M . Therefore, by (3.2) we have
∫

Rd

V mW |δk̺| dx ≤M +M‖V mW‖L1(µα) ≤M +MM1.

Passing to a subsequence and using our local estimates (2.2), we can assume that the
functions δk̺ converge locally uniformly to some function wα. By Fatou’s theorem

∫

Rd

V mW |wα| dx ≤M +M‖V mW‖L1(µα) ≤M +MM1.
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In addition, the functions δk̺ converge to wα in L1(Rd) (since lim
|x|→∞

W (x) = +∞)

and ∫

Rd

wα dx = 0.

Moreover, the function wα satisfies the equation

L∗
αwα = div(̺αF ).

It remains to observe that wα satisfies the hypotheses of Proposition 2.7 about unique-
ness. Thus, for each sequence hk → 0 the continuous functions δk̺ converge locally
uniformly to one and the same limit wα. Therefore, we have wα = ∂α̺α.

We now proceed to the general case. We can assume that our parameters take
values in an interval of length less than c0(2λ0+1)−1 (and less than 1), where λ0 and
c0 are constants from (1.4) and (1.6), which by (1.6) yields the estimate

‖Aα(x)−Aα0
(x)‖ ≤ c0

2

for all α, α0 and x. It follows that for any number θ ∈ [0, 1] we have

‖(θAα(x) + (1− θ)Aα0
(x))−1/2Aα(x)

1/2‖ ≤ 2. (3.3)

Indeed, let us observe that for any nonnegative operator T and symmetric operator
D such that T ≥ c0I and ‖D‖ ≤ ε, where ε < c0/2, we have T − εI ≤ T +D ≤ T + εI
in the sense of quadratic forms, hence (see [19, Chapter VIII, Problem 50])

(T − εI)1/2 − T 1/2 ≤ (T +D)1/2 − T 1/2 ≤ (T + εI)1/2 − T 1/2,

so that

− ε

2c
1/2
0

I ≤ (T +D)1/2 − T 1/2 ≤ ε

(2c0)1/2
I,

which yields that ‖(T +D)1/2 − T 1/2‖ ≤ ε(2c0)
−1/2. Therefore,

‖(T +D)−1/2T 1/2‖ = ‖(T +D)−1/2((T +D)1/2 + T 1/2 − (T +D)1/2)‖
≤ 1 + ‖(T +D)−1/2‖ ‖T 1/2 − (T +D)1/2‖

≤ 1 + ‖(T +D)−1/2‖ ε

(2c0)1/2
≤ 1 + c

1/2
0 ‖(T +D)−1/2‖.

This yields (3.3) if we take T = Aα(x) and D = (1 − θ)(Aα0
(x) − Aα(x)), that is,

T + D = θAα(x) + (1 − θ)Aα0
(x), because θAα(x) + (1 − θ)Aα0

(x) ≥ c0I, hence

‖(θAα(x) + (1− θ)Aα0
(x))−1/2‖ ≤ c

−1/2
0 .

Let ψN (x) = ψ(|x|−N +1), where ψ ∈ C∞(R), 0 ≤ ψ ≤ 1, −2 ≤ ψ′ ≤ 0, ψ(s) = 1
if s ≤ 1 and ψ(s) = 0 if s ≥ 2. In addition, we take ψ such that |ψ′(s)|2 ≤ C0ψ(s) with
some C0 > 0. Then 0 ≤ ψN ≤ 1, ψN (x) = 1 if |x| < N and ψN (x) = 0 if |x| > N +1,
|∇ψN | ≤ 2, |∇ψN |2 ≤ C0ψN . Fix some α0 (say, the middle of the interval) and set

Lα,N = ψNLα + (1− ψN )Lα0
,

Aα,N = ψNAα + (1− ψN )Aα0
, bα,N = ψNbα + (1− ψN )bα0

.

We observe that the corresponding coefficients aijα,N (x) and biα,N (x) do not depend

on α if |x| > N + 1, once N is fixed. Moreover,

Lα,NV = ψNLαV + (1− ψN )Lα0
V ≤ −W



21

and

〈Aα,N∇V,∇V 〉 ≤ εV W

outside of the same ball as in the case of Lα. We also have

|Lα,NV |+ |A−1/2
α,N (bα,N − divAα,N )|2 + |A−1/2

α,N (∂αbα,N − ∂αdivAα,N )|2

≤ C̃V + C̃V V
m (3.4)

with C̃V = 18CV + 16λ20c
−1
0 , since

divAα,N = ψNdivAα + (1− ψN )divAα0
+ (Aα −Aα0

)∇ψN ,

∂αdivAα,N = ψNdiv ∂αAα + ∂αAα∇ψN , ∂αbα,N = ψN∂αbα,

where ‖Aα(x)−Aα0
(x)‖ ≤ λ0|α− α0| ≤ λ0 by (1.6). Indeed,

A
−1/2
α,N (bα,N − divAα,N ) = ψNA

−1/2
α,N A1/2

α A−1/2
α (bα − divAα)

+ (1− ψN )A
−1/2
α,N A1/2

α0
A−1/2

α0
(bα0

− divAα0
) +A

−1/2
α,N (Aα −Aα0

)∇ψN ,

A
−1/2
α,N (∂αbα,N − ∂αdivAα,N ) = ψNA

−1/2
α,N A1/2

α A−1/2
α (∂αbα − ∂αdivAα)

−A
−1/2
α,N ∂αAα∇ψN .

Hence, by (3.3), the norm of the first of these two vectors is dominated by the sum of

the norms of A
−1/2
α (bα−divAα) and A

−1/2
α0

(bα0
−divAα0

) and c
−1/2
0 λ0, and similarly

for the second vector.
In addition, for every ball U we have

sup
α

‖aijα,N‖Wp,1(U) ≤ 2 sup
α

‖aijα ‖Wp,1(U), sup
α

‖biα,N‖Lp(U) ≤ sup
α

‖biα‖Lp(U)

for the corresponding p = p(U) > d, and also

ψN (x)Aα(x) + (1− ψN (x))Aα0
(x) ≥ c0 · I ∀x.

Defining Sα,N for the mapping Aα,N by the same formula as Sα for Aα, due to (1.6),
we have

sup
α,N

‖Sα,N‖ ≤ λ0 <∞. (3.5)

For each N there exist probability solutions ̺α,N of the equations

L∗
α̺α,N = 0.

As shown above, there exist the derivatives wα,N = ∂α̺α,N satisfying the equations

L∗
α,Nwα,N = div (Bα,N̺α,N −Rα,N̺α,N − Sα,N∇̺α,N ),

where Bα,N = ∂αbα,N , Rα,N = divSα,N , as in the case of the original operators Lα.
Moreover, we have ∫

Rd

V mW |wα,N | dx ≤M, (3.6)
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where M does not depend on N and α. Indeed, as above, we can construct a solution
w̃α,N for which this estimate holds. To this end we observe that by Lemma 2.3
and (3.4) we have

∫

Rd

∣∣∣
A

1/2
α ∇̺α,N
̺α,N

∣∣∣
2

̺α,N dx ≤
∫

Rd

|A−1/2
α,N (bα,N − divAα,N )|2 ̺α,N dx

≤ (1 + c0)C̃V + (1 + c0)C̃V

∫

Rd

V mW ̺α,N dx,

which is uniformly bounded in α andN , since the integrals of V mW̺α,N are uniformly
bounded by Lemma 2.2. Therefore, by the equality

A
−1/2
α,N Sα,N∇̺α,N = A

−1/2
α,N Sα,NA

−1/2
α,N A

1/2
α,N∇̺α,N

combined with (1.4) and (3.5) we have

sup
α,N

∫

Rd

∣∣∣
A

−1/2
α Sα,N∇̺α,N

̺α,N

∣∣∣
2

̺α,N dx ≤ c−1
0 λ20 sup

α,N

∫

Rd

∣∣∣
A

1/2
α ∇̺α,N
̺α,N

∣∣∣
2

̺α,N dx <∞.

We have also a uniform bound for the integrals of |A−1/2
α,N (Bα,N−Rα,N )|2̺α,N , because

Bα,N −Rα,N = ψN (Bα −Rα)− Sα∇ψN ,

so that

|A−1/2
α,N (Bα,N −Rα,N )| ≤ C2 + C2V

mW

with some constant C2. Hence we ensure condition (2.19), so that estimate (2.21) in
Proposition 2.6 yields (3.6) for w̃α,N . By the uniqueness result (Proposition 2.7) we
have the equality

wα,N (x) = w̃α,N (x)− ̺α,N (x)

∫

Rd

w̃α,N dx,

which yields the desired estimate (3.6) for wα,N , because the integrals of V mW̺α,N
are uniformly bounded by Lemma 2.2.

Passing to a subsequence and using (2.2), we conclude that for each α the sequence
of functions ̺α,N converges uniformly in x to the unique solution ̺α of the equation
L∗
αµ = 0 and the sequence of functions wα,N converges to a solution wα of the equation

L∗
αw = div (Bα̺α −Rα̺α − Sα∇̺α) (3.7)

that satisfies the same bound as in (3.6). It follows that
∫

Rd

wα dx = 0,

hence wα is a unique solution to (3.7) with zero integral such that V mWwα is inte-
grable.

We now observe that the solutions wα (as well as wα,N ) satisfying the conditions
∫

Rd

wα dx = 0, sup
α

∫

Rd

V mW |wα| dx <∞ (3.8)

are continuous in α locally uniformly in x. Indeed, if αk → α, then the sequence {wαk
}

contains a subsequence convergent locally uniformly in x to some function w (this
follows by (2.2)). Due to our assumption that the mappings α 7→ ∂αa

ij
α , α 7→ ∂αb

i
α,
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α 7→ ∂α∂xk
aijα are continuous with values in L1(U) for each ball U and ̺α(x) is jointly

continuous by Proposition 1.1, we see that w is a solution to the equation

L∗
αw = div (Bα̺α −Rα̺α − Sα∇̺α)

and this solution satisfies the above estimate by Fatou’s theorem. Hence w coincides
with our unique solution wα. Since this is true for each sequence {αk}, we obtain
that {wαk

} converges to wα. The continuity is proven.
It remains to show that wα = ∂α̺α. Let us fix x. By the Newton–Leibniz formula

̺α,N (x) = ̺α0,N (x) +

∫ α

α0

ws,N (x) ds.

All limiting functions ̺α(x) and wα(x) are continuous in α, as shown above. In
addition, letting U(x, r) be the ball of radius r centered at x, we have by (2.2)

|wα,N (x)| ≤ ‖wα,N‖Wp,1(U(x,1))

≤ C
(
‖wα,N‖L1(U(x,2)) + ‖Bα,N̺α,N −Rα,N̺α,N − Sα,N∇̺α,N‖Lp(U(x,2))

)
.

The right-hand side is uniformly bounded in α and N (once x is fixed). Therefore,

sup
α,N

|wα,N (x)| <∞.

Passing to the limit as N → ∞, we obtain the equality

̺α(x) = ̺α0
(x) +

∫ α

α0

ws(x) ds,

whence we conclude that ∂α̺α(x) = wα(x). The assertion about the L1-differentiabi-
lity of α 7→ ̺α follows from (3.8), which allows to show the L1-convergence to zero of
the ratio

̺α+h − ̺α
h

− wα = h−1

∫ α+h

α

(ws − wα) ds,

reducing it to the L1-convergence on balls. The general case of the theorem is proven.
In the special case where the diffusion matrix does not depend on α we have Rα = 0

and Sα = 0, so in the right-hand side of (3.7) we have only one term div (Bα̺α) with
Bα = ∂αbα. Hence we can obtain (2.19) immediately from the given bound on Bα. �

Remark 3.3. (i) It follows from the proof (or from the L1-differentiability) that
∫

Rd

∂α̺α(x) dx = 0.

(ii) The main theorem can be combined with the results of [5] on Sobolev regularity
of non-homogeneous equations in order to ensure the differentiability of α 7→ ̺α with
values in W r,1(Rd). For example, suppose that in the main theorem Aα, A

−1
α , ∇aij ,

and ∂αAα are uniformly bounded and

|bα|p + |∂αbα|p + |∂αdivAα|p ≤ CV + CV V
mW

with some p > d. Then we have the differentiability in W r,1(Rd) for any r < p.
(iii) Condition (1.6) has been essential in estimating the integral of the expression

|A−1/2
α Sα∇̺α|2/̺α and a similar integral for ̺α,N , since we have had an a priori

bound just for the integral of |∇̺α|2/̺α, so that a growing ‖Sα‖ could destroy this
estimate. However, under assumptions similar to those used in Corollary 1.5 it is
proved in [8] that there is a bound for the integral of |∇̺α|p/̺α with a sufficiently
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large p > d. This enables us to replace (1.6) by an exponential bound and make our
condition on ∂αAα closer to that of the condition on ∂αbα.

(iv) The main theorem and its corollaries extend to the case where the parameter
α takes values in R

n; this case can be also deduced from the scalar case.
(v) Analogous results can be obtained by the same method for equations on man-

ifolds; some ingredients of the proofs are already developed in [13].
(vi) Finally, let us observe that a similar method enables one to obtain higher

differentiability of ̺α with respect to α (considered in [18] for coefficients of class Ck
b ),

which will be the subject of another paper (in order not to overload this paper with
additional technicalities).

Remark 3.4. It would be tempting to prove the theorem along the following lines:
it is known that under our assumptions the solutions ̺α can be obtained as limits of
the normalized positive solutions to the equations L∗

α̺α,n = 0 on increasing domains
Un = {V < n}; e.g., one can use solutions to boundary value problems with constant
boundary conditions. Such solutions are differentiable with respect to α and the
derivative in α satisfies the required equation in Un. Then the problem is to obtain
convergence of these derivatives. Proposition 2.4 seems to be a suitable tool, moreover,
we apply it in a similar situation. However, in that situation we deal with zero
boundary condition, which is very essential.
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[13] V.I. Bogachev, M. Röckner, and F.-Y. Wang, Elliptic equations for invariant measures on finite
and infinite dimensional manifolds, J. Math. Pures Appl., 80 (2001), 177–221.

[14] A. Friedman, Partial Differential Equations of Parabolic Type, Prentice-Hall, Englewood Cliffs,
New Jersey, 1964.

[15] C. Evans and R.F. Gariepy, Measure Theory and Fine Properties of Functions, CRC Press,

Boca Raton – London, 1992.
[16] D. Gilbarg and N.S. Trudinger, Elliptic Partial Differential Equations of Second Order, Springer-

Verlag, Berlin – New York, 1977.
[17] N.V. Krylov, Controlled Diffusion Processes, Springer-Verlag, New York, 1980.

[18] E. Pardoux and A.Yu. Veretennikov, On the Poisson equation and diffusion approximation. II,
Ann. Probab., 31:3 (2003), 1166–1192.

[19] M. Reed and B. Simon, Methods of Modern Mathematical Physics I: Functional Analysis, 2nd
ed., Academic Press, San Diego – Toronto, 1980.

[20] S.V. Shaposhnikov, On interior estimates for the Sobolev norms of solutions of elliptic equations,
Matem. Zametki 83:2 (2008), 316–320 (in Russian); English transl.: Math. Notes, 83:1-2 (2008),
285–289.

[21] N.S. Trudinger, Linear elliptic operators with measurable coefficients, Ann. Scuola Normale
Super. Pisa (3) 27 (1973), 265–308.

[22] N.S. Trudinger, Maximum principles for linear, non-uniformly elliptic operators with measurable
coefficients, Math. Z., 156 (1977), 291–301.

[23] A.Yu. Veretennikov, On Sobolev solutions of Poisson equations in R
d with a parameter, J. Math.

Sci. (New York), 179:1 (2011), 48–79.
[24] W. Ziemer, Weakly Differentiable Functions, Springer-Verlag, New York – Berlin, 1989.


