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Abstract

A version of Paley-Wiener like theorem for connected, simply con-

nected nilpotent Lie groups is proven.
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1 Introduction

In the paper [1] a version of Paley-Wiener theorem for two- and three-step
nilpotent Lie group was proven. To this end R. Park developed a subtle
technique for analysis on nilpotent Lie groups. It seems that the technique
is of separate interest and could be used to study other problems.

However, it is possible to give a shorter proof of a more general theorem
based on the completely standard results about nilpotent Lie groups. This
is the goal of the present paper. We will prove the result of Park for all
connected, simply connected (exponential) nilpotent Lie groups, but even
this is not last level of generality—see Remark 3.2. It turns to be that
the theorem in such a form is a direct consequence of the one-dimensional
Paley-Wiener theorem. It seems that this is another example of inventor

paradox [2].
In Section 2 we give standard facts about nilpotent Lie groups, which will

be used in Section 3 to prove a version of Paley-Wiener theorem.

2 Preliminaries

The following information about nilpotent Lie group could be found in orig-
inal papers [3, 4] or in monographs [5] and [6, Chap. 6]. It should be noted
that the method of orbits and the induced representations technique are
closely connected for nilpotent Lie groups.

Let g be a nilpotent Lie algebra of the dimension n, let G = exp(g) be
the connected, simply connected nilpotent Lie group corresponding to it.
We will identify g and G via the exponential map and will consider both of
them coinciding with R

n (as vector spaces and a C∞-manifolds respectively).
We also will denote by a common letter a representation π of G and its
derived representation of g. All irreducible unitary representations could be
constructed by the inductive procedure [3], [6, Chap. 6]. We have

2.1. The group G is unimodular, the two-sided Haar measure dµ on G

coincides with the Lebesgue measure on R
n. Any Lie subgroup H

is also nilpotent and homeomorphic to R
m for some m ≤ n. The

homogeneous space X = H\G is homeomorphic to R
n−m. Invariant

measures on H and X coincide again with the Lebesgue measures on
R

m and R
n−m correspondingly.
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2.2. The unitary dual Ĝ could be parametrized by orbits of co-adjoint rep-
resentation in g′. The support G̃ of the Plancherel measure dν in Ĝ

corresponds to orbits of maximal dimensionality and parametrized by
R

k ⊂ g′, where dim g = n and n − k is the maximal dimensionality of
orbits. Moreover [3, § 7.4], the Plancherel measure is equivalent to the

Lebesgue measure on G̃ ∼= R
k:

dµ = R(λ) dλ1 . . . dλk. (2.1)

2.3. Every unitary irreducible representation π of G is induced by a one-
dimensional representation π0 of a subgroup H ⊂ G [3, Theorem 5.1].
The last representation has a form

π0(exp A) = exp(i〈l, A〉), A ∈ h (2.2)

for some l ∈ g′.

2.4. According to the general scheme of induced representation (see [5,
§ 13.2], [6, Chap. 5]) the representation could be realized as follows.
Let L2(G, H, π0) be the space of functions on G with the property

F (hg) = π0(h)F (g), h ∈ H, g ∈ G.

Then π is equivalent to the representation on L(G, H, π0) by the shift:

[π(g)F ](g1) = F (g1g). (2.3)

There is an alternative representation. Let X = H\G be a homoge-
neous space, s : X → G be a measured mapping, such that s(Hg) ∈
Hg. Define an isomorphism L2(G, H, π) → L2(X) as

f(x) = F (s(x)), F (hs(x)) = π0(h)f(x), x ∈ X, h ∈ H. (2.4)

Then

[π(g)f ](x) = A(g, x)f(xg), (2.5)

where

A(q, x) = π0(h), hs(xg) = s(x)g.
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3 A Paley-Wiener Theorem

Theorem 3.1 Let G = exp(g) be a connected, simply connected nilpotent

Lie group. Let φ(g) be a function from L∞(G) with a compact support.

Then if φ̂(π) = 0 on a subset E of Ĝ of a positive Plancherel measure then

φ(g) = 0 almost everywhere on G.

Proof. We start from the change of variables in the formula defines the
non-commutative Fourier transform φ̂(π) of φ in the form (2.3) of induced
representations:

[φ̂(π)F ](g1) =

∫

G

φ(g)F (g1g
′) dµ(g′)

=

∫

G

φ(g−1

1
g)F (g) dµ(g).

We rewrite the last line for the representation (2.5) using connection (2.4):

[φ̂(π)f ](x1) =

∫

G

φ([s(x1)]
−1hs(x))π0(h)f(x) dµ(hs(x)) (3.1)

=

∫

X

∫

H

φ([s(x1)]
−1hs(x))π0(h)f(x) dh dx

=

∫

X

∫

H

φ([s(x1)]
−1hs(x))π0(h) dh f(x) dx

=

∫

X

(∫

H

φ([s(x1)]
−1hs(x)) exp(i〈l, log h〉) dh

)
f(x) dx.(3.2)

(We substitute in (3.2) the form (2.2) of representation π0.) Thus φ̂(π) is an
integral operator K(l) : L2(X) → L2(X) of the form

[K(l)f ](x1) =

∫

X

K(l, x1, x)f(x) dx

with the kernel K(l, x1, x) defined via the usual Fourier transform with re-
spect to variables h → l:

K(l, x1, x) =

∫

H

φ([s(x1)]
−1hs(x)) exp(i〈l, log h〉) dh.

If the operator K(l) is equal to 0 for a fixed l, then the kernel K(l, x1, x)
should be equal to zero almost everywhere for (x1, x) ∈ X × X. But if the
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last statement fulfils for all l ∈ E, where E ⊂ R
k has a non-zero measure,

then φ(g) = 0 a.e. by the standard Paley-Wiener theorem. �

Remark 3.2 To prove the theorem we have used only properties 2.1–2.4. It
is well known [3], [6, Chap. 6] that these properties are not too specific and
shared also, for example, by type I solvable Lie group. So it is naturally to
assume that our theorem and its proof could be also transformed to this more
general case. Reader could found a version of our transformations (3.1)–(3.2)
for the group SL(2, R) in [7, § III.4].

We are tempted to conclude the paper by the following

Problem 3.3 Let G be a nilpotent (or solvable) Lie group. Found condi-

tions for the function φ, which guarantees that its Fourier transform φ̂(π) is

invertible almost everywhere in the Plancherel measure on Ĝ.
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