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Second-Order SM Approach to SISO Time-Delay
System Output Tracking

Gang Liu, Alan Zinober, and Yuri B. Shtessel, Senior Member, IEEE

Abstract—A fully linearizable single-input–single-output
relative-degree n system with an output time delay is considered
in this paper. Using the approach of Padé approximation, system
center approach, and second-order sliding-mode (SM) control, we
have obtained good output tracking results. The Smith predictor
is used to compensate the difference between the actual delayed
output and its approximation. A second-order supertwisting
SM observer observes the disturbance in the plant. A nonlinear
example is studied to show the effect of this methodology.

Index Terms—Output delay, Padé approximation, second-order
sliding-mode (SM) control, stable system center.

I. INTRODUCTION

OUTPUT time delay is a common feature in many sys-
tems and must be taken into account when designing a

controller. The output tracking of a real-time reference profile
in nonlinear systems with output delay by sliding-mode (SM)
control was addressed in this paper [22]. In addition to the first-
order Padé approximation, the more precise second- and third-
order Padé approximations have been used to replace the output
delay element [12], [17].

n the literature, second-order SM control has been widely
used and yields better accuracy than standard SM control [2],
[13]–[16]. In this paper, we use the second-order SM control to
study the fully linearizable single-input–single-output (SISO)
time-delay-system output tracking problem. We use a new
transformation to transfer the relative-degree n system into a
relative-degree two system. With first-, second-, and third-order
Padé approximations, we transfer the time-delay-system track-
ing problem into a nonminimum-phase-system output tracking
problem. A stable system center approach and second-order SM
control have been used to get good output tracking results.

In real life, we need to feed back the actual delayed output
rather than its approximation, and this yields limit cycles. We
use the Smith predictor (SP) [23] to compensate the difference
between the approximate and the actual delayed output and
obtain greatly improved output tracking results. When distur-
bances are present, the output tracking accuracy is lost. We
use a second-order supertwisting SM observer to observe the
disturbances and obtain good output tracking results. The one-
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link robot arm [11] is a fourth-order nonlinear system. We have
used our methodology on this example and got good output
tracking results for this output-delay problem.

This paper is organized as follows. Section II is dedicated to
a new transformation and the output tracking-problem formu-
lation. Section III uses the Padé approximation to approximate
the delayed system. Section IV presents the system center and
second-order SM control to solve the output tracking prob-
lem. A numerical example demonstrating the various aspects
of different Padé approximations is given in Section V. In
Section VI, we present results when feeding back the actual
delayed output and compensation results using the SP and a
second-order supertwisting SM observer. A one-link-robot-arm
example output delay tracking problem is considered using the
approach in this paper, and good output tracking results are
obtained in Section VII. The conclusions are summarized in
Section VIII.

II. PROBLEM FORMULATION

Consider a controllable fully feedback linearizable nonlinear
SISO dynamic system without time delay

ẋ = f(x, t) + g(x, t)u y = h(x) (1)

where x(t) ∈ Rn is a state vector, y(t) ∈ R1 is a controlled
output, and u(t) ∈ R1 is a control input.

As a fully linearizable relative-degree n system, it can be
transformed [11] to

y(n) = φ(ξ, t) + b(ξ, t)u (2)

where ξ = [y, ẏ, . . . , y(n−1)]T ∈ Rn.

A. Output Redefinition

Gopalswamy and Hedrick [10] define a coordinate
transformation

[

z
q1

]

=

⎡

⎢

⎣

1 0 · · · · · · 0
0 1 · · · · · · 0
· · · · · · · · · · · · 0
a0 a1 · · · an−2 1

⎤

⎥

⎦
ξ (3)

where

q1 = y(n−1) + an−2y
(n−2) + · · · + a1ẏ + a0y (4)

is a new output to get a relative-degree one system and ai is
selected to be the coefficient of a Hurwitz polynomial, z(t) ∈
Rn−1 and q(t) ∈ R1.

0278-0046/$26.00 © 2009 IEEE
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Note that, by Gopalswamy and Hedrick’s transformation
[10], the system is transferred from a relative-degree n system
to a relative-degree one system by the redefinition of output q.
The output tracking problem of the original system can be
equivalently solved by the new output with suitable choices
of ai. Kosiba et al. [12], Liu et al. [17], and Shtessel et al.

[22] have used this transformation to get good output tracking
results.

Following this approach, we let the first n − 1 rows of ξ be
ϑ, i.e., ϑ = [y, ẏ, . . . , y(n−2)]T ∈ Rn−1, and define a different
new coordinate transformation

[

z
q1

]

=

⎡

⎢

⎣

1 0 · · · · · · 0
0 1 · · · · · · 0
· · · · · · · · · · · · 0
a0 a1 · · · an−3 1

⎤

⎥

⎦
ϑ (5)

where

q1 = y(n−2) + an−3y
(n−3) + · · · + a1ẏ + a0y (6)

is a new output. We get a relative-degree two system, and the
ai’s are selected to be the coefficients of a Hurwitz polynomial,
z(t) ∈ Rn−2 and q1(t) ∈ R1.

Note that the difference between our transformation and that
of Gopalswamy and Hedrick [10] is that we transfer the original
system to a relative-degree two system by the redefinition of
output q1.

The system (1) is rewritten in a new basis [z, q1, q̇1]
T as

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

ż1 = z2

ż2 = z3

· · · · · ·
żn−2 = q1 − an−3zn−2 − · · · − a1z2 − a0z1

q̇1 = q2

q̇2 = φ̂(z, q, t) + b̂(z, q, t)u

(7)

where

φ̂(z, q, t) = an−3q2 − an−3

× [an−3(q1 − an−3zn−3 − · · · − a1z1)

+ an−4zn−2 + · · · + a0z2]

+ an−4q1 − an−4(an−3zn−3 + · · · + a0z0)

+ an−5zn−3 + · · · + a0y
2 + φ(z, q1, q2, t)

b̂ = b(z, q1, q2, t). (8)

Note that the internal dynamics of the system (7) is stable and
can be disregarded when solving the output tracking problem as
time increases. Therefore, output tracking in system (1) can be
transformed to the output tracking of the scalar system

q̇1 = q2

q̇2 = φ̂(z, q1, q2, t) + b̂(z, q1, q2, t)u. (9)

B. Problem Formulation

Assume here that the desired command output profile is
given in the form

yc = Ā + B̄ sin ωnt. (10)

In the following discussion, we will abuse notation by setting
q1 = q. Then, we can assume the output tracking (command)
profile qc (corresponding to q) as follows:

qc = A + B sin ωnt + C cos ωnt (11)

where A, B, C, and ωn are piecewise constants and A, B,
and C can be calculated using the output redefinition function
(6). The signal (11) can be described by a linear system of ex-
ogenous differential equations with the following characteristic
polynomial:

λ3 + 0λ2 + ω2
nλ + 0. (12)

Now, we restrict φ̂(·) to be bounded. b̂(·) is nonsingular. As-
sume that the output of y is accessible with a fixed time delay τ .
This is equivalent to the modified output q with a time delay τ ;
we define

ŷ(t) = q(t − τ). (13)

The problem is to design SM control u(t) that forces the
output variable ŷ to track asymptotically the command profile
qc or the delayed output y(t − τ) to track asymptotically yc.

Note that the fixed time delay τ should not be assumed
large since the Padé approximation works only for smaller time
delays. The output tracking results for different time delays are
discussed in [18].

III. PADÉ APPROXIMATIONS AND TIME-DELAY SYSTEMS

In this section, we use the Padé approximation to approx-
imate the time delay. The Padé approximation [1] uses the
quotient of two polynomials to estimate a power series. We will
use the direct solutions of the Padé equations

[L/M ] = PL(x)/QM (x)

where PL(x) is a polynomial of degree L and QM (x) is
a polynomial of degree M . When we approximate a formal
power series f(x), the explicit equation is

lim
x→0

QM (x)f(x) − PL(x)

xL+M
= 0.

The corresponding Laplace transform of (13) ŷ(s)/q(s) =
e−sτ can always be approximated by first-, second- and third-
order Padé approximations as

e−sτ ≈
1 − sτ

2

1 + sτ
2

e−sτ ≈
1 − sτ

2 + s2τ2

12

1 + sτ
2 + s2τ2

12

e−sτ ≈
1 − sτ

2 + s2τ2

10 − s3τ3

120

1 + sτ
2 + s2τ2

10 + s3τ3

120

(14)

where s is the Laplace variable.
We introduce a new output variable ỹ to make the approxi-

mation exact. By introducing a new variable η = ỹ + (−1)jq,
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the system (13) can be approximated by

⎧

⎨

⎩

ζ̇ = Q̃1ζ + Q̃2ỹ
˙̃y = η̇ − (−1)jq2

q̇2 = φ̂(ỹ, q2, ζ, t) + b̂(ỹ, q2, ζ)u

(15)

where η is the first row of ζ and j is the Padé order. For the
first-order Padé approximation

Q̃1 =
2

τ
Q̃2 = −

4

τ
(16)

for the second order

Q̃1 =

[

0 1
− 12

τ2

6
τ

]

Q̃2 = −
12

τ

[

1
6
τ

]

(17)

and for the third order

Q̃1 =

⎡

⎣

0 1 0
0 0 1

120
τ3 − 60

τ2

12
τ

⎤

⎦ Q̃2 = −

⎡

⎣

24
τ

288
τ2

2256
τ3

⎤

⎦ . (18)

For (16)–(18), respectively, system (15) is nonminimum
phase because Q̃1 has at least one non-Hurwitz eigenvalue.

Note that the output delay system tracking problem has been
transformed into a nonminimum-phase-system output tracking
problem (with no delay) by the Padé approximation. However,
there is an important difference between ŷ and ỹ. We will
investigate this in Section VI.

IV. SYSTEM CENTER METHOD AND

SECOND-ORDER SM CONTROL

The nonminimum-phase-system tracking problem is solved
in this section by the system center method and SM control.

The equation of the system center (ideal internal dynamics)
[21] that defines a command (tracking) profile ζc(t) for the
internal state vector for the system with delay approximated by
the nonminimum-phase system (13) is

ζ̇c = Q̃1ζc + Q̃2qc (19)

which is unstable.
According to the theorem of system center [21], the sta-

ble system center ζ̃c(t) that converges asymptotically to the
bounded particular solution ζc(t) of the unstable equation of
system center, i.e., ζ̃c(t) → ζc(t), is given by

ζ̃(3)
c + c2ζ̃

(2)
c + c1ζ̃

(1)
c + c0ζ̃c = −

(

P2θ
(2)
c + P1θ

(1)
c + P0θc

)

(20)

where θc = Q̃2qc and the coefficients of P0, P1, and P2 are
computed as follows:

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

P0 = c0Q̃
−1
1

P1 =
(c1−ω2

n)Q̃−1

1
+(c0−c2ω2

n)Q̃−2

1

I+ω2
n

Q̃−2

1

P2 =
c2Q̃−1

1
+(c1−ω2

n)Q̃−2

1
+c0Q̃−3

1

I+ω2
n

Q̃−2

1

.

(21)

The coefficients c0, c1, and c2 are chosen to provide the
specified eigenvalues of the homogeneous differential equation

ζ̃(3)
c + c2ζ̃

(2)
c + c1ζ̃

(1)
c + c0ζ̃c = 0. (22)

Next, we will use the second SM control technique to the
output delay system tracking problem.

The sliding function is defined as

σ = eq + C1ẽζ (23)

where eq = qc − ỹ and ẽζ = ζ̃c − ζ. Therefore

σ̈ = q̈c − ¨̃y + C1

(

¨̃
ζc − ζ̈

)

= (−1)j+1(φ̂ + b̂u) + q̈c − η̈ + C1

(

¨̃
ζc − ζ̈

)

.

Using higher order SM control [13] and quasi-continuous
second-order SM control [14], [16], we can design suitable
second-order SM controllers, respectively, as follows:

u = (−1)j b̂−1ρ sign
(

σ̇ + λ|σ|1/2sign(σ)
)

(24)

u = (−1)j b̂−1ρ
σ̇ + |σ|1/2sign(σ)

|σ̇| + |σ|1/2
(25)

where ρ is a sufficiently large positive gains and λ is a positive
constant.

The SM existence condition for the second-order SM con-
troller (23) can be achieved by having a sufficiently large gain
ρ. When we choose a variable ψ = σ̇ + λ|σ|1/2sign(σ), ψ̇ψ =
−ρ|ψ| + Ψ(·), where Ψ(·) can be calculated by (23), (24), and
the plant. Since Ψ(·) is bounded, we can choose a ρ that is
sufficiently large so that ψ goes to zero after finite time, and
then, σ̇ and σ go to zero. The quasi-continuous SM controller
(24) SM existence condition can be attributed to the existence
condition of a second-order SM controller by the following
inequality:

σ̇ + |σ|1/2signσ

|σ̇| + |σ|1/2
≤

σ̇ + |σ|1/2signσ
∣

∣σ̇ + |σ|1/2signσ
∣

∣

= sign
(

σ̇ + |σ|1/2signσ
)

. (26)

Assume that the SM exists on the sliding surface σ = 0; then,
eq = −C1ẽζ . Therefore

˙̃eζ =
(

Q̃1 − Q̃2C1

)

ẽζ +
(

˙̃
ζc − Q̃1ζ̃c − Q̃2qc

)

,

eq = −C1ẽζ . (27)

Since ζ̃c(t) → ζc(t) with increasing time, then ˙̃
ζc − Q̃1ζ̃c −

Q̃2qc → ζ̇c − Q̃1ζc − Q̃2qc = 0. Therefore, the SM dynamics
(27) asymptotically approaches the homogeneous differential
equation

˙̃eζ =
(

Q̃1 − Q̃2C1

)

ẽζ . (28)

C1 is selected to provide asymptotic tracking error dynamics
(27) to zero.
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V. NUMERICAL EXAMPLE AND SIMULATIONS

Consider the relative-degree two second-order system

{ ẋ1 = x2

ẋ2 = −x2 + u
y = x1.

(29)

The desired command output profile is given in Section II
and has the characteristic equation (11).

Now, assume that the system output y is accessible with a
time delay y = y(t − τ). This is equivalent to the modified
output q with time delay τ , i.e., ŷ = q(t − τ). The problem
is to design the SMC that provides asymptotic tracking ŷ →
qc (y → yc) as time increases. Since the system is already a
relative-degree two system, ŷ = y and qc = yc.

Replacing the time-delay function by the respective first-,
second-, and third-order Padé approximations, system (29) is
approximately represented by the nonminimum-phase system
without delay

⎧

⎪

⎨

⎪

⎩

ż1 = z2

ż2 = −z2 + u
η̇ = 2

τ η − 4
τ ỹ

˙̃y = −z2 + 2
τ η − 4

τ ỹ

(30)

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

ż1 = z2

ż2 = −z2 + u
ζ̇1 = ζ2 −

12
τ ỹ

ζ̇2 = 6
τ ζ2 −

12
τ2 − 72

τ2 ỹ
˙̃y = z2 −

12
τ ỹ + ζ2

(31)

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

ż1 = z2

ż2 = −z2 + u
ζ̇1 = ζ2 −

24
τ ỹ

ζ̇2 = ζ3 −
288
τ2 ỹ

ζ̇3 = 12
τ ζ3 −

60
τ2 ζ2 + 120

τ3 ζ1 −
2256
τ3 ỹ

˙̃y = −z2 + ζ2 −
24
τ ỹ

(32)

where the output ỹ is an approximation to the original output ŷ.
Now, we select parameters as follows: c0 = 1000, c1 = 300,

c2 = 30, ωn = 2, a0 = 20, A = 1, and B = 2. Furthermore,
we choose C1 = −0.75 for the first-order Padé approxima-
tion, [−0.75, 0] for the second-order Padé approximation, and
[−0.75, 0, 0] for the third-order Padé approximation. The
control is

u = −25sign
(

σ̇ + |σ|1/2sign(σ)
)

for the first- and third-order Padé approximations and

u = 25sign
(

σ̇ + |σ|1/2sign(σ)
)

for the second-order Padé approximation. This is consistent
with the results in [17].

We have used MATLAB, Simulink, and Scilab to get good
tracking results for τ = 0.2 (see Fig. 1 for the first-order Padé
results and Fig. 2 for the second-order results). For further
details relating to the choices of design parameters and out-
put tracking comparative results, consult [18]. Note that we
have used ỹ, the approximation of the actual output, in the
feedback loop.

Fig. 1. Padé 1: Second-order SM control output tracking.

Fig. 2. Padé 2: Second-order SM control output tracking.

VI. LIMIT CYCLES AND THE SP

In real-life situations, the feedback should be the actual

delayed output ŷ and not ỹ, i.e., ŷ should be included in the
SM surface design. We consider the first-order Padé model to
show the effect. Using the same example as in Section V, we
use ŷ in the feedback loop instead of ỹ and get output tracking
errors as in Fig. 3. This limit cycle should be avoided in our
design.

Next, we use the SP [24] for ŷ − ỹ to compensate the dif-
ference between ŷ and ỹ, i.e., ŷ − (ŷ − ỹ) = ỹ is implemented
in the feedback loop. Some preliminary ideas regarding the SP
and SM are available (using the Gopalswamy and Hedrick [10]
transformation) in a private memorandum [23].

The sliding surface including SP is calculated as

σSP = eSP
q + C1ẽη

with eSP
q = qc − [ŷ − (ŷ − ỹ)] = qc − ỹ and ẽη = η̃ − η.

Stabilizing σSP by means of the control u (used in the Padé
model), the output tracking control of the original casual time-
delay system is equivalent to controlling the system with the
Padé model.

Authorized licensed use limited to: Sheffield University. Downloaded on September 7, 2009 at 04:29 from IEEE Xplore.  Restrictions apply. 
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Fig. 3. Padé 1: ŷ feedback output tracking error.

We use the example in Section V to test the effects of
the system center approach and SP: the second-order SM
control with q̂ in the feedback loop (Section VI-A), stable
system center approach and SM control with q̂ in the feedback
loop (Section VI-B), and the stable system center approach
and SM control with the SP included in the feedback loop
(Section VI-C). When unmatched disturbance is included in the
system, the output tracking results become poor. We have used
a second-order supertwisting SM observer [9] to observe the
disturbance in the plant model and obtain almost perfect output
tracking results in Section VI-D.

A. Padé Model With Actual Delayed Output

in the Feedback Loop

We simulate the unperturbed system with actual delayed
output in the feedback loop

ŷ = q(t − 0.2)

êq = qc − ŷ

ẽη = η̃c − η

σ = êq − 0.75ẽη

u = − 25sign
(

σ̇ + |σ|0.5sign(σ)
)

where −0.75 is the C1 parameter we used in the Padé model
and ẽη is from the system center approach.

The simulation results are shown in Fig. 4. Clearly, the
tracking accuracy is not good enough; therefore, we will study
the SP next to gain an improvement.

B. Padé Model With SP

The unperturbed system that incorporates the Padé model
with the SP included in the feedback loop is simulated by the
following controller:

ẽη = η̃c − η

êSP
q = qc − ỹ

σSP = êSP
q − 0.75ẽη

u = − 25sign
(

σ̇SP + |σSP|0.5sign(σSP)
)

.

Fig. 4. yc and y with feedback q(t − 0.2).

Fig. 5. yc and y for SP incorporated approach.

Fig. 5 shows that the output tracking accuracy is greatly im-
proved. Note that, by using an SP, we have replaced q̂ by its
approximation ỹ in the feedback loop. This example shows that
the SP yields good results for the output tracking problem.

C. Disturbance Included in System

We now intentionally add a disturbance in the plant but we
ignore it in the Padé model design since it is assumed a priori

unknown.
The perturbed system can be expressed as

ẋ1 =x2 (33)
ẋ2 = − x2 + ∆ϕ(z, q, t) + (1 + ∆b(z, q, t)) u (34)
ŷ = y(t − 0.2) (35)

ż1 = z2 (36)
ż2 = − z2 + u (37)

η̇ =
2

τ
η −

4

τ
ỹ (38)

˙̃y = − z2 +
2

τ
η −

4

τ
ỹ (39)

with ∆b(z, q, t) = 0.5 sin 5t and

∆ϕ(z, q, t) = 0.2.
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Fig. 6. yc and y for system with disturbance.

The controller and all the other parameters such as C1, ρ, and
σ are selected as in Section V. From Fig. 6, we can clearly see
that the tracking accuracy is lost because the disturbance affects
the plant. Note that the Padé model with SP does not contain
the disturbance terms ∆ϕ(z, q, t) and ∆b(z, q, t), since they are
a priori unknown. This result shows that the SP is not good for
disturbance avoidance.

D. Second-Order Supertwisting SM Observer

We can consider the Padé model (30) as an observer system
for the original system (29). When disturbance is included,
the unperturbed Padé model (36)–(39) needs the correction
variables ν1 and ν2 as output injections [9]

ν1 =λ|x1 − z1|
1/2sign(x1 − z1) (40)

ν2 =αsign(x1 − z1) (41)

where α = 20 and λ = 5 in our design.
The new Padé model will be

ż1 = z2 + ν1 (42)
ż2 = − z2 + u + ν2 (43)

η̇ =
2

τ
η −

4

τ
ỹ (44)

˙̃y = − z2 +
2

τ
η −

4

τ
ỹ. (45)

These equations (42)–(45) are the observer system for
(33)–(35). Using our second-order SM control design with
SP, we get good output tracking results as shown in Fig. 7
because the second-order supertwisting SM observer is used in
observing the disturbance.

VII. NONLINEAR EXAMPLE

We consider a simple nonlinear one-link robot arm [11]
whose rotary motion about one end is controlled by means of an
elastically coupled actuator. Elastic coupling between actuators
and links is a phenomenon that cannot be neglected in many
practical situations, and experience has shown that robot arms
in which the motion is transmitted by means of long shafts or

Fig. 7. yc and y for system with disturbance and observer.

Fig. 8. One-link robot arm.

transmission belts or in which the actuator is a harmonic drive
show a resonant behavior in the same range of frequencies used
for control. The effect of elastic coupling between actuators and
links, commonly referred to as joint elasticity, can be modeled
by inserting a linear torsional spring at each joint, between the
shaft of the actuator and the end about which the link is rotating.
In the case of a simple one-link arm, the model thus obtained
is shown in Fig. 8. The system can be described by means of
two second-order differential equations, one characterizing the
mechanical balance of the link. Using q1 and q2 to denote the
angular positions of the actuator shaft and the link, with respect
to a fixed reference frame, the actuator equation can be written
in the form

J1q̈1 + F1q̇1 +
K

N

(

q2 −
q1

N

)

= T (46)

where J1 and F1 represent inertia and viscous friction
constants, K is the elasticity constant of the spring which
represents the elastic coupling with the joint, and N is the
transmission gear ratio. T is the torque produced at the actuator
axis. The link equation can be written in a similar form

J2q̈2 + F2q̇2 + K
(

q2 −
q1

N

)

+ mgd cos(q2) = 0 (47)

in which m and d represent the mass and the position of the
center of gravity of the link.

Choose the state vector

x = (q1, q2, q̇1, q̇2)
′.
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The system can be represented in the input–output form

ẋ = f(x) + g(x)u

y = h(x) (48)

with the input u = T , and

f(x) =

⎡

⎢

⎣

x3
x4

− K
J1N2 x1 + K

J1N x2 −
F1

J1

x3

K
J2N x1 −

K
J2

x2 −
mgd
J2

cos(x2) −
F2

J2

x4

⎤

⎥

⎦

g(x) =

⎡

⎢

⎣

0
0
1
J1

0

⎤

⎥

⎦
. (49)

Note that this is a fourth-order nonlinear system.
As the output of this system, it is natural to choose the

angular position q2 of the link with respect to the fixed reference

y = h(x) = x2. (50)

Note that the system has relative degree r = n = 4 at each point
of the state space. Thus, this system can be exactly linearized
via state feedback and coordinate transformation around any
point of the state space. The linearizing feedback is

u =
−L4

fh(x) + ν

LgL3
fh(x)

(51)

and the system in the normal form is

ż1 = z2

ż2 = z3

ż3 = z4

ż4 =
−L4

fh(x) + ν

LgL3
fh(x)

(52)

where

L4
fh(x) =

∂f4

∂x4

∂f4

∂x1
x3 +

∂f4

∂x4

∂f4

∂x2
x4

+

(

∂f4

∂x4

∂f4

∂x3
+

∂f4

∂x1

)

f3+

(

∂f4

∂x2
+

(

∂f4

∂x4

)2
)

f4

where f3 and f4 are the third and fourth rows of f , respectively,
and LgL

3
fh(x) = K/(J1J2N).

For simplicity, we select the parameters as follows:

K =J1 = N = J2 + F1 = F2 = J2 = 1

mgd = 1. (53)

Next, we want to use our second-order SM control approach
to this example. We define a transformation

q = z3 + 2a0z2 + a2
0z1 (54)

and then, system (52) is

ż1 = z2

ż2 = q − 2a0z2 − a2
0z1

q̇ = z4 + 2a0

(

q − a0z2 − a2
0z1

)

+ a2
0z2

ż4 =
−L4

fh(x) + ν

LgL3
fh(x)

(55)

Fig. 9. Nonlinear SM output delay system tracking results for first-order Padé
approximation.

where a0 is a positive constant and is selected to make sure
that, when q goes to zero, x1 goes to zero. In fact, by the output
redefinition (54), system (52) is changed to a relative-degree
two system.

Corresponding to q, we choose

qc = ÿc + 2a0ẏc + a2
0yc. (56)

Now, we assume that the system output (z1 or x2) has a
fixed time delay τ , which is equivalent to the relative-degree
two output function q having a fixed time delay τ . Suppose

ŷ = q(t − τ). (57)

We have used the first-order Padé approximation, stable system
center approach, SM control, and SP technique to investigate
the output tracking results for the system and obtained good
output tracking results, as shown in Fig. 9.

Note that, in this example, we have chosen a0 = 2,
c0 = 1000, c1 = 300, c2 = 30, τ = 0.2, C1 = −0.75, λ = 10,
ρ = 600, A = 1, and B = 2. Clearly, the second- and third-
order Padé approximation results can be similarly obtained. We
omit them here.

VIII. CONCLUSION

A SISO output delay system tracking problem has been con-
sidered in this paper. By a transformation, the relative-degree
n system is transformed into a relative-degree two system.
The Padé approximation, stable system center approach, and
second-order SM control are used to get good output tracking
results. When we feed back the actual delayed output, limit
cycles appear. We next use an SP to obtain good output tracking
results for the system without disturbances. When disturbances
are included in the system, the output tracking results are bad.
We have used the second-order supertwisting SM observer
to estimate the disturbances and obtain almost-perfect output
tracking results. A nonlinear one-link-robot-arm example is
also used to show the effect of this methodology. For more
details regarding parameter choices, chattering phenomenon
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discussions, and different Padé order comparisons, please
consult [18].
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