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Reducts of the Generic Digraph

Lovkush Agarwal

School of Mathematics, University of Leeds, Leeds LS2 9JT, United Kingdom

Abstract

The generic digraph (D,E) is the unique countable homogeneous digraph that embeds all finite di-

graphs. In this paper, we determine the lattice of reducts of (D,E), where a structure M is a reduct

of (D,E) if it has domain D and all its ∅-definable relations are ∅-definable relations of (D,E). As

(D,E) is ℵ0-categorical, this is equivalent to determining the lattice of closed groups that lie in between

Aut(D,E) and Sym(D).

Keywords: Reduct, digraph, homogeneous structure, permutation group, closed group, canonical

function.

This paper is a part of a large body of work concerning reducts of first-order structures, where N is

said to be a reduct of M if all ∅-definable relations in N are ∅-definable in M. A common set-up is

that one studies the reducts of some given structure M, where two reducts which are interdefinable

are considered to be equal. These reducts form a lattice and when the structure is ℵ0-categorical this

is equivalent to studying the lattice of closed subgroups lying between Aut(M) and Sym(M).

The first results in this area were the classification of the reducts of (Q, <) ([1]) and of the random

graph Γ ([2]). In [3], Thomas conjectured that all homogeneous structures in a finite relational language

have only finitely many reducts. This question remains unsolved and continues to provide motivation

for study. More recent results include the classification of the reducts of (Q, <, 0) ([4]) and of the affine

and projective spaces over Q ([5]).

A surprising development in this area is the connection with constraint satisfaction in complexity

theory, by Bodirsky and Pinsker. This connection is made via clone theory in universal algebra.

In order to analyse certain closed clones they developed a Ramsey-theoretic tool, named ‘canonical
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functions’. With further developments ([6], [7]), canonical functions now provide a powerful tool in

studying reducts, for example, they were used to classify the reducts of the generic partial order ([8])

and of the generic ordered graph ([9]).

In this paper, we determine the lattice of reducts of the generic directed graph, which we denote by

(D,E). For us, a directed graph (or digraph) means a set of vertices with directed edges between them,

where we do not allow an edge going in both directions. The generic digraph is the unique countable

homogeneous digraph that embeds all finite digraphs. ‘Homogeneous’ means that every isomorphism

f : A→ B, where A,B ⊂ D are finite, can be extended to an automorphism of (D,E).

We outline the structure of the paper. In Section 1, we provide the necessary preliminary definitions and

facts about the generic digraph and about reducts. We also comment on some notational conventions

that we use. In Section 2, we define the reducts of the generic graph and provide the lattice, L,

that these reducts form. The main theorem is that this lattice L is the lattice of all the reducts of

the generic digraph. In Section 3, we describe the reducts in some detail, establishing notation and

important lemmas that are used in the rest of the paper. In Section 4, we show that L is indeed a

sublattice of the lattice of reducts. In Section 5, we prove that L does contain all the reducts of (D,E).

The section starts by describing the information that is obtained from the known classifications of the

random graph and the random tournament ([10]). We then give the background definitions and results

on canonical functions at the start of Section 5.2, and we also carry out the the combinatorial analysis

of the canonical functions in this section. Section 5 ends by using the analysis to complete the proof

of the main theorem. In Section 6, we provide a summary and some open questions.

We thank the referee for their thorough and detailed comments and corrections.

1. Preliminaries

1.1. Notational Conventions

We sometimes write ‘ab’ as an abbreviation for (a, b), e.g., we may write “Let ab be an edge of the

digraph D”. Structures are denoted by M,N , and their domains areM and N respectively. If A ⊆M ,
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Ac denotes the complement of A. Sym(M) is the set of all bijections M →M and Aut(M) is the set

of all automorphisms of M. Given a formula φ(x, y), we use φ∗(x, y) to denote the formula φ(y, x).

S(M) denotes the space of types of the theory of M. If f has domain A and (a1, . . . , an) ∈ An, then

f(a1, . . . , an) ..= (f(a1), . . . , f(an)). For ā, b̄ ∈Mn, we say ā and b̄ are isomorphic, and write ā ∼= b̄, to

mean that the function ai 7→ bi for all i such that 1 ≤ i ≤ n is an isomorphism.

There will be instances where we do not adhere to strictly correct notational usage, however, the

meaning will be clear from the context. For example, we may write ‘a ∈ (a1, . . . , an)’ instead of ‘a = ai

for some i such that 1 ≤ i ≤ n’. Another example is that we sometimes use c to represent the singleton

set {c} containing it. A third example is we may write ‘ā ∈ A’ instead of ‘ā ∈ An for some n’.

1.2. The Generic Digraph

Definition 1.1. (i) A directed graph (V,E) consists of a set V and an irreflexive, antisymmetric

relation E ⊆ V 2. V represents the set of vertices and E represents the set of directed edges, so

if (a, b) ∈ E, we visualise it as an edge going out of a and into b. We abbreviate ‘directed graph’

by ‘digraph’.

(ii) By an empty digraph we mean a digraph whose edge set is empty.

(iii) We say that a structure M is homogeneous if every isomorphism f : A → B, where A,B are

finite substructures of M, can be extended to an automorphism of M.

(iv) The generic digraph, which we denote by (D,E), is the unique (up to isomorphism) countable

homogeneous digraph that embeds all finite digraphs.

(v) N(x, y) will denote the non-edge relation of (D,E), so N(x, y) ..= ¬E(x, y) ∧ ¬E∗(x, y).

The fact that the generic digraph exists and is unique follows from the theory of Fräıssé limits and

amalgamation classes, originally described in [11]. Details and proofs can be found in [12].

The following lemma collects several useful properties of the generic digraph.

Lemma 1.2. (i) Th((D,E)) is ℵ0-categorical and has quantifier elimination.
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(ii) Let ā, b̄ ∈ D. If tp(ā) = tp(b̄), then there exists an automorphism mapping ā to b̄.

(iii) The generic digraph (D,E) is the unique, up to isomorphism, countable digraph satisfying the

following extension property: for all finite pairwise disjoint subsets U, V,W ⊂ D there exists

x ∈ D\(U ∪ V ∪W ) such that (∀u ∈ U)E(x, u), (∀v ∈ V )E(v, x) and (∀w ∈W )N(x,w).

(iv) All countable digraphs can be embedded into the generic digraph.

(v) Let A ⊆ D and B = Ac. Then (A,E|A) or (B,E|B) is isomorphic to the generic digraph.

(vi) For all a, b ∈ D there is c ∈ D such that ac and cb are edges.

Remark. Due to the importance of the property in (iii), we give it the name ‘the extension property’.

Remark. As a result of (ii), there is bijective correspondence between n-types and orbits of n-tuples.

Given a type p(x̄) one obtains the orbit {x̄ ∈ D tp(x̄) = p}, and given an orbit A ⊂ Dn one obtains

the type p(ā), where ā ∈ A. In this light, and as has become customary in modern model theory, we

sometimes blur the distinction between a type and the set of tuples that realise that type.

Proof. (i) This is an instance of the more general statement that any countable homogeneous structure

in a finite relational language is ℵ0-categorical and has quantifier elimination. See [12] for details.

(ii)-(iv) These are standard results and left to the reader. We note that a back and forth argument is

used for (iii) and a forth argument is used for (iv).

(v) Suppose for contradiction that both (A,EA) and (B,EB) fail the extension property. Let U1, V1,W1 ⊂

A and U2, V2,W2 ⊂ B witness this failure. Now let U = U1 ∪U2, V = V1 ∪ V2 and W =W1 ∪W2. Let

x ∈ D be a witness of the extension property for U, V,W in D. But since x has to be in A or in B,

this contradicts how Ui, Vi and Wi were initially chosen.

(vi) Follows straightforwardly from homogeneity.
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1.3. Reducts

Let M be a structure. A relation P ⊆ Mk is ∅-definable in M if there exists a formula φ(x1, . . . , xk)

in the language of M such that P = {(x1, . . . , xk) ∈Mk : M |= φ(x1, . . . , xk)}.

Let M and N be two structures on the same domain M . We say that N is a reduct of M if for all

k ∈ N and all relations P ⊂ Mk, if P is ∅-definable in N then P is ∅-definable in M. We say N is a

proper reduct of M if N is a reduct of M but M is not a reduct of N .

In this article we determine all the reducts of the generic digraph, with the caveat that if two structures

are reducts of each other (which implies they are ∅-interdefinable) we regard them as being equal.

For the sake of conciseness, we choose not include the phrase “up to ∅-interdefinability” where we

strictly ought to, with the understanding that we always consider two reducts that are first-order

∅-interdefinable to be equal.

An important fact about the reducts of a fixed structureM is that they form a lattice, where N ≤ N ′ if

N is a reduct of N ′. The top element is always the original structure M and the bottom element is the

trivial structure (M,=). The meet (respectively join) of two structures N and N ′ will be the structure

whose named relations are precisely the ∅-definable relations that are definable in both (respectively

in at least one of) N and N ′. In addition to determining what the reducts of the generic digraph are,

we also determine how they relate in this lattice.

There is a second, closely related notion of a reduct known as a group reduct. We say that N is a

group reduct of M if Aut(N ) ≥ Aut(M). The group reducts of a fixed structure M form a lattice via

the usual inclusion operation; the bottom element is Aut(M) and the top element is always Sym(M).

As a consequence of the Engeler–Ryll-Nardzewski–Svenonius theorem (see [12]), if M is ℵ0-categorical

then the lattice of reducts is anti-isomorphic to the lattice of group-reducts. In one direction, a reduct

N is mapped to its automorphism group Aut(N ). In the other direction, given a group reduct G one

lets N be the structure whose n-ary relations are the orbits of the action of G on Mn (where for all

g ∈ G, x̄ ∈Mn, g · x̄ = g(x̄)). In this light, we use the word ‘reduct’ to refer to either notion, with the

meaning being clear from the context.
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Furthermore, the group reducts ofM are exactly the closed groups G ≤ Sym(M) that contain Aut(M).

We recall the topology on Sym(M) by describing what it means for a set to be closed: We say that

g ∈ Sym(M) is in the closure of F ⊂ Sym(M) if for all finite A ⊂ M , there exists f ∈ F such that

f(a) = g(a) for all a ∈ A. Then, F is closed if F is equal to the closure of itself.

From the above discussion, since (D,E) is ℵ0-categorical, the task of determining its reducts is the

same as determining its group reducts, which in turn is the same as determining the closed groups G

where Aut(D,E) ≤ G ≤ Sym(D).

2. Defining the Reducts

One can define a reduct by adding a function f ∈ Sym(D) to Aut(D,E), then closing under group

operations and closing under the topology. Alternatively, one first defines a relation, P say, and then

defines the reduct to be the automorphism group of (D,P ). In view of this, we establish some notation:

(i) Let G be a topological group (e.g. Sym(D)). For F ⊆ G, let 〈F 〉 denote the smallest closed

subgroup of G containing F . For brevity, when it is clear we are discussing reducts of (D,E), we

may abuse notation and write 〈F 〉 to mean 〈F ∪ Aut(D,E)〉.

(ii) Let G be a group. For F ⊆ G, we let clg(F ), the group closure of F , denote the smallest

subgroup of G containing F . As above, we may abuse notation where it is clear we are discussing

supergroups of Aut(D,E).

We begin by showing that three particular functions −, sw and rot exist. These functions will give us

the three reducts 〈−〉, 〈sw〉 and 〈rot〉.

Lemma 2.1. There exists f ∈ Sym(D) such that for all x, y ∈ D, E(f(x), f(y)) iff E(y, x).

Remark. For the rest of this article, we fix such a bijection and denote it by −.

Proof. The idea is to define a structure (D,E′) that is isomorphic to (D,E) so that any isomorphism
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f : (D,E′) → (D,E) has the desired property. For this lemma, we let E′(x, y) = E∗(x, y). The fact

that (D,E′) ∼= (D,E) follows straightforwardly from the extension property.

Lemma 2.2. Let a ∈ D. Then there exists f ∈ Sym(D) such that

E(f(x), f(y)) if and only if



















E(x, y) and x, y 6= a, OR,

E∗(x, y) and x = a ∨ y = a

Remark. For the rest of this article, we fix such a bijection and denote it by sw.

Proof. Use the same strategy as the previous lemma, but define E′(x, y) as follows:

E′(x, y) ..=



















E(x, y), if x, y 6= a

E∗(x, y), otherwise

Lemma 2.3. Let a ∈ D. Then there exists f ∈ Sym(D) such that

E(f(x), f(y)) if and only if







































x, y 6= a and E(x, y)

x = a and N(x, y)

y = a and E∗(x, y)

Remark. For the rest of this article, we fix such a bijection and denote it by rot.

Remark. In words, rot sends edges going out of a, to edges going into a, to non-edges, to edges going

out of a.

Proof. Use the same strategy as for − and sw.

Definition 2.4. (i) We let Γ = (D,EΓ), where EΓ
..= E(x, y) ∨ E∗(x, y). Γ is a graph and, as will

be proved later, is in fact (isomorphic to) the random graph.

(ii) We let −Γ ∈ Sym(D) be a function which interchanges the sets of edges and non-edges in Γ.
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(iii) Let a ∈ D. We let swΓ ∈ Sym(D) be a function which interchanges the sets of edges and

non-edges adjacent to a, and preserves all other edges and non-edges.

Remarks. (D,EΓ) is ∅-interdefinable with (D,N). The existence of −Γ and swΓ follows from the same

argument as was used for −, sw and rot.

We now have all the background definitions necessary to state the main theorem:

Theorem 2.5. The reducts of (D,E) are given by the following lattice, which we call L:

Aut(D,E)

〈sw〉 〈−〉

〈sw,−〉

Aut(Γ)

〈swΓ〉 〈−Γ〉

〈swΓ,−Γ〉

Sym(D)

〈rot〉

〈−, rot〉

This theorem can be split into two main claims: that L is a sublattice of the reducts of (D,E) (so for

example one needs to show that the meets and joins are correct), and that L contains all the reducts

of (D,E).

3. Understanding the reducts

In this section we establish several useful lemmas that are used throughout the rest of the article. The

first few lemmas will provide a concrete description of the three groups 〈sw〉, 〈−〉 and 〈rot〉. We do

this by comparing how two functions behave, via the following definition.

Definition 3.1. Let f, g : D → D and A ⊂ D. We say f behaves like g on A if for all finite tuples

ā ∈ A, f(ā) is isomorphic (as a finite digraph) to g(ā). If A = D, we simply say f behaves like g.
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Example. All automorphisms of (D,E) behave like the identity id : D → D. Conversely, all f ∈

Sym(D) which behave like id are automorphisms.

Useful Remark. If f : D → D is any function and g ∈ Aut(D,E), then h ..= g ◦ f behaves like f .

The converse is also true if f, h are bijections: if h ∈ Sym(D) behaves like f ∈ Sym(D), then there is

g ∈ Aut(D,E) such that h = g ◦ f .

We start with the simplest of the three groups, 〈−〉.

Lemma 3.2. Let f ∈ Sym(D). Then f ∈ 〈−〉\ Aut(D,E) ⇔ f behaves like −.

Proof. “⇐”. Suppose f behaves like −. Then observe that g ..= −◦f behaves like id so g ∈ Aut(D,E).

Hence, f = −−1 ◦ g ∈ 〈−〉.

“⇒”. Follows from the observation that all elements of clg(−)\Aut(D,E) behave like −.

Next we look at 〈sw〉. For A ⊂ D, we let swA : D → D denote a function that behaves like id on A

and Ac, and that switches the direction of all edges between A and Ac. For example, sw = swa for

some a ∈ D and sw∅ is just an automorphism. The fact that swA exists for all A ⊆ D follows from the

fact that all countable digraphs are embeddable in the generic digraph (Lemma 1.2). If possible, we

choose swA to be a bijection. Note that there are cases where swA cannot be a bijection, namely when

the image of swA is not isomorphic to the generic digraph. For example, let A = {x ∈ D : E(a, x)}

where a is some element of D, then swA(a) will not have any outward edges in its image.

Lastly, we define a 3-ary relation Psw as follows:

Psw(x, y, z) ..=(E(x, y) ∧ E(y, z) ∧ E(x, z))

∨(E∗(x, y) ∧ E∗(y, z) ∧ E(x, z))

∨(E∗(x, y) ∧ E(y, z) ∧ E∗(x, z))

∨(E(x, y) ∧ E∗(y, z) ∧ E∗(x, z))

In words, a function f preserves Psw if f preserves non-edges and if for all tournaments on three

vertices f changes the direction of exactly 0 or 2 edges. Note that swA preserves Psw for all A.
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Lemma 3.3. (i) clg(sw) = {f ∈ Sym(D) : f behaves like swA, for some finite A ⊂ D}.

(ii) For all proper non-empty A ⊂ D, if swA ∈ Sym(D) then 〈swA〉 = 〈sw〉.

(iii) 〈sw〉 = {f ∈ Sym(D) : f behaves like swA, for some A ⊆ D} = {f ∈ Sym(D) : f preserves

Psw(x, y, z)}

Proof. For all of this proof, let a ∈ D be the point such that sw = swa.

(i) RHS ⊆ LHS. Let f behave like swA. We prove that f ∈ clg(sw) by induction on |A|. For the base

case, let A = {a′} and observe that sw ◦ h behaves like swa′ where h ∈ Aut(D,E) maps a′ to a. By

the useful remark above, this completes the base case. Now let n > 1 and let A = {a1, . . . , an} ⊂ D.

Let A′ = {a2, . . . , an} and let a′ = swA′(a1). Then consider the function swa′ ◦swA′ . By the inductive

hypothesis this function is in clg(sw). Also, this function behaves like swA, as required.

LHS ⊆ RHS. Follows from the following observation: If f behaves like swA and a′ = f−1(a), then

sw ◦ f behaves like swA△{a′}. (‘△’ denotes symmetric difference.)

(ii) Let A be a proper non-empty subset of D such that swA is a bijection. The fact that swA ∈ 〈sw〉

follows straightforwardly from the definitions and (i). To show the converse, it suffices to prove that

for all a1, . . . an ∈ D there exist b1, . . . , bn ∈ D such that ā ∼= b̄ and A ∩ b̄ = {b1} or {b2, . . . , bn}. This

is immediate by homogeneity if A or Ac is finite, so suppose that A is infinite and coinfinite.

We complete the proof by induction on the length n of the tuple ā. The base case n = 1 is trivial so

let (a1, . . . , an+1) be any tuple of length n + 1. By the inductive hypothesis, we can find (b1, . . . , bn)

isomorphic to (a1, . . . , an) where A ∩ b̄ = {b1} or {b2, . . . , bn}. Without loss we may assume that

A ∩ b̄ = {b1}. If we can find x ∈ Ac such that (b1, . . . , bn, x) ∼= ā, then we are done, so from now on

assume that (b1, . . . , bn, x) ∼= ā implies x ∈ A.

Now consider a tuple (c1, . . . , cn+1) satisfying the following three conditions: c1 is any element of

Ac\{b2, . . . , bn}, c̄ ∼= ā, and for each 2 ≤ i ≤ n + 1, (b1, . . . , bn, ci) ∼= ā. The first condition can

be satisfied as Ac is infinite. The latter two conditions can be satisfied by the extension property.

By the third condition, c2, . . . , cn+1 ∈ A. So (c1, . . . , cn+1) satisfies all the conditions that we want,
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completing the induction and hence the proof.

(iii) If f behaves like swA for some A ⊆ D then f ∈ 〈sw〉, by part (ii). Also, since sw and sw−1

preserve Psw then every element of 〈sw〉 does too. It remains to be shown that if f preserves Psw then

f behaves like swA for some A ⊆ D.

To this end suppose that f preserves Psw. Let a′ ∈ D be any element. Then let A ⊂ D be the set of

vertices v such that there exists u such that a′u is an edge, uv is an edge and f switches the direction

of exactly one of these two edges.

We claim that f behaves like swA. This amounts to case checking which we leave to the reader. Note

that Lemma 1.2 (vi) is implicitly used in this proof. We provide one case as an example.

Case 1: We need to show that f behaves like id on A, so let v1, v2 be any edge in A. Then let u1, b = u2

be the vertices for v1, v2, respectively, given by the definition of A; without loss assume that f switches

the edges a′u1 and a′u2. Now let d be a sixth vertex which is adjacent to a′, a1, a2, b1 and b2. But now

because f preserves Psw, it is possible to see that f switches a1d if and only if f switches a2d. But

then again because f preserves Psw, this implies that f must not switch the direction of a1a2. Thus

f fixes the direction of all the edges in A, as required.

The next reduct we analyse is 〈rot〉. For what follows, A,B ⊆ D are disjoint and C ..= (A ∪B)c. For

the ordered pair (A,B), an outward edge is an edge going from A to B and an inward edge is one

going from B to A. We say f : D → D behaves like rot between (A,B), or say ‘between A and B’, if

f maps outward edges to inward edges to non-edges to outward edges. We let rotA,B,C be a function

D → D which behaves like id on A,B and C and behaves like rot between (A,B), (B,C) and (C,A).

We often omit C from the subscript as its role is implicitly determined by A and B. If C = ∅, so that

B = Ac, we just write rotA. If possible we choose rotA,B,C to be a bijection.

Simple observations. rot = rota for some a ∈ D. rotB,C,A and rotC,A,B both behave like rotA,B,C . If

f behaves like rotA,B,C and f fixes A,B and C setwise, then f2 and f−1 behave like rotC,B,A, and f
3

behaves like id.
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Lastly, we define 3-ary relations for rot. These relations correspond to the orbits of clg(rot) acting on

(D,E). We describe the orbits diagrammatically:

This diagram contains all the possible digraphs on three vertices. Each row of the diagram represents

one of the orbits and hence, one of the relations that 〈rot〉 preserves. Let Prot,1, Prot,2 and Prot,3 be

the relations corresponding to the top, middle and bottom row respectively. One feature worth noting

is that given any triple in D, making a change to exactly one (non-)edge of that triple causes a change

in the orbit the triple is in.

Lemma 3.4. (i) clg(rot) = {f ∈Sym(D) : f behaves like rotA,B where A,B are finite}.

(ii) Let A,B be proper disjoint subsets of D such that at least one of A or B is non-empty. If rotA,B ∈

Sym(D), then 〈rotA,B〉 = 〈rot〉.

(iii) 〈rot〉 = {f ∈Sym(D) : f behaves like rotA,B where A,B are disjoint subsets of D} = {f ∈

Sym(D) : f preserves Prot,i, i = 1, 2, 3}.

Proof. For this proof, let a ∈ D be the point such that rot = rota.

(i) RHS ⊆ LHS. It suffices to show that rotA,B ∈ clg(rot). We start by showing that rota′ ∈ clg(rot)

for all a′ ∈ D. This is easy: let h ∈ Aut(D,E) map a′ to a then consider rot ◦ h.

For the general case, let A = {a1, . . . , an} and B = {b1, . . . , bm}. The idea is to rotate twice about

each element of A and rotate once about each element of B - we leave the details to the reader.

LHS ⊆ RHS. Any f ∈ clg(rot) can be written in the form gnrot
ǫn . . . g1rot

ǫ1g0 where for all i, ǫi ∈

{1,−1}. Since rot−1 behaves like rot2, we can assume that ǫi = 1 for all i. We prove by induction on

n that there exist finite disjoint A,B ⊂ D such that f behaves like rotA,B .
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The base case n = 0 is trivial, so assume that we know h = gn−1rot . . . g1rotg0 behaves like rotA,B

for finite A,B, and we consider f = gnrot h. There are three cases depending on a′ ..= h−1(a). If

a′ /∈ A ∪B, then f behaves like rotA,B∪{a′}. If a
′ ∈ B, then f behaves like rotA∪{a′},B\{a′}. Lastly, if

a′ ∈ A, then f behaves like rotA\{a′},B . This completes the induction and hence the proof.

(ii) Let A,B ⊆ D be as described in the lemma, and let C = (A ∪B)c. Using (i) it is straightforward

to show that rotA,B ∈ 〈rot〉. To show the converse, it suffices to show that rot or rot−1 ∈ 〈rotA,B〉.

If one of A,B or C is empty, then we are done by imitating the corresponding argument for 〈sw〉. So

assume A,B and C are all non-empty. If (B ∪ C,EB∪C) is isomorphic to the generic graph, then we

can ignore A and again imitate the argument from the switching case to get the result.

Hence, assume that B ∪ C is not isomorphic to the generic digraph. This means there exist finite,

pairwise disjoint U, V,W ⊂ B ∪ C such that if x ∈ D satisfies φ(x) ..= (∀u ∈ UE(u, x)) ∧ (∀v ∈

V E∗(v, x)) ∧ (∀w ∈WN(w, x)), then x ∈ A.

Suppose that there exists c ∈ C ∩ (U ∪ V ∪W ). We will show that for all (d1, . . . , dn) ∈ D, there

exists a2, . . . , an ∈ A such that (c, a2, . . . , an) ∼= (d1, . . . , dn); this is sufficient to show that rot ∈

〈rotA,B〉. So, let (d1, . . . , dn) ∈ D. Then let (a2, . . . , an) ∈ D be such that D |= φ(a2), . . . , φ(an)

and (c, a2, . . . , an) ∼= (d1, . . . , dn). Such ai exist by the homogeneity of (D,E). Since φ(ai) for all i,

(a2, . . . , an) has to be in A, as required, so rot ∈ 〈rotA,B〉.

Now suppose that C ∩ (U ∪W ∪ V ) = ∅, so there must be b ∈ B ∩ (U ∪ V ∪W ). By repeating the

argument above, we can show that rot−1 ∈ 〈rotA,B〉, so we are done.

(iii) If f behaves like rotA,B for some disjoint A,B ⊆ D then by part (ii) we know that f ∈ 〈rot〉.

Also, since rot and rot−1 preserve Prot,i then every element of 〈rot〉 does too. It remains to be shown

that if f preserves Prot,i for i = 1, 2, 3 then f behaves like rotA,B for some disjoint A,B ⊆ D.

We find A and B as follows. Pick any a ∈ D. Let A = {a} ∪ {x ∈ D : E(a, x) ∧ E(f(a, x))

or E∗(a, x) ∧ E∗(f(a, x)) or N(a, x) ∧ N(f(a, x))}. Let B = {x ∈ D : E(a, x) ∧ E∗(f(a, x)) or

E∗(a, x) ∧N(f(a, x)) or N(a, x) ∧ E(f(a, x))}.
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We claim that f behaves like rotA,B . This amounts to case checking, which we leave to the reader.

We provide one case as an example.

Case 1. We need to show that f behaves like id on A. Suppose not, and let a1, a2 ∈ A witness this

fact. Then we have (a, a1, a2) such that f only changes what happens between a1 and a2, contradicting

that f preserves Prot,i.

The descriptions of 〈−, sw〉 and 〈−, rot〉 are straightforward:

Lemma 3.5. (i) 〈−, sw〉 = {f ∈ Sym(D) : f = g or − ◦ g for some g ∈ 〈sw〉}.

(ii) 〈−, rot〉 = {f ∈ Sym(D) : f = g or − ◦ g for some g ∈ 〈rot〉}.

Proof. (i) 〈−, sw〉 preserves the 6-ary relation Psw,w ..= Psw(x̄) ↔ Psw(ȳ). Now let f ∈ 〈−, sw〉. Then

f must preserve Psw,w, which implies that f or − ◦ f preserves Psw, so we are done by Lemma 3.3.

(ii) 〈−, rot〉 preserves the 6-ary relation Prot,w ..= (Prot,1(x̄)∧Prot,1(ȳ))∨ (Prot,2(x̄)∧Prot,2(ȳ)). Then

continue as in (i).

The next lemmas will give us conditions on a group G to be equal to Sym(D) or to contain Aut(Γ).

Lemma 3.6. Let G ≤ Sym(D) be a closed supergroup of Aut(D,E).

(i) If G is n-transitive for all n ∈ N, then G = Sym(D). Note that G is n-transitive if for all pairs

of tuples x̄, ȳ ∈ Dn, there exists g ∈ G such that g(x̄) = ȳ.

(ii) If G is n-homogeneous for all n ∈ N, then G = Sym(D). Note that G is n-homogeneous if for all

subsets A,B ⊂ D of size n, there exists g ∈ G such that g(A) = B.

(iii) Suppose that whenever A ⊂ D is finite and has edges, there exists g ∈ G such that g(A) has less

edges than A has. Then G = Sym(D).

(iv) Suppose that there exists a finite A ⊂ D and g ∈ G such that g behaves like id on D\A, g behaves

like id between A and D\A, and g deletes at least one edge in A. Then G = Sym(D).
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Proof. (i) Well-known and easy result in permutation group theory.

(ii) We will show that G is n-transitive, so let ā, b̄ ∈ D be tuples of length n. Then by n-homogeneity

we can map ā to the empty digraph, and again by n-homogeneity we can map the empty digraph to b̄.

(iii) By repeatedly using the assumptions given in the lemma, we can map any finite set A to the

empty digraph. This implies that G is n-homogeneous so we are done by (ii).

(iv) Let A and g be as in the lemma. We will show that for all finite B ⊂ D, if B contains edges then

there is f ∈ G such that f(B) has less edges than B - this suffices by (iii). So let B ⊂ D be finite.

Let bb′ be an edge in B, and let aa′ ∈ A be an edge that is deleted by g. Let h be an automorphism

mapping bb′ to aa′ and all other elements of B to elements of D\A. Then gh ∈ G and gh(B) contains

less edges than in B, as required.

We know look at the reduct Aut(Γ).

Lemma 3.7. Γ is isomorphic to the random graph.

Proof. It suffices to show that Γ ..= (D,EΓ) satisfies the extension property of the random graph. This

follows immediately from the extension property of the digraph (Lemma 1.2).

Terminology. Let a1, . . . , an, b1, . . . , bn ∈ D. We say ā and b̄ are isomorphic as graphs if N(ai, aj) ↔

N(bi, bj) for all i, j.

Lemma 3.8. Let G ≤ Sym(D) be a closed supergroup of Aut(D,E).

(i) Suppose that whenever ā and b̄ are isomorphic as graphs, there exists g ∈ G such that g(ā) = b̄.

Then G ≥ Aut(Γ).

(ii) Suppose that for all A = {a1, . . . , an} ⊂ D, there exists g ∈ G such that for all edges aiaj in A,

E(g(ai), g(aj)) iff i < j. (Intuitively, such a g is switching the edges so they all point in the same

direction.) Then, G ≥ Aut(Γ).
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(iii) Suppose that for all finite A ⊂ D and all edges aa′ ∈ A there is g ∈ G such that g changes the

direction of aa′ and behaves like id on all other edges and non-edges of A. Then G ≥ Aut(Γ).

(iv) Suppose there is a finite A ⊂ D and a g ∈ G such that g behaves like id on D\A, g behaves like

id between A and D\A, and g switches the direction of some edge in A. Then, G ≥ Aut(Γ).

Proof. (i) Follows immediately from the definitions.

(ii) Let ā1, ā2 ∈ D be isomorphic as graphs and let g1, g2 ∈ G be the functions as described in the

lemma for these tuples. Then g1(ā1) is isomorphic to g2(ā2) as digraphs. Thus we can get from ā1 to

ā2 using functions in G, so we are done by (i).

(iii) Let ā, b̄ ∈ D be isomorphic as graphs. Then by repeatedly using the condition in the lemma, we

can switch the appropriate edges in ā to end up with b̄. Thus we are done by (i).

(iv) Let A and g be as stated in the lemma, and let aa′ ∈ A be an edge whose direction is switched by

g. Now let B ∈ D be finite and let bb′ be any edge in b̄. By homogeneity there is an automorphism h

mapping bb′ to aa′ and all other elements of B to D\A. Then applying g ◦ h to B switches the edge

bb′ and behaves like id everywhere else. Thus we are done by (iii).

4. L is a sublattice of the reducts of (D,E)

Please note a convention that we will use for the remainder of the article. There will be proofs where

we map some digraph A to a digraph B, that involve composing a sequence of functions f1, f2, . . .,

where the definition of each one depends on those defined earlier. For example, we may have defined

f1 and f2, and f3 is going to be a switching function. The convention is that we write ‘Let f3 be swA′ ’

(where A′ will be a particular subset of A), instead of the strictly correct ‘Let f be swf2f1(A′)’.

There are two main benefits. First, the proofs will be easier to follow and will better match the

intuition behind the argument. Second, we can avoid naming the functions altogether. We can use

phrases like ‘First switch about the subset A1, then apply rot about the point a’, whereas without the

convention we would have to say ‘...then apply rot about the point which is the current image of a’.
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Lemma 4.1. (i) 〈−〉, 〈sw〉 and 〈rot〉 are proper reducts of Aut(D,E).

(ii) 〈−〉, 〈sw〉 and 〈rot〉 are not reducts of each other.

(iii) 〈−, sw〉 is a proper reduct of 〈−〉 and 〈sw〉, and is not equal to Sym(D).

(iv) Γ is a proper reduct of 〈−, sw〉

(v) 〈−, rot〉 is a proper reduct of 〈−〉 and 〈rot〉, and is not equal to Sym(D).

(vi) The join of 〈rot〉 and 〈sw〉 is Sym(D).

(vii) The meet of 〈sw〉 and 〈−〉 is Aut(D).

(viii) The meet of 〈rot〉 and 〈swΓ,−Γ〉 is Aut(D).

(ix) The meet of 〈−, rot〉 and 〈swΓ,−Γ〉 is 〈−〉.

Proof. (i) This is immediate from the definitions.

(ii) We need to identify for each reduct a relation that it preserves but which the other two do not

preserve. For 〈−〉 the relation is Ew, for 〈sw〉 the relation is Psw and for 〈rot〉 we use Prot,1.

(iii) By (ii), 〈−, sw〉 is a proper reduct of 〈−〉 and 〈sw〉. It preserves Psw,w, so 〈−, sw〉 6= Sym(D).

(iv) Both − and sw preserve N(x, y), so 〈−, sw〉 ⊆ Aut(D,N) = Γ. Γ is a proper reduct because

〈−, sw〉 preserves Psw,w but Γ does not.

(v) By (ii), 〈−, rot〉 is a proper reduct of 〈−〉 and 〈rot〉. It preserves Prot,w, so 〈−, rot〉 6= Sym(D).

(vi) By Lemma 3.6 (iii), it suffices to show that for all finite A ⊂ D we can delete edges from A, if it has

any, by applying functions from 〈sw, rot〉. So let A ⊂ D be finite, let a ∈ A be a point adjacent to at

least one edge, and let A1 = {a′ ∈ A : E(a, a′)}, A2 = {a′ ∈ A : E(a′, a)} and A3 = {a′ ∈ A : N(a, a′)}.

First, switch about the subset A1, so all the edges adjacent to a are now inward edges. Then apply

rot2a: the edges between a and A1 ∪ A2 become outward edges, and the non-edges between a and A3

become inward edges. Then apply swA1∪A2
: between a and A\{a} we now only have inward edges.
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Applying rota for the last time results in all these edges becoming non-edges. The number of edges

within A\{a} are unchanged, so we have reduced the number of edges in A, as required.

(vii) Let f ∈ 〈−〉 ∩ 〈sw〉. By Lemma 3.3, f behaves like swA for some A ⊆ D, so there exists an edge

whose direction f does not switch, so f does not behave like −. Hence, by Lemma 3.2, f ∈ Aut(D,E).

(viii) For A ⊂ D, we say f : D → D behaves like swΓ,A if f preserves edges and non-edges on A and Ac

and if f swaps all edges and non-edges between A and Ac. Then by folklore (or by [2]), 〈swΓ〉 = {f ∈

Sym(D) : f behaves like swΓ,A for some A ⊆ D}, and 〈−Γ, swΓ〉 = {f ∈ Sym(D) : ∃g ∈ 〈swΓ〉 such

that f = g or f = −Γ ◦ g}.

With this established, the proof consists of straightforward case checking, which we leave to the reader.

(ix) Let f ∈ 〈−, rot〉 ∩ 〈swΓ,−Γ〉. By Lemma 3.5, and by composing with − if necessary, we may

assume that f ∈ 〈rot〉, so we are done by (viii).

5. L contains all the reducts

The task of showing that L contains all the reducts is split up into these lemmas:

Lemma 5.1. Let G be a reduct of Aut(D,E). Then either G contains Aut(Γ), is contained in Aut(Γ),

or contains 〈rot〉.

Lemma 5.2. Let G be a reduct of Aut(D,E) that contains Aut(Γ). Then G = Γ, 〈swΓ〉, 〈−Γ〉, 〈swΓ,−Γ〉

or Sym(D).

Lemma 5.3. Let G be a reduct of Aut(D,E) that is contained in Aut(Γ). Then G =Aut(D,E), 〈sw〉,

〈−〉, 〈sw,−〉 or Aut(Γ).

Lemma 5.4. Let G be a reduct of Aut(D,E) that contains 〈rot〉. Then G = 〈rot〉, 〈rot,−〉 or Sym(D).

The main tool that will be used to prove these lemmas will be that of canonical functions, as developed

by Bodirsky and Pinsker in [6] and [7]. However, before delving into the use of canonical functions,

the next subsection describes the details that are obtained by other means.
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5.1. Using the classification of the reducts of the random graph and of the random tournament

Knowing the reducts of the random graph is evidently necessary for this result, but it is also helpful

to know the reducts of the random tournament. We begin by stating these two classifications.

Notation.

(i) We let T = (T,ET ) denote the random tournament. This can be defined as the countable

homogeneous tournament which embeds all finite tournaments. Note that a tournament is a

digraph that does not contain any non-edges.

(ii) Let −T denote a function which switches the direction of all edges in the random tournament.

(iii) Let swT denote a function which switches the direction of only those edges that are adjacent to

a particular fixed vertex.

Theorem 5.5. (i) (Thomas [2].) The reducts of the random graph are: Γ, 〈swΓ〉, 〈−Γ〉, 〈swΓ,−Γ〉

and the full symmetric group.

(ii) (Bennett, [10].) The reducts of the random tournament are: Aut(T,ET ), 〈swT 〉, 〈−T 〉, 〈swT ,−T 〉

and the full symmetric group Sym(T ).

We immediately get:

Proof of Lemma 5.2. This is exactly the statement of Theorem 5.5 (i).

Theorem 5.5 (ii) contributes to the proof of Lemma 5.3, via the following construction.

Definition 5.6. (i) Let f : M → N be a function between two structures. The behaviour of f ,

beM,N (f), is the relation {(p, q) ∈ S(M)× S(N ) : ∃ā ∈M, b̄ ∈ N such that tp(ā) = p, tp(b̄) = q

and f(ā) = b̄}. If M = N we write beM(f). We omit the subscript altogether if it is clear which

structures we are considering.

(ii) Let M be any structure and F ⊆ Sym(M). The behaviour of F , beM(F ), is defined to be

⋃

f∈F beM(f).
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(iii) Let G be a reduct of (D,E). We define Θ(G) to be {f ∈ Sym(T ) : beT (f) ⊂ be(D,E)(G)}.

In words, Θ(G) contains those functions whose action on finite sets can be replicated by functions in

G. The intuition is that Θ(G) tells us what G can do to tournaments. The idea behind this concept

is as follows: Θ(G) is a reduct of T , so by Theorem 5.5 Θ(G) has five different possibilities. Now if

we assume that G fixes non-edges, G can only change the direction of edges. From this, one might

suspect that G is determined by how it behaves on tournaments, i.e., that G is determined by Θ(G).

The following lemma captures two of the key properties that make this a useful construction.

Lemma 5.7. Let G be a reduct of (D,E). Then:

• Θ(G) is a reduct of T .

• be(Θ(G)) = be(G) ∩ (S(T )× S(T )).

Proof. Follows straightforwardly from the definitions and a back-and-forth argument, and is left as an

exercise for the reader.

Lemma 5.8. Let G be a reduct of (D,E) contained in Aut(Γ). Then:

(i) G =Aut(D,E) ⇔ Θ(G) =Aut(T,ET ).

(ii) G = 〈sw〉 ⇔ Θ(G) = 〈swT 〉.

(iii) G = 〈−〉 ⇔ Θ(G) = 〈−T 〉.

(iv) G = 〈sw,−〉 ⇔ Θ(G) = 〈swT ,−T 〉.

Proof. By Lemma 5.7 and Theorem 5.5, Θ(G) = Aut(T,ET ), 〈swT 〉, 〈−T 〉, 〈swT ,−T 〉 or Sym(T ).

(i) Follows immediately by considering the contrapositive statements.

(ii) “⇒”. By (i), Θ(〈sw〉) 6= Aut(T,ET ). Suppose for contradiction that Θ(〈sw〉) contains 〈−T 〉.

This implies that there is g ∈ 〈sw〉 which switches the direction of all the edges of some 3-element

tournament in D. So g does not preserve Psw, contradicting Lemma 3.3.
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“⇐”. Suppose Θ(G) = 〈swT 〉. Since 〈swT 〉 preserves Psw, G also preserves Psw. By Lemma 3.3, we

get that G = Aut(D,E) or 〈sw〉. But it cannot be the former option, so G = 〈sw〉.

(iii) Same arguments as for part (ii).

(iv) “⇒”. This is proved similarly to previous cases.

“⇐”. Suppose Θ(G) = 〈swT ,−T 〉. This implies G preserves Psw,w, which implies that G ≤ 〈sw,−〉.

In 〈swT ,−T 〉, there is a function that does not preserve sw, so there is a function g ∈ G which does

not preserve sw. Hence, by Lemma 3.5, g = −◦ g′ where g′ ∈ sw. Then g2 will be in 〈sw〉\Aut(D,E).

Hence, by Lemma 3.3, G ≥ 〈sw〉. By composing g with an appropriate element of 〈sw〉, we get that

− ∈ G. Hence, we have that G ≥ 〈sw,−〉. Thus, G = 〈sw,−〉, as required.

This lemma almost completes the proof of Lemma 5.2. What is left to prove is that if 〈−, sw〉 < G ≤

Aut(Γ), then G = Aut(Γ). We believe that this can be proved using Θ(G), without the need of

canonical functions, but the combinatorics involved were just out of our reach.

5.2. Canonical functions

Definition 5.9. Let M,N be any structures and let f :M → N be any function.

(i) If the behaviour of f is a function S(M) → S(N), then we say f is canonical. Rephrased, we say

f is canonical if for all ā, ā′ ∈M , tp(ā) = tp(ā′) ⇒ tp(f(ā)) = tp(f(ā′)).

(ii) If f is canonical, we use the same symbol f to denote its behaviour.

For example, any f ∈ Aut(D,E) is a canonical function, and for all types p, f(p) = p. The benefit

of canonical functions is that they are particularly well-behaved and can be easily manipulated and

analysed. The next theorem will be treated as a ‘black-box’ for this article - a proof can be found in

[7]. In order to state the theorem, we need to give a couple of definitions.

Definition 5.10. Let F ⊆ DD. We let cltm(F ), the topological monoid closure of F , denote

the smallest closed monoid in DD containing F . We may abuse notation and write cltm(F ) for

21



cltm(Aut(D,E) ∪ F ).

Definition 5.11. We let (D,E,<) denote the countable (linearly) ordered homogeneous digraph that

embeds all finite ordered digraphs.

The theorem that follows is an application of the theorem in [7] to the structure (D,E,<). For this to

be valid, we need to know that (D,E,<) is a Ramsey structure. The definition of a Ramsey structure

can be found in [7]. The fact that (D,E,<) is Ramsey follows from the main theorem of [13].

Theorem 5.12. Let f ∈ Sym(D) and c̄ ∈ D. Then there exists a function g : D → D such that

(i) g ∈ cltm(Aut(D,E) ∪ {f}).

(ii) g(c̄) = f(c̄).

(iii) When regarded as a function from (D,E,<, c̄) to (D,E), g is a canonical function.

How is this theorem used? We illustrate by sketching how we will complete the proof of Lemma 5.3: G

is a closed group such that 〈−, sw〉 < G ≤ Aut(Γ). Thus, G does not preserve Psw,w; we let f ∈ G and

c1, . . . , c6 ∈ D witness this fact. We now use Theorem 5.12 to obtain the canonical g as in the theorem.

We then examine the possibilities for g’s behaviour, which boils down to some finite combinatorics.

Using Lemma 3.8 we show that in all the possible behaviours, G must contain Aut(Γ).

The task of examining the possible behaviours is greatly simplified because the behaviour of a canonical

function f : (D,E,<, c̄) → (D,E) is determined by the restriction of the behaviour to 2-types. This

follows because the (D,E,<, c̄) has quantifier elimination and because the arities of the named relations

are two or less.

5.2.1. Canonical functions from (D,E,<)

We start our analysis with the simplest situation, which is when no constants are added. As per the

discussion above, it suffices to analyse the possible behaviours restricted to 2-types. To do this, we

first need to describe what the possible 2-types of (D,E,<) and (D,E) are.
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Notation. Let φ1(x, y), . . . , φn(x, y) be formulas. We let pφ1,...,φn
(x, y) denote the (partial) type

determined by the formula φ1(x, y) ∧ . . . ∧ φn(x, y).

For example, let a, b ∈ (D,E,<) be such that a < b and E(a, b). Then p<,E(x, y) = tp(a, b). We will

often omit the free variables x and y and write, for example, p<,E .

With this notation in place, it is easy to state what the 2-types of (D,E,<) and (D,E) are.

• There are three 2-types in (D,E): pE , pE∗ and pN .

• There are six 2-types in (D,E,<): p<,E , p<,E∗ , p<,N , p>,E , p>,E∗ and p>,N .

We can now analyse the behaviours.

Lemma 5.13. Let G be a closed supergroup of Aut(D,E) and let f ∈ cltm(G) be a canonical function

from (D,E,<) to (D,E). Then (at least) one of the following is true:

• f behaves like id.

• f behaves like −.

• G contains Aut(Γ).

Proof. When we consider f as a function (D,E,<) → (D,E,<), we may assume without loss that

f preserves the linear order. We can do this because if we let f ′ : D → D be a function with the

same behaviour as f and which in addition preserves the linear order, then f ′ ∈ cltm(G), so f can be

replaced by f ′.

We split up the task according to the behaviour of f .

Case 1. f(p<,N ) = pN .

Case 1a. f(p<,E) = pE and f(p<,E∗) = pE∗ , in which case f behaves like id.

Case 1b. f(p<,E) = pE∗ and f(p<,E∗) = pE , in which case f behaves like −.
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Case 1c. f(p<,E) = pE and f(p<,E∗) = pE . We will use Lemma 3.8 (ii) to show that G contains

Aut(Γ), so let ā ∈ D. Then let b̄ ∈ D such that ā ∼= b̄ as digraphs, and bi < bj for all i < j. By

homogeneity of (D,E) there is g1 ∈ G such that g1(ā) = b̄ and since f ∈ cltm(G) there is g2 ∈ G such

that g2(b̄) = f(b̄). Then observe that g = g2g1 satisfies E(g(ai), g(aj)) ↔ i < j. Thus we have satisfied

the assumptions of Lemma 3.8 (ii), so G ≥ Aut(Γ).

The case where f(p<,E) = pE∗ and f(p<,E∗) = pE∗ is symmetric to this case.

Case 1d. f(p<,E) = pN or f(p<,E∗) = pN . Without loss suppose the first is true, the latter case

is symmetric. We will use Lemma 3.6 (iii) and show that G = Sym(D), so in particular G contains

Aut(Γ). Let ā ∈ D contain an edge aiaj . By homogeneity of (D,E) there is g1 ∈ G such that g1(ā) ∼= ā

and g1(ai) < g1(aj). Now let g2 ∈ G equal f on g1(ā). Observe that g2 deletes the edge g1(ai)g1(aj)

(and possibly others too) and we also know that g2 preserves edges. Hence, g2g1(ā) contains less edges

than ā, so by Lemma 3.6, we are done.

Case 2 f(p<,N ) = pE .

Case 2a. Neither f(p<,E) = pN nor f(p<,E∗) = pN . We will use Lemma 3.6 (iii) and show that G =

Sym(D). Let ā ∈ D contain an edge aiaj . By homogeneity of (D,E), map ā to an isomorphic (as

digraphs) tuple b̄ where bi, resp. bj , is the least, resp. second least, element of b̄. By assumption, f

maps {bi, bj} to an edge but we do not know its direction. This splits into two cases.

Subcase (i). Suppose we have E(f(bi), f(bj)). Now let b̄′ be an ordered digraph which is the same as

b̄ except that bi, bj is changed to a non-edge. Observe that f(b̄′) ∼= f(b̄), because f(p<,N ) = pE .

But now we are done: we can find mappings in G to get from ā to b̄ to f(b̄) to f(b̄′) to b̄′ (noting that

though f may not be invertible, the function in G which agrees with f on b̄′ is invertible), and b̄′ has

less edges than in ā.

Subcase (ii). Suppose we have E∗(f(bi, bj)). The previous argument does not work as stated, because

the edges f(bi, bj) and f(b
′
i, b

′
j) will not be in the same direction. To fix this, we modify b̄′ by swapping

b′i and b
′
j with respect to the linear order. Now, f(bi, bj) and f(b′i, b

′
j) will be in the same direction.
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Furthermore, because we earlier specified that bi and bj should be the two least elements of b̄, this

swapping only affects the type of the pair bibj - all other pairs’ types are unaffected. This ensures that

we have f(b̄′) ∼= f(b̄). The rest of the proof continues as in the previous case.

Case 2b. f(p<,E) = pN and f(p<,E∗) = pN . Since we assumed that f preserves the linear order, f2 is

a canonical function in cltm(G) where f2(p<,N ) = pN , f(p<,E) = pE and f(p<,E∗) = pE . Hence, by

Case 1c, G contains Aut(Γ).

Case 2c. f(p<,E) = pN and f(p<,E∗) = pE . By considering f2, this case is reduced to Case 1d, so G

contains Aut(Γ).

Case 2d. f(p<,E) = pN and f(p<,E∗) = pE∗ . We will use Lemma 3.6 (iii). Let ā ∈ D contain an

edge E(ai, aj). By composing with an element of Aut(D,E) if necessary, we may assume that aj is

the least element, and ai is the second least element. In particular, we have tp(aj , ai) = p<,E∗ . Let b̄

be an ordered digraph such that f(b̄) = ā. Now let b̄′ be an ordered digraph which is the same as b̄

except we swap the position of b′i and b
′
j in the linear order. This means that tp(b′j , b

′
i) = p>,E∗ and

because bi, bj are the least elements, the types of all the other pairs are unaffected. Hence, f(b̄′) is the

same digraph as ā but the edge aiaj is replaced by a non-edge. Hence, we are done.

Case 2e. f(p<,E) = pE and f(p<,E∗) = pN . Considering f2 reduces us to Case 2a.

Case 2f. f(p<,E) = pE∗ and f(p<,E∗) = pN . Imitate the argument in Case 2d to show that G =

Sym(D).

Case 3 f(p<,N ) = pE∗ . This is symmetric to Case 2.

5.2.2. Canonical functions from (D,E,<, c̄)

We now move on to the general situation where constants c̄ ∈ D are added to the structure. For

convenience, we assume that ci < cj for all i < j. As before, n-types of (D,E,<, c̄) correspond to

orbits of Aut(D,E,<, c̄) acting on n-tuples. Consequently, we often conflate the notions of types and

orbits.
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(D,E,<, c̄) has two kinds of 1-types, i.e. two kinds of orbits: singleton orbits, which are of the form

{ci}, and infinite orbits, which are determined by how their elements are related to the ci. For example,

{x ∈ D : x < c1 ∧
∧

iE(x, ci)} is an infinite orbit. In order to describe the 2-types, we extend the

notation from the previous section.

Notation Let A,B be definable subsets of (D,E,<, c̄) and let φ1(x, y), . . . , φn(x, y) be formulas. We

let pA,B,φ1,...,φn
(x, y) denote the (partial) type determined by the formula x ∈ A ∧ y ∈ B ∧ φ1(x, y) ∧

. . . ∧ φn(x, y).

Now let X and Y be orbits, φ ∈ {<,>} and ψ ∈ {E,E∗, N}. Then all the 2-types of (D,E,<, c̄) are

of the form pX,Y,φ,ψ = {(a, b) ∈ D : a ∈ X, b ∈ Y, φ(a, b) and ψ(a, b)}.

Our task now is to analyse the possibilities for f(pX,Y,φ,ψ), where f is a canonical function. The

analysis is split into cases depending on how the orbits X and Y relate. The first lemma deals with

the situation when X = Y .

Lemma 5.14. Let G be a closed supergroup of Aut(D,E), let f ∈ cltm(G) be a canonical function

from (D,E,<, c̄) to (D,E) and let X be an infinite orbit of Aut(D,E, c̄). Then (at least) one of the

following holds:

• f behaves like id on X.

• f behaves like − on X.

• G contains Aut(Γ).

Proof. By noting that (X,E|X) is isomorphic to (D,E), unravelling the definitions will show that this

lemma has exactly the same mathematical content as Lemma 5.13.

Next, we look at how f can behave between two infinite orbits. For this we need to look at how two

infinite orbits can relate to each other with respect to the linear order.

Facts and Notation There are two ways that two infinite orbits X and Y of Aut(D,E,<, c̄) can

relate to each other with respect to the linear order <:
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• All of the elements of one orbit, X say, are smaller than all of the elements of Y . This is

abbreviated by X < Y

• X and Y are interdense: ∀x < x′ ∈ X, ∃y ∈ Y such that x < y < x′ and vice versa.

We deal with these possibilities separately, starting with the case where one orbit is below the other.

Lemma 5.15. Let G be a closed supergroup of Aut(D,E), let f ∈ cltm(G) be a canonical function

from (D,E,<, c̄) to (D,E) and let X and Y be infinite orbits of Aut(D,E, c̄) such that f behaves like

id on X and X < Y . Then (at least) one of the following holds:

• f behaves like id, sw, rot or rot−1 between X and Y .

• G contains Aut(Γ).

Proof. Let y0 ∈ Y be fixed. We emphasise now an important feature of this proof, which is that

our arguments only depend on how f behaves on X ∪ {y0}. This is done intentionally so that these

arguments can be used unaltered in later lemmas.

As the arguments are similar to that of Lemma 5.14, the proofs are more sketchy, and we leave the

details to the reader.

Case 1 f(pX,Y,N ) = pN . (Note that because X < Y , pX,Y,ψ = pX,Y,<,ψ for any formula ψ.)

Case 1a. f(pX,Y,E) = pE and f(pX,Y,E∗) = pE∗ . Then f behaves like id between X and Y .

Case 1b. f(pX,Y,E) = pE∗ and f(pX,Y,E∗) = pE . Then f behaves like sw between X and Y .

Case 1c. f(pX,Y,E) = pE and f(pX,Y,E∗) = pE . We will use Lemma 3.8 (ii) to show that G contains Γ.

Let ā = (a1, . . . , an) ∈ D. We want to show that by using elements of G, we can switch the direction

of the edges of ā so they are all pointing in the same direction. We do this by induction on n. The base

case n = 1 is trivial so let n > 1. By the inductive hypothesis, we can assume that for 1 ≤ i, j ≤ n− 1,

if aiaj is an edge, then E(i, j) ↔ i < j. By homogeneity, map an to y0 and the other ai’s into X.

Then applying f switches the edges adjacent to an so they are all directed into an and furthermore
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f does not alter any of the other edges. Thus, the resulting digraph has all edges going in the same

direction, as required.

The case where f(pX,Y,E) = pE∗ and f(pX,Y,E∗) = pE∗ can be dealt with with the same argument.

Case 1d. f(pX,Y,E) = pN or f(pX,Y,E∗) = pN . Given any ā ∈ D which contains edges, we use f to

delete edges from it, so by Lemma 3.6 (iii), G = Sym(D). See Case 1d of Lemma 5.14 for more detail.

Case 2 f(pX,Y,N ) = pE .

Case 2a. Neither f(pX,Y,E) = pN nor f(pX,Y,E∗) = pN . G = Sym(D), by using the same argument as

in Case 2a of Lemma 5.14.

Case 2b. f(pX,Y,E) = pN and f(pX,Y,E∗) = pN . By considering f2 we reduce this to Case 1c.

Case 2c. f(pX,Y,E) = pN and f(pX,Y,E∗) = pE . By considering f2 we reduce this to Case 1d.

Case 2d. f(pX,Y,E) = pN and f(pX,Y,E∗) = pE∗ . We show that G = Sym(D) using the same idea as

Case 2d in Lemma 5.14. Let b̄ ∈ D contain an edge E(bi, bj). Let b̄′ be obtained by mapping bi to

y0, applying f , then mapping bj to y0 and applying f again. Note that we have N(b′i, b
′
j). Let b̄′′ be

obtained from b̄ in the same way, except we map bj to y0 first, and then bi second. In this case, we

have E∗(b′′i , b
′′
j ). Furthermore, b̄1 and b̄2 are otherwise the same. Now suppose ā is given and has an

edge. Find a b̄ such that its corresponding b̄′′ is isomorphic to ā. Then, we can get from ā to b̄′′ to b̄

to b̄′, i.e., we can delete an edge from ā. Thus, G = Sym(D).

Case 2e. f(pX,Y,E) = pE and f(pX,Y,E∗) = pN . Considering f2 reduces us to Case 2a.

Case 2f. f(pX,Y,E) = pE∗ and f(pX,Y,E∗) = pE . Then f behaves like rot between X and Y .

Case 3. f(pX,Y,N ) = pE∗ . This case is symmetric to Case 2.

As mentioned at the start of the proof, what was relevant is how f behaved on X ∪ {y0}. More

specifically, what was sufficient to make these arguments work was the following: For all finite digraphs

ā ∈ D and all points a ∈ ā, we can find a copy of ā in X ∪ {y0} such that ā ∩ {y0} = {a}.
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This condition is satisfied in the remaining situations that need to be analysed, so their corresponding

results are immediate corollaries of Lemma 5.15. The statement for interdense orbits has to be modified

and will perhaps appear confusing. Clarification will be provided after the statement.

Corollary 5.16. Let G be a closed supergroup of Aut(D,E), let f ∈ cltm(G) be a canonical function

from (D,E,<, c̄) to (D,E) and let X and Y be interdense infinite orbits of Aut(D,E, c̄) such that f

behaves like id on X . Suppose that G does not contain Aut(Γ). Then both of the following hold:

• f behaves like id, sw, rot or rot−1 between increasing tuples from X to Y .

• f behaves like id, sw, rot or rot−1 between decreasing tuples from X to Y .

For example, f behaves like sw between increasing tuples from X to Y means that f(pX,Y,<,E) =

pE∗ , (pX,Y,<,E∗) = pE and (pX,Y,<,N ) = pN .

Lastly, we look at how f can behave between the constants and the infinite orbits.

Definition 5.17. : Let c be one of the named constants of (D,E,<, c̄) and let X1, X2 and X3 be

infinite orbits. If it is the case that we have outward edges from c to X1, inward edges from c to X2

and non-edges between c and X3, we called the triple X̄ = (X1, X2, X3) a c-generic triple.

The reason for introducing this definition is that there is nothing to be analysed about how f behaves

between c and a single orbit X. It is only useful to ask how f behaves between c and several infinite

orbits, in particular, a c-generic triple. Note that if X̄ is a c-generic triple, then c ∪X1 ∪X2 ∪X3 is

isomorphic to the generic digraph.

Corollary 5.18. Let G be a closed supergroup of Aut(D,E), let f ∈ cltm(G) be a canonical function

from (D,E,<, c̄) to (D,E), let c be one of the named constants and let X̄ be a c-generic triple such

that f behaves like id on X1 ∪X2 ∪X3. Then (at least) one of the following holds:

• f behaves like id, sw, rot or rot−1 between c and
⋃

X̄.

• G contains Aut(Γ).
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5.3. Using canonical functions

With this analysis, we are now in a position to prove the remaining lemmas.

Proof of Lemma 5.1. We recall that we want to show that if G is a reduct of (D,E), then G either

contains Aut(Γ), is contained in Aut(Γ), or contains 〈rot〉. Suppose none of these are true - we will

derive a contradiction.

G is not contained in Aut(Γ), which means that G does not preserve non-edges. Hence, there is f ∈ G

and an edge c1c2 ∈ D such that f(c1c2) is a non-edge. We apply Theorem 5.12 to obtain a canonical

g : (D,E,<, c1, c2) → (D,E) which agrees with f on c1 and c2.

By Lemma 5.14, for any infinite orbit X, g behaves like id or − on it - otherwise, G would contain

Aut(Γ), contradicting our assumptions. By Lemma 5.15 and its corollaries, we have that g behaves

like id or sw between orbits - otherwise, G would contain either Aut(Γ) or 〈rot〉, contradicting our

assumptions.

But now we have a function g ∈ cltm(G) which deletes an edge (namely,c1c2) and maps all non-edges

to non-edges. By imitating the proof of part (iv) of Lemma 3.6, we conclude that G equals Sym(D),

contradicting that G does not contain Aut(Γ).

Proof of Lemma 5.3. By Lemma 5.7 and Lemma 5.8, it remains to be proved that if 〈sw,−〉 < G ≤

Aut(Γ) is a closed group, then G = Aut(Γ).

So let G be such a closed group and suppose, for contradiction, that G 6= Aut(Γ). Since 〈sw,−〉 < G,

G does not preserve Psw,w, so there exist f ∈ G and c̄ ∈ D such that Psw,w(c̄) and ¬Psw,w(f(c̄)). Then

Theorem 5.12 gives g ∈ cltm(G) which is canonical from (D,E,<, c̄) and which agrees with f on c̄.

As in the previous proof, we use Lemma 5.14 to conclude that for any infinite orbit X, g behaves like

id or − on X, and we use Lemma 5.15 and its corollaries to conclude that g behaves like id or sw

between orbits.
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Claim 1. g behaves like id on all infinite orbits, or, g behaves like − on all infinite orbits.

Proof of Claim 1. Suppose not, so there exists infinite orbits X and Y such that g behaves like id on

X and like − on Y . There are now two cases. The first case is if g behaves like id between X and Y .

By using part (iii) of Lemma 3.8, we can conclude that G ≥ Aut(Γ) - contradiction. The second case

is if g behaves like sw between X and Y . This reduces to the previous case by considering − ◦ g.

We can take the claim one step further: by considering − ◦ g if necessary, we may now assume that g

behaves like id on all infinite orbits.

Enumerate the (finite number of) infinite orbits as X1, X2, X3, . . ..

Claim 2. We may assume g behaves like id between all pairs of orbits from X1, X2, X3.

Proof of Claim 2. If g behaves like id between all three orbits, we are done. If g behaves like sw

between precisely two of the pairs - without loss g behaves like sw between X1 and X2, and between

X1 and X3 - then by switching about X1 we may assume g behaves like id, so again we are done. If

g behaves like sw between precisely one pair of infinite orbits, then by using Lemma 3.8 (iii), we get

that G ≥ Aut(Γ), which is a contradiction. The final possibility is that g behaves like sw between all

pairs: this reduces to the third case by switching about X1, so we again get a contradiction.

Claim 3. We may assume g behaves like id between all infinite orbits.

Proof of Claim 3. First consider how g behaves between X4 and the first three Xi’s. If g behaves

like id between X4 and all the previous Xi’s, we move on. If g behaves like sw between X4 and all

the previous Xi’s, we switch about X4, reducing to the first case. The last case is if, without loss, g

behaves like id between X4 and X1 and like sw between X4 and X2. But this is exactly the same as

the contradictory case in the proof Claim 2, so this is not possible. Hence, we have shown that g must

behave like id between all the pairs in X1, . . . , X4.

One then moves on to X5 and repeats this argument to show that we may assume g behaves like id

between X1, . . . X5. Continuing in this fashion proves the claim.

Claim 4. We may assume that g behaves like id between c̄ and the infinite orbits.
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Let c1 ∈ c̄. Suppose there are c̄1-generic triples X̄ and Ȳ such that g behaves like id, resp. sw, between

c and
⋃

X̄, resp.
⋃

Ȳ . Then for any finite digraph A and edge aa′ ∈ A, we can map aa′ to an edge

between c1 and Ȳ and map the remaining vertices of A into X̄. Then applying g will switch precisely

the single edge aa′. Thus, by Lemma 3.8 (iii), we get that G ≥ Aut(Γ), a contradiction. Hence, g

behaves like id between c1 and every c1-generic triple, in which case we are done, or, g behaves like

sw between c1 and every c1-generic triples, in which case we apply swc1 .

Repeating this for the other ci will complete the proof of the claim.

Observe that all the manipulations we (may) have used on g have been applications of − or sw. This

ensures that g(c̄) /∈ Psw,w. In particular, there is at least one edge in c̄ whose direction g switches.

Combining this observation with all the claims tells us that we are in the situation of Lemma 3.8 (iii):

g behaves like id everywhere except on the finite set c̄. Hence, G ≥ Aut(Γ), giving us a contradiction,

thus completing the proof.

Proof of Lemma 5.4. We recall the statement of the lemma: If G contains 〈rot〉, then G equals

〈rot〉, 〈−, rot〉 or Sym(D).

To prove the statement, it suffices to prove:

(i) If G > 〈rot〉 and G 6≥ 〈−, rot〉, then G = Sym(D).

(ii) If G > 〈−, rot〉, then G = Sym(D).

Recall that 〈sw, rot〉 = Sym(D). Hence, we may assume in all that follows that sw /∈ G.

(i) Suppose G > 〈rot〉 and G 6≥ 〈−, rot〉. The latter assumption implies that − /∈ G. Then there exists

c̄ and f ∈ G which witness the fact that G does not preserve Prot,1. Then use Theorem 5.12 to obtain

a canonical g : (D,E,<, c̄) → (D,E) which agrees with f on c̄.

By Lemma 5.14, g behaves like id on all infinite orbits, as otherwise G contains sw or −. Similarly,

by Lemma 5.15 and its corollaries, we have that g behaves like id or rot between orbits.

We proceed in a similar fashion to the proof of Lemma 5.3.
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Claim 1. We may assume that g behaves like the id between all infinite orbits.

Proof of Claim 1. Let X1, X2, . . . enumerate the infinite orbits. If g behaves like id between X1 and

X2 then move on. Otherwise, g behaves like rot or rot−1 between X1 and X2. Hence, by composing

with a rotation about X1 or X2 as appropriate, we can assume g behaves like id between X1 and X2.

Now consider X3. Again by composing with a rotation if necessary, we may assume that g behaves

like id between X1 and X3. Suppose that g does not behave like id between X2 and X3 - we will show

that G must equal Sym(D). Without loss, g behaves like rot between X2 and X3. Given any finite

digraph A and an edge aa′ in A, we can find a copy of A in D such that aa′ is an inward edge from

X2 to X3 and such that the other vertices of A all lie in X1. Applying g to this copy results in the

edge aa′ being deleted, with the rest of A being the same. Hence, by Lemma 3.6 (iii), we conclude

that G = Sym(D). Therefore, we may assume that g behaves like id between X1, X2 and X3.

Now consider X4 and repeat this argument. Continuing in this fashion proves the claim.

Claim 2. We may assume that g behaves like id between c̄ and all the infinite orbits.

Proof of Claim 2. First work with c1. Let X̄ be a c1-generic triple. We know that g behaves like id,

rot or rot−1 between c and X̄, so by composing with a rotation if necessary, we may assume that g

behaves like id. Now consider another c1-generic triple Ȳ . If g does not behave like id between c1 and

Ȳ , then we use the same argument as in the proof of Claim 1 to show that G equals Sym(D). So we

may assume that g behaves like id between c1 and all infinite orbits.

Repeating this for c2 and c3 completes the proof of the claim.

Because all the modifications of g were compositions with rotations, we still have ¬Prot,1(g(c̄)). This

means g acts like id everywhere except on c̄. Then using Lemma 3.8 or Lemma 3.6, as appropriate,

we get that G ≥ Aut(Γ), so G contains sw, so G = Sym(D). This completes the proof of (i).

(ii) Suppose G > 〈rot,−〉. Then there exists c̄ and f ∈ G which witness the fact that G does not

preserve Prot,w. Then use Theorem 5.12 to obtain a canonical g : (D,E,<, c̄) → (D,E) which agrees

with f on c̄.
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Let X be an infinite orbit. Then by Lemma 5.14 and by replacing with − ◦ g if necessary, we may

assume that g behaves like id on X.

Claim 1’. We may assume that g acts like id on all infinite orbits.

Proof of Claim 1’. Suppose not, so there is an infinite orbit Y such that g acts like − on Y . Then g

can behave like id, rot or rot−1 between X and Y . If g behaves like id, then use Lemma 3.8 (iii) to

show that G ≥ Aut(Γ), so then G must equal Sym(D). If g behaves like rot or rot−1 between X and

Y , composing with rotX or rot−1
X reduces to the id behaviour between X and Y . This completes the

proof of the claim.

Now by Lemma 5.15 and its corollaries, we have that g behaves like id or rot between the infinite

orbits. Now continue in exactly the same way as in part (i) to complete the proof.

6. Summary and Open Questions

We summarise the structure of the proof of the main theorem, Theorem 2.5, which states that L is

the lattice of the reducts of the generic digraph. The first task is to show that L is a sublattice of the

reducts of the generic digraph, which was done in Lemma 4.1.

The second task is to show that L contains all the reducts. By Lemma 5.1, which was proved using

canonical functions at the start of Section 5.3, the task is split up into three regions of L: The region

above Aut(Γ), the region below Aut(Γ), and the rest. The region above Aut(Γ) is immediately dealt

with by Thomas’ classification of the reducts of Γ. The proof of the region below Aut(Γ), Lemma 5.3,

has two parts. The first part is in Section 5.1, where we use the function Θ(G) and the classification

for the random tournament, and the second part is in Section 5.3. The final region, Lemma 5.4, is

proved using canonical functions at the end of Section 5.3.

We end by stating some problems of interest in this area. There is the obvious task of determining the

reducts of your favourite structure(s), but some more specific questions are:

• (Thomas’ Conjecture): If a structure is homogeneous in a finite relational language, then it only
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has finitely many reducts.

• Which lattices can be realised as the lattice of reducts of some structure?

• Is there always a maximal closed group between a closed group G and Sym(M) (where M is

countable)?

The answer to the first question may be related to a question in structural Ramsey theory ([7]): Given

a homogeneous structure, can you finitely extend its language so that the structure becomes Ramsey?

It may be easier to prove Thomas’ Conjecture for Ramsey structures and this could be sufficient, or

alternatively, a counterexample for one question may lead to a counterexample for the other.

Another angle on the second question could be to consider whether there is any relationship between

structures which have the same lattice of reducts. For example, it is curious that (Q, <), the random

graph, the random tournament and the generic partial order have the same 5-element lattice as their

lattice of reducts.

For clarification of the third question, we say that a closed group F < Sym(M) is maximal if there

are no closed groups F ′ such that F < F ′ < Sym(M). To find a counterexample to this question, it

would be sufficient to find an ℵ0-categorical countable structure such that all of its non-trivial reducts

have infinitely many reducts.
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Advances in Mathematics 267 (2014) 94–120.
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