

This is a repository copy of *The Future of Geotechnical and Structural Engineering Research*.

White Rose Research Online URL for this paper: http://eprints.whiterose.ac.uk/92824/

Version: Accepted Version

Article:

Clarke, BG, Middleton, C and Rogers, C (2016) The Future of Geotechnical and Structural Engineering Research. Proceedings of the Institution of Civil Engineers - Civil Engineering, 169 (1). ISSN 0965-089X

https://doi.org/10.1680/jcien.15.00029

Reuse

Unless indicated otherwise, fulltext items are protected by copyright with all rights reserved. The copyright exception in section 29 of the Copyright, Designs and Patents Act 1988 allows the making of a single copy solely for the purpose of non-commercial research or private study within the limits of fair dealing. The publisher or other rights-holder may allow further reproduction and re-use of this version - refer to the White Rose Research Online record for this item. Where records identify the publisher as the copyright holder, users can verify any specific terms of use on the publisher's website.

Takedown

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

eprints@whiterose.ac.uk https://eprints.whiterose.ac.uk/ Table 1Social and economic infrastructure sectors and the significant eras of development of
current infrastructure to highlight the longevity of construction output and the need to
adapt to cater for changes in technology, regulations, environment and demand

Social Infrastructure	Economic Infrastructure
(post 1950)	
Housing	Road (Roman, Turnpikes)
Healthcare	Drainage (16 th C)
Leisure	Defences (coast, waterways (17 th C)
Sport	Ports (17 th C)
Government	Rail (19 th C)
Retail	Water (19 th C)
Offices	Waste (solid, liquid) (19 th C)
Manufacturing	Energy (gas, electricity, heat) (post 1950)
Emergency services	National strategic highways (post 1950)
Education	Air (post 1950)
	Communications (late 20 th C)

Table 2 The 2014 UK Infrastructure pipeline, by sector, 2014-15 onwards (after IUK, 2014)

Sector	No of Projects ¹	No of Programmes ²	Pipeline Value (£ bn)
Communications	1	5	11.0
Energy	77	70	274.9
Flood	5	21	3.7
Science and Research	18	4	1.4
Transport	141	129	142.3
Waste	20	0	2.0
Water	1	59	30.9
Total	263	288	466

1. Projects fund an activity in one of the strategic research themes

2. Programme Grants provide flexible funding to support a variety of activities focussing on one strategic research theme.

Table 3Suggested research themes and topics

Theme	Торіс
Hazards	• Database of the impact of catastrophic events on the built environment
	and the response, recovery and rebuild phases
	 Interpretation of that database to establish key lessons
	 Scenario analyses to assess impact of future events to existing built
	environment and relevance of codes
	Understand the effect of cascading failures
	• Identify emerging risks because of developments in technology and their
	impact on the built environment
	 Understand the impact of the planetary boundaries on the built
	environment
Understanding material	Intrinsic properties of new materials
behaviour	Performance of materials in situ
	Capacity of materials in situ throughout life
Paradigm Shift in Design	Assessing the value of infrastructure
	Identify appropriate performance indicators that take a holistic view of
	the lifetime of a design

	• Identify failure characteristics, pre failure and the characteristics of the
	probability of failure
	Create a life quality index to be used in design
	• Create a process to assess future design requirements to allow existing
	designs to be validated against those criteria
	• Establish the emerging design approaches and their impact on the built
	environment
Construction processes	• 3D printing of complex shapes to facilitate assembly and reduce
	resources
	Optimisation of structural elements
	Methods of assembly
	Structural form
Building performance	• Development of instrumentation to reliably monitor the behaviour of
	structures including load distribution, capacity and function
	Database of structural performance
	• Interpretation of that database to improve numerical models and future
	design
Smart Buildings	 Development of autogenous materials and elements
	Multi functioning structural elements to make full use of intrinsic
	properties
	Identify value of structures, their capacity and life
Asset Management	Identify the value of the built environment and how it can be valued
	Means of identifying client requirement
	Decision making criteria
	Retain national memory of construction processes and material
	performance
	Development of diagnostic tools and data acquisition techniques
	 Predicting capacity and capability throughout life
Intervention	 Development of early warning systems to predict failure
	Optimisation of planned interventions
	Diagnostic tools to assess impact of interventions
	Development of imaging techniques
Decarbonisation	Introduce energy, water and carbon as design criteria
	Multi functioning structures
	Refurbishment to minimise carbon emissions
Adaption	Design for adaptation
	• Understanding the relationship between over engineering, optimisation
	and future use