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In order to provide a means of understanding, the relationship between the primary electromechanical

coefficients and simple crystal chemistry parameters for piezoelectric materials, a static analysis of a

3 atom, dipolar molecule has been undertaken to derive relationships for elastic compliance sE,

dielectric permittivity eX, and piezoelectric charge coefficient d in terms of an effective ionic charge

and two inter-atomic force constants. The relationships demonstrate the mutual interdependence of

the three coefficients, in keeping with experimental evidence from a large dataset of commercial

piezoelectric materials. It is shown that the electromechanical coupling coefficient k is purely an

expression of the asymmetry in the two force constants or bond compliances. The treatment is

extended to show that the quadratic electrostriction relation between strain and polarization, in both

centrosymmetric and non-centrosymmetric systems, is due to the presence of a non-zero 2nd order

term in the bond compliance. Comparison with experimental data explains the counter-intuitive,

positive correlation of k with sE and eX and supports the proposition that high piezoelectric activity

in single crystals is dominated by large compliance coupled with asymmetry in the sub-cell

force constants. However, the analysis also shows that in polycrystalline materials, the dielectric

anisotropy of the constituent crystals can be more important for attaining large charge coefficients.

The model provides a completely new methodology for the interpretation of piezoelectric and

electrostrictive property data and suggests methods for rapid screening for high activity in candidate

piezoelectric materials, both experimentally and by novel interrogation of ab initio calculations.
VC 2015 Author(s). All article content, except where otherwise noted, is licensed under a Creative
Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by-cn-nd/4.0/).
[http://dx.doi.org/10.1063/1.4937135]

I. INTRODUCTION

Piezoelectric materials are used extensively in modern

electrotechnology, in ceramic, single crystal and thin film

forms, as sensors, actuators, and signal processing devices.1,2

Given the wide range of applications, a variety of coeffi-

cients and figures of merit are used for assessing the suitabil-

ity of piezoelectric materials for specific types of device

operation. Whilst the piezoelectric charge coefficient d is

generally used to assess the magnitude of the actuator

response of a piezoelectric material, the piezoelectric voltage

coefficient g is often regarded as the more important assess-

ment of its sensitivity as a stress sensor. For applications that

employ both the direct and converse effects in the same ma-

terial element (e.g., medical imaging or sonar transducers), a

more relevant figure of merit is the product d g. The electro-

mechanical coupling coefficient k, which has been described

as “the best single measurement of the strength of the piezo-

electric effect,”3 controls the bandwidth of such transducers,

directly influencing crucial performance parameters such as

spatial resolution. Moreover, the permittivity e is dominant

in determining the electrical impedance of a piezoelectric de-

vice, the matching of which to the driving and sensing cir-

cuits is an important aspect of piezoelectric system design.

Similarly, the compliance s dominates the acoustic imped-

ance and its match to that of the environment in which the

piezoelectric device operates. Each of the three primary

coefficients, s, e, and d, can be considered as complex, with a

relevant loss factor, tan di, (i¼ s, e, or d) being defined by

the ratio of the imaginary to real parts. Whilst losses are an

important issue in materials selection for piezoelectric appli-

cations, they are not the primary concern of this paper, which

addresses only the real components.

Optimization of the above set of coefficients for specific

applications is the primary goal of materials engineers devel-

oping new or existing piezoelectric materials. Whilst much

effort has been expended on understanding the extrinsic (do-

main) contributions to materials such as Pb(Zr, Ti)O3,4 the

non-empirical optimization of the intrinsic properties in

terms of the three material coefficients and k requires a

degree of insight into the influence of crystal parameters on

the mechanisms of piezoelectricity that has not yet been

achieved. This is compounded by the fact that the three pri-

mary coefficients, d, s, and e, are not independent variables,

as will be demonstrated below. Despite well established rela-

tionships to calculate k from the measured properties s, e,
and d, it is not immediately obvious how the compliance and

polarizability of a given structure couple at the unit cell level

to maximize energy conversion in terms of ion displace-

ments. Whilst ab initio calculations can provide somea)E-mail: a.j.bell@leeds.ac.uk
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guidance to the materials engineer, they do not provide the

type of simple, intuitive insights of how the primary coeffi-

cients are inter-related via crystal chemical parameters that

can be valuable in guiding experimental materials discovery.

This paper therefore explores a simple classical mechanics

approach to describe the mechanism of piezoelectricity in

the simplest of structures and thereby elucidates the relation-

ships between the primary coefficients and the coupling

coefficient.

First, the paper establishes the premise that the three pri-

mary coefficients s, e, and d are not independent, by correlat-

ing data from a large set of commercial piezoelectric

materials. Second, it examines the applicability of simple

discrete, dipolar structures as surrogates for extended piezo-

electric crystals, and selects a three-atom, asymmetric mole-

cule as the preferred model. Third, it derives expressions for

the primary coefficients, in terms of ionic charges, molecular

dimensions, and inter-atomic bond strengths, expressed as

Hookian spring constants. By considering a symmetric ver-

sion of the model, it also shows how that the existence of

electrostriction requires the inter-atomic bonds to have a

non-linear compliance. To test the effectiveness of the

model, the model parameters are calculated from the meas-

ured property coefficients for each of the members of the

aforementioned dataset. Conclusions are drawn concerning

the mutual independence and relative importance of the

effective dipolar charge and bond strength asymmetry in

determining intrinsic piezoelectric properties of real materi-

als. How the model applies to a number classical examples

of piezoelectric materials is examined in detail, providing

additional insight into a number of phenomena, including the

differences between single crystals and ceramics.

II. DEFINITIONS

The most fundamental form of electromechanical cou-

pling in all solids is known as electrostriction5 and for cen-

trosymmetric structures is represented as the relationship

between the induced strain, x, and the even powers of the

electric field, E

x ¼ m1E2 þ m2E4 þ � � � : (1)

For weak fields, it is normal for the first term to dominate,

but the higher order terms are often significant at fields

below the breakdown field in a manner similar to the non-

linearity between field and polarization. Hence, in practice it

is often found that the parametric relationship between

induced strain and polarization P is better behaved, as the

non-linearities in permittivity are eliminated and higher

order terms suppressed

x ¼ QP2: (2)

Q is referred to hereafter as the electrostriction coefficient.

Despite the simplicity of the relationship, there is no simple,

intuitive model which allows derivation of this coefficient

from other material parameters.6–8

In most non-centrosymmetric solids, the phenomenon of

piezoelectricity9 is the dominant form of electromechanical

coupling and under weak fields the intrinsic effect is

regarded as a linear phenomenon. The change of polarization

as a function of stress is known as the direct piezoelectric

effect, whist a change in strain as a function of electric field

is known as the converse effect. They are described by the

constitutive relationships that relate changes in strain x and

dielectric displacement D to the application of stress X and

electric field E

x ¼ sEX þ dE; (3)

D ¼ dX þ eXE: (4)

These equations define the three material coefficients essen-

tial for describing electromechanical behaviour: the elastic

compliance at constant field sE, the piezoelectric charge

coefficient d, and the dielectric permittivity at constant stress

eX, which are referred to herein as the primary coefficients.

The electromechanical coupling coefficient is defined as the

square root of the fraction of energy converted from mechan-

ical to electrical energy (or vice versa) with respect to the

input energy

k2 ¼ converted energy

input energy
: (5)

It can be shown that k is related to the three primary material

coefficients by3

k2 ¼ d2

sEeX
; (6)

which is the most widely used of the equivalent expressions

in the determination of k.

III. INTERDEPENDENCE OF THE PRIMARY
COEFFICIENTS

Data for d, sE, and eX, along with the electromechanical

coupling coefficient k, have been collected for 116 piezo-

electric materials from the on-line data sheets of 13 well-

established manufacturers of piezoelectric materials.10 The

set includes data for “hard” and “soft” Pb(Zr, Ti)O3 ceramics

(0.6< k33< 0.8), for lead-free piezoelectric ceramics

(k33< 0.6) and perovskite single crystals (k33> 0.8), with a

range of d33 values covering more than two orders of magni-

tude. The use of a large set of commercial data is justified

over a necessarily smaller set of scientific literature values,

as the data are corroborated and subjected to scrutiny on an

almost daily basis by the manufacturers and, more critically,

by their customers. In addition, the scientific literature con-

tains relatively, few examples, of self-consistent data in

which d, sE, and eX are all provided.

Figure 1 shows plots of k33 against (a) d33, (b) sE
33, and

(c) eX
33 for the large dataset. In part agreement with Eq. (6),

k33 increases as a function of increasing d33, but not in a lin-

ear manner. For the larger values of d33, k33 appears to

increase asymptotically towards unity. It might be expected

from Eq. (6) that the coupling coefficient would be inversely

correlated with both sE
33 and eX

33. However, as shown in Figs.

1(b) and 1(c), the dependence of k33 upon both sE
33 and eX

33 is

224103-2 Andrew J. Bell J. Appl. Phys. 118, 224103 (2015)
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contrary to that expectation. Indeed, increasing either sE
33 or

eX
33 appears to result in k33 increasing in a similar manner to

its dependence on d33.

Figure 2 shows a plot of eX
33 vs. d33 for the same dataset,

establishing that there is clear interdependence between the

two. Depending on whether the three outlying, single crystal

data points with large eX
33 and d33 are included, the correla-

tion might be interpreted as linear or quadratic. The data

demonstrate why piezoelectric materials optimization can be

challenging; from Eq. (6) maximization of k would normally

be expected by minimizing sE
33 and eX

33, but the data show

that the opposite trend is more realistic. This inter-

dependence of the three primary coefficients inhibits an intu-

itive approach to piezoelectric materials engineering and has

motivated the derivation of the following simple model to

clarify the form of the interdependence of the coefficients.

IV. THEORETICAL

A. A surrogate model for a piezoelectric crystal

To better understand the relationships between the four

coefficients, d, sE, eX, and k, it is proposed to undertake a

static, classical mechanics analysis of a simple arrangement of

ions, which represents the key elements of a piezoelectric ma-

terial, i.e., a lack of centre of symmetry and, to cater for the

case of ferroelectric materials, the capacity for a permanent

dipole moment. A preferred model would be an infinite, one-

dimensional, diatomic chain (Fig. 3(a)); however, definitive

analysis of extended polar structures is non-trivial due to the

known problem of polarization ambiguity.11 Hence, as surro-

gate models for the origin of crystal piezoelectric properties,

two different dipolar units are considered: (i) a simple two

atom dipole and (ii) a three atom, asymmetric “molecule.”

One might consider a simple dipole as in Fig. 3(b) com-

prising two point charges and a single bond as a surrogate

for the chain; however, whilst the unit is itself asymmetric, a

simple translational array of this unit (e.g., the NaCl struc-

ture) would be centrosymmetric. Also an analysis of a simple

dipole employing Eqs. (3), (4), and (6) yields the unrealistic

result k¼ 1.
FIG. 1. (a) k33 vs d33 (b) k33 vs sE

33 and (c) k33 v eX
33 for a set of 116 piezoelec-

tric materials, encompassing PZT, lead free ceramics, and Pb(Mg1/3Nb2/3)O3-

based single crystals.

FIG. 2. eX
33 vs d33 for the dataset of Figure 1.

FIG. 3. (a) Diatomic chain model and (b) simple dipole and (c) three atom

dipolar molecule.
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A more appropriate model is of a non-centrosymmetric

molecule comprising an ion with positive charge þ2q dis-

placed by distance d from the central position between two

ions with charges �q (Fig. 3(c)), with the distance between

the two negative ions being a and a molecular volume v. The

two interatomic bonds are characterised by the two inverse

force constants c1 and c2, generally defined by the change in

length of the bond Da on application of a force, F

Da ¼ cF: (7)

A similar schematic concept was introduced by Muralt in

Ref. 12, but without the following mathematical treatment.

As the molecule is charge neutral, its spontaneous polar-

ization can be defined unambiguously as a function of d as

Ps ¼ 2qd=v: (8)

The primary coefficients are again derived by applying Eqs.

(3) and (4) to determine the strain and change in polarization

as a function of field and stress

sE ¼ v

a2
c1 þ c2ð Þ; (9)

eX � e0v
X ¼ q2

v
c1 þ c2ð Þ; (10)

and

d ¼ q

a
c1 � c2ð Þ: (11)

The expression for d is independent of whether it is derived

from Eq. (3) or (4). Note that the susceptibility vX is consid-

ered equal to the relative permittivity eX/e0 for cases where

eX > 10e0; this approximation is applied consistently here,

unless stated otherwise

Combining the three coefficients according to Eq. (6)

gives an expression for the coupling coefficient

k ¼ c1 � c2

c1 þ c2

: (12)

Unsurprisingly, sE is only dependent upon the sum of

the bond compliances and geometric factors. The permittiv-

ity is dependent upon the sum of the bond compliances and

the square of the effective charge, whereas the charge coeffi-

cient d is linearly dependent upon the effective charge, and,

crucially, the difference between the two compliances.

Perhaps most interestingly, the coupling coefficient is de-

pendent only on the two force constants and can be inter-

preted as an expression of the asymmetry in the interatomic

bonding. This suggests that the coupling coefficient, which is

quite often regarded as simply a device figure of merit, is

actually a rather fundamental materials concept, expressing

the relative importance of the asymmetry in interatomic

bonding. For c1¼ c2, implying a centrosymmetric structure,

k¼ 0, whereas for maximum asymmetry (c1� c2), the model

tends towards that for the simple dipole with k� 1. It should

be noted that the expressions (9)–(12) are valid when d¼ 0.

A spontaneous polarization is not required to sustain

piezoelectricity; asymmetry in the bonds is the minimum

requirement.

Standard alternative expressions of the coupling coeffi-

cient to that in Eq. (6) are in terms of the “clamped coef-

ficients”:3 the permittivity at constant strain ex and the

compliance at constant displacement sD, where

k2 ¼ 1� ex

eX
¼ 1� sD

sE
: (13)

The derivation of the clamped coefficients for the 3 atom

molecule provides a test of the self-consistency of the model.

The derivation of ex is undertaken independent of Eq. (10),

by applying both field and stress simultaneously according to

Eq. (4), so that strain is maintained at zero, giving

ex ¼ 4
q2

v

c1c2

c1 þ c2

: (14)

A similar approach for the compliance reveals

sD ¼ 4
v

a2

c1c2

c1 þ c2

: (15)

Eq. (13) therefore becomes k2 ¼ 1� 4
c1c2

ðc1þc2Þ2
, which is iden-

tical to the expression in (12) and confirms that Eqs. (9),

(10), (14), and (15) accord with the definition of Eq. (13).

Either Eq. (3) or (4) with (9)–(11) can be used to derive

an expression for the spontaneous strain of the structure, i.e.,

the change in a when sufficient field or stress is applied to

render d¼ 0

xs ¼
Da

a
¼ 2d

a

c1 � c2

c1 þ c2

¼ 2d
ak
: (16)

This implies that the magnitude of the coupling coefficient

should be evident not only from the asymmetry in the inter-

nal force constants of a structure but also for a ferroelectric,

by a comparison of the geometry in the polar and non-polar

phases

k ¼ 2d
Da

; (17)

where Da and d are the change in polar lattice spacing and

polar ion shift on passing through the ferroelectric phase

transition.

B. Non-linearity and electrostriction

It is interesting to explore whether the 3 atom model is

also consistent with the relationship between electrostriction

and piezoelectricity defined from the derivative of Eq. (2)

d ¼ dx

dE
¼ 2QP

dP

dE
¼ 2QPeX: (18)

Electrostriction is present in both centrosymmetric and non-

centrosymmetric solids; in the first instance, the centrosym-

metric case is considered. Taking the 3 atom model, but with

d¼ 0 and c1¼ c2¼ c, it is trivial to show that on applying an

electric field, E, one bond will contract by cEq whilst the

224103-4 Andrew J. Bell J. Appl. Phys. 118, 224103 (2015)
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other extends by the same distance, hence, despite a resultant

polarization of 2cEq2/v, there is no overall change in length

of the molecule. In this case, the electrostriction coefficient

would be zero. However, if the bond compliance is non-

linear such that

Da ¼ cFþ gF2; (19)

on application of an electric field, the two bonds will change

their lengths by

d1 ¼ cEqþ gE2q2 and d2 ¼ �cEqþ gE2q2; (20)

respectively. Hence the change in length of the molecule is

d1 þ d2 ¼ 2gE2q2; (21)

equivalent to a strain of

x ¼ 2gE2q2

a
: (22)

The displacement of the central ion d is

d ¼ d1 � d2

2
¼ cEq; (23)

giving a polarization of

P ¼ 2cEq2

v
; (24)

identical to that in the linear elastic case.

Thus, the electrostriction coefficient is given by

Q ¼ x

P2
¼ 1

2

v2

a

g
c2q2

; (25)

and is directly proportional to the second order bond compli-

ance, g. Also notable is the reciprocal dependence of Q on q2;

as permittivity is directly proportional to q2, the relationship

in Eq. (25) is consistent with the empirical observation of a

correlation between permittivity and 1/Q for a wide range of

materials.13 Electrostriction only exists if the compliance of

the molecule is non-linear; the treatment allows for higher

order terms in the compliance; however, only the even order

terms would appear in the electrostriction relation.

C. Elastic non-linearity and piezoelectricity

How does the inclusion of elastic non-linearity modify

the identities for piezoelectric coefficients? This is explored

through the assumption of an internal bias field Ei applied to

the symmetric case in order to provide bond asymmetry and

produce a spontaneous polarization

Ps ¼
2cq2

v
Ei: (26)

Applying Eqs. (3) and (4) gives

sE ¼ 2cv

a2
þ 2gv2

a3
X; (27)

eX ¼ 2cq2

v
; (28)

d ¼ 4gq2Ei

a
þ 4gq2

a
E: (29)

The elastic non-linearity is, of course, self-evident in the

expression for compliance, but, as in the centrosymmetric

case, has no influence on the permittivity. For the charge

coefficient, the additional applied-field dependent term is

only apparent in the converse d coefficient ð¼ dx=dEÞ as

shown in Eq. (29), whilst the direct coefficient ð¼ dP=dXÞ
remains linear.

Under the weak field assumption, in which the linear

contributions to sE and d dominate, the coupling coefficient is

k ¼ 2gEiq

c
: (30)

In this context, the coupling coefficient appears to be a con-

sequence of the elastic nonlinearity, g=c with the asymmetry

provided by the internal field, Ei.

In the non-linear model, at non-zero internal bias, the

two bonds have different values of compliance with respect

to field or stress modulation. Hence, in the weak, applied

field limit, the model is actually identical to the original

“linear” model, which assumed different bond compliances

as the starting point. The linear model bond compliances in

terms of the non-linear parameters are

c1 ¼ cþ 2gqEi (31)

and

c2 ¼ c� 2gqEi: (32)

V. COMPARISON OF THE MODEL WITH
EXPERIMENTAL DATA

This section addresses whether the above three atom

model is relevant to the complexity embodied in real materi-

als and reveals the relative importance of the model parame-

ters (q, c1 and c2 or q, c, g, and Ei) in determining the

properties of common piezoelectric materials. Hence, in the

following, the 3 atom model parameters are determined for a

range of real materials. It should be noted that the parameter-

ization treats the piezoelectric measurement data is if they

were obtained from a black-box; i.e., the model is ignorant

of form (single crystal or polycrystal), crystal symmetry or

direction of measurement with respect to the polar axis.

A. Electrostriction

First, the case of electrostriction in centrosymmetric

materials is considered. As most crystals do not exhibit sig-

nificant non-linearity in their elastic properties, it is pertinent

to explore the importance of the non-linear elastic term

implied by the electrostriction coefficient in a real case.

Considering a simple cubic crystal, such as NaCl, at low

stress the linear term in the compliance may be considered

dominant, hence we can estimate c as equal to sE/2a.

224103-5 Andrew J. Bell J. Appl. Phys. 118, 224103 (2015)
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The coefficient g can then be estimated from Eq. (25) rewrit-

ten as

g ¼ sEe0vXQ

2a3
: (33)

In this case, due to the low permittivity of NaCl (eX¼ 6e0),

the expression is given in its precise form in terms of suscep-

tibility vX. From Ref. 6, the value of Q1111 for NaCl is deter-

mined as 1.7 m4 C�2, with sE
11 given as 22.9 � 10�12 m2

N�1. With a¼ 5.64 Å and vX¼ 5, a value for g of 4.80

� 106 m N�2 is calculated. This second order coefficient

appears considerably larger than the linear coefficient

c� 0.02 m N�1. However, given that for a stress of 10 MPa,

an equivalent force on a single NaCl unit cell is approxi-

mately 3 pN, the linear term in Eq. (19) dominates until

applied stresses well beyond 10 GPa. Hence, the model sug-

gests that although a material may appear to be a linear elas-

tic, a relatively small elastic non-linearity can be revealed

through a finite electrostrictive coefficient, even under weak

electric fields, due to cancellation of the linear components

of compliance in a dipolar structure.

B. The relationship between k and sE, eX, and d

The model allows a better understanding of the relation-

ship illustrated in Fig. 1 between the primary coefficients

and k. Eliminating c2 and c1 in turn from the expressions in

Eqs. (9)–(11) reveals two simple relationships between d, eX,

and sE

d ¼ d1 �
ffiffiffiffiffiffiffiffiffi
sEeX
p

; d ¼
ffiffiffiffiffiffiffiffiffi
sEeX
p

� d2; (34)

where

d1 ¼
2qc1

a
and d2 ¼

2qc2

a
(35)

equivalent to twice the piezoelectric charge coefficients of

simple dipoles, with reciprocal force constants c1 and c2,

respectively. From Eqs. (6) and (34), the relationship

between d and k can be expressed as

k ¼ d

d1 � d
¼ d

d2 þ d
: (36)

Figure 4 plots the function k ¼ d
d2þd for values of

d2¼ 50, 150, and 300 pC N�1, together with the data from

Fig. 1(a) for the large commercial dataset. It can be seen that

the function is a good representation of the correlations

between the material data. All the data fall between the lines

for d2¼ 50 and 300 pC N�1, with the majority of the data

clustered around the line for d2¼ 150 pC N�1. An under-

standing of the meaning of d2 from Eq. (34) is that it is the

difference between the actual value of the d coefficient and

its potential maximum at k¼ 1 represented by
ffiffiffiffiffiffiffiffiffi
sEeX
p

.

Similar relationships between sE and k and between eX and k
can be derived from Eqs. (9)–(12) which also explain the

form of the correlations in Figs. 1(b) and 1(c)

k ¼ sE � s1

sE
¼ s2 � sE

sE
; with

s1 ¼
2vc1

a2
and s2 ¼

2vc2

a2
(37)

and

k ¼ eX � e1

eX
¼ e2 � eX

eX
; with

e1 ¼
2q2c1

v
and e2 ¼

2q2c2

v
: (38)

Hence, the 3 atom treatment has yielded a set of equations

which explicitly demonstrate the interrelationships

between k and d, eX and sE. The form of the relationships

matches that of the correlations between the coefficients

exhibited by a large dataset of commercial piezoelectric

materials.

C. Commercial piezoelectric materials dataset

To determine the relative importance of the model pa-

rameters to a range of piezoelectric materials, the large data-

set of Figs. 1 and 2 is analysed. Due to the absence of Ps

values from the set, the “linear” model parameters will be

employed. The values of the q, c1, and c2 are calculated from

the data for d33, sE
33, and eX

33 using Eqs. (9)–(11). The mole-

cule length and molecular volume and are equated to the lat-

tice parameter and unit cell volume, respectively. As these

are not known precisely for each member of the set, the unit

cell parameters and volumes will be assumed constant for

the whole set as virtually all the materials are perovskites

with lattice parameters of approximately 4 Å. For example,

at room temperature, the parameters of tetragonal barium

titanate are a¼ 3.992 Å and c¼ 4.036 Å, for tetragonal lead

titanate a¼ 3.901 Å and c¼ 4.149 Å, and for rhombohedral

PMN-PT a¼ 4.014 Å. Hence, for the following analysis, it is

assumed that all the materials in the dataset have a lattice

parameter of 4.0 Å and correspondingly have a unit cell

volume, v� a3¼ 64� 10�30 m3. It is recognized that this

FIG. 4. k as a function of d; data-points are for the data set of Fig. 1(a); the

lines illustrate the relationship k ¼ d=ðd þ d2Þ for values of d2¼ 50, 150,

and 300 pC N�1.
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assumption represents a source of scatter in some of the data

correlations below.

From Eqs. (9) and (11), the effective dipolar charge for

each material can be calculated from

q ¼ v

a

ffiffiffiffiffiffi
eX

33

sE
33

s
; (39)

whilst

c1 ¼
1

2

a2

v
sE

33 þ
a

q
d33

 !
(40)

and

c2 ¼
1

2

a2

v
sE

33 �
a

q
d33

 !
: (41)

Note that the subscript “33” denotes a measured value from

the dataset, as distinct from the model results in Eqs.

(9)–(11).

In effect, Eqs. (39)–(41) parameterize the sE
33; eX

33, and

d33 data in terms of an effective dipolar charge and the two

bond compliances. The average values and ranges of sE
33; eX

33,

d33, and k33 for the dataset together with the same details of

the calculated values of q, c1, and c2 are shown in Table I.

Plots of each of the primary coefficients against each of the

parameters are shown in Fig. 5. In order to emphasis the

trends for the majority of the samples, the data for the three

PMN-PT crystals have been omitted from Fig. 5 and will be

discussed separately below. A number of relationships

become apparent in Fig. 5. Whilst sE
33 has no apparent corre-

lation with the value of q, both eX
33 and d33 are strongly corre-

lated with q. Due to the lack of data at very low eX
33, it is not

possible to say, whether the form of the correlation is quad-

ratic or linear for eX
33. Unsurprisingly, as c1� c2 for the ma-

jority of materials in the dataset, sE
33 correlates linearly with

c1. The correlations of eX
33 and d33 with c1 are less strong, but

clearly both increase with increasing c1. There is no obvious

dependence of any of the coefficients on c2. However, c2 cer-

tainly plays role in determining k33, as a plot of k33 vs c1 is

well correlated, although not linearly (Fig. 6(a)), whilst k33

TABLE I. Average values and ranges of sE
33, eX

33, d33, and k33 for the dataset

together with the same details of the calculated values of q, c1, and c2.

Parameter Average Minimum Maximum Units

sE
33 18.2 7.31 86.5 T Pa�1

eX
33 2134 124 7996 nF m�1

d33 410 19.1 1900 pC N�1

k33 0.67 0.09 0.93

q 30.77 4.98 58.66 e (¼1.6 � 10�19 C)

c1 37 1.2 191 Mm N�1

c2 6.5 1.6 25.1 Mm N�1

FIG. 5. The primary coefficients sE
33, eX

33, and d33 plotted against the model parameters, q c1 and c2, for the large commercial dataset. For clarity, the outlying

datapoints for PMN-PT single crystals are omitted.
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vs (c1� c2)/(c1þ c2) shows a strong linear relationship (Fig.

6(b)), the scatter of which is due to the experimental values

of k33 not being consistent with those for sE
33; eX

33, and d33 for

some members of the dataset.

In general, the analysis shows that there is good consis-

tency in the generation of the model parameters from experi-

mental data and that whilst q and c1 are the two most

important parameters, both c1 and c2 are required to accu-

rately reproduce k.

Given that a motivation for the model was to account

for the interdependence of the 3 primary coefficients, it is

important that the model parameters are actually mutually

independent. Figure 7 shows plots of (a) c1 vs c2, (b) q vs c1,

and (c) q vs c2 for the dataset. There are no discernible corre-

lations in any of the plots, indicating that the three parame-

ters are indeed mutually independent.

D. Comparative examples

As the large commercial dataset mainly comprises data

from incompletely specified ceramics, without precise lattice

parameters or values of spontaneous polarization, a more

critical analysis of the utility of the parameterization requires

a set of more rigorously self-consistent data. Table II shows

literature values of the electromechanical coefficients for a

number of representative piezoelectrics, together with values

for the crystal dimension along the measurement axis (a) and

the unit cell volume (v). The calculated model parameters

are presented for the linear and also, in the case of ferroelec-

trics, for the non-linear treatments. The materials set includes

examples of the non-ferroelectric piezoelectrics AlN and

ZnO,14 plus the classic ferroelectric crystals BaTiO3,3

KNbO3,15 and PbTiO3.3 For comparison, data from polycrys-

talline materials3,10 and from Landau-Ginzburg-Devonshire

(LGD) calculations16,17 are included for BaTiO3 and

PbTiO3. In the case of PZT, ceramic data for hard and soft

commercial materials10 are tabulated, however despite the

availability of LGD calculations for PbZr0.5Ti0.5O3 single

crystals,18 analysis has not been possible due to the lack of

reliable compliance or coupling coefficient data. Measured

data for PMN-PT is given for samples poled parallel to the

[100] and [111] directions and measured parallel to the

poling direction.19

FIG. 6. (a) k33 vs c1 and (b) k33 vs. (c1� c2)/(c1þ c2) for the complete data

set (including PMN-PT crystals). FIG. 7. (a) c1 vs c2, (b) q vs c1, and (c) q vs c2 for the dataset.
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It is readily observed that the non-ferroelectric piezo-

electrics owe their inferior d coefficients to a combination of

low effective charge, q, high stiffness (low c1), and a small

ratio of c1 to c2 when compared to the ferroelectric examples.

Although KNbO3 has a similar compliance to ZnO, both q
and c1 of KNbO3 are twice those of ZnO, with a significantly

larger c1/c2 ratio, accounting for the larger d value (Fig. 8).

In a similar vein, c1 and q of BaTiO3 are both larger

than those of KNbO3 resulting in a significantly larger per-

mittivity and charge coefficient, despite the larger spontane-

ous polarization of KNbO3, which is a consequence of the

large effective internal field value (Ei). It is reassuring that

the analysis provides similar results for the experimental and

LGD model data for single crystal BaTiO3.

The data for crystal PbTiO3, taken from the thermody-

namic model of Haun,17 show that despite a relatively large

value of c1, consistent with the large compliance value, the

charge coefficient is rather low, due to the low value of

effective charge, q. As in KNbO3, the large spontaneous

polarization is due to the large internal field, rather than a

large effective charge. Indeed, there is a clear trend in the

data of Table II suggesting that Ei is inversely proportional

to q, indicating that the non-linear parameters may not be as

mutually independent as the linear parameters.

For ceramic BaTiO3 and PbTiO3, the calculated effec-

tive charges are significantly larger and the bond complian-

ces lower than in the equivalent single crystals. It is noted

that the parameters for PZT ceramics may also follow this

trend. This apparent discrepancy can be understood as fol-

lows. In polycrystalline materials, the properties are derived

from an averaging of the angular variation in properties of

the equivalent single crystal. For example, in single crystal

BaTiO3, at room temperature, the values of relative permit-

tivity and compliance, parallel and perpendicular to the

[001] polar axis are eX
33/e0¼ 168, eX

11/e0¼ 2920, sE
33¼ 15.7

T Pa�1, and sE
11¼ 8.93 T Pa�1.6 Whilst the “dielectric com-

pliance” is almost 20 times greater perpendicular to the polar

axis, the elastic compliance is almost half of the polar axis

value. Hence, a polycrystalline material will appear to be

elastically stiffer, but with a larger permittivity than the sin-

gle crystal counterpart. When subject to the analysis pre-

sented above, the effective charge of the ceramic is larger

and bond compliance lower than for the single crystal.

Extrapolating to the general case, whilst compliance asym-

metry parallel to the polar axis is the dominant characteristic

in determining single crystal piezoelectric performance, in

ceramics the dielectric anisotropy of the crystal plays a much

greater role. The model is thus consistent with other

approaches to understanding the origins of high piezoelectric

response in ceramics, particularly close to instabilities.20

The single crystal data for BaTiO3 implies from Eqs. (9)

and (10) that q/e¼ 54.23 and c1¼ c2¼ 11 mm N�1 along

[100] compared to q/e¼ 9.7 and c1¼ 30.98 andc2¼ 8.75 mm

N�1 along the polar [001] axis. The effective charge perpen-

dicular to the polar axis appears to be 5 times greater than

that parallel to it. This result is not so intuitive in terms of

the classical mechanics approach, in which the charges are

considered to be fixed in value, but the crystal structure is

flexible. The significance of such large anisotropy in the

effective charge has yet to be fully understood, but in real

crystals, as the effective charge q is probably related to a

mean of the ionic charges weighted according to their dis-

placements, the charge anisotropy may be due to the varia-

tion in the number and type of ions which can effectively

contribute to the induced polarization as a function of the

direction of the applied field.

A further source of variance between single crystal and

ceramic data is that ceramics are more liable to be influenced

by the presence of 180� domain walls. The majority of mate-

rials in the large commercial dataset are PZT, covering a

large range of d33 values from 250 to 700 pC N�1, for which

domain wall contributions are the most likely source of vari-

ation. It can be assumed that domain walls are also the origin

of the differences in the properties of the hard and soft PZT

ceramics in Table III, resulting in almost a factor of 2 differ-

ence in both permittivity and charge coefficient. Whilst the

TABLE II. Experimental or theoretical values of electromechanical properties of selected piezoelectric materials with the resulting calculated model parame-

ters; the cited references are for the origin of the property values.

Measured properties Linear parameters Non-linear parameters

Material

a
Å

v
Å3

sE
33

T Pa�1 eX
33/e0

d33

pC N�1 k33

Ps

C m�2

c1

mm N�1

c2

mm N�1 q/e
Ei

MV m�1

c
mm N�1

g
Mm N�2

d
pm Reference

AlN 4.98 47.9 2.64 11.9 5 0.3 … 8.88 4.78 3.8 … … … … 14

ZnO 5.21 55.2 6.99 11.26 12 0.47 … 25.23 9.19 2.5 … … … … 14

KNbO3 crystal 5.36 66.00 6.44 44 30 0.59 0.30 22.17 5.70 6.0 777.1 14.02 11.2 10.38 15

BaTiO3 crystal (LGD) 4.036 64.38 13.10 188 95 0.64 0.26 27.26 5.89 11.2 156.2 16.57 38.04 4.65 16

BaTiO3 crystal [001] 4.036 64.38 15.70 168 86 0.56 0.26 30.98 8.75 9.7 174.5 19.86 40.99 5.39 3

BaTiO3 crystal [100] 3.990 64.38 8.93 2920 0 0 0 11.05 11.05 54.2 … … … … 3

BaTiO3 ceramic 4.036 64.38 8.85 1350 145 0.45 0.21 16.19 6.20 36.6 17.6 11.20 48.46 1.15 3

PbTiO3 crystal (LGD) 4.152 63.28 33.30 65 78 0.56 0.76 70.85 19.87 4.0 1320.6 45.36 30.47 37.95 17

PbTiO3 ceramic 4.152 63.28 7.31 208 46 0.40 0.76 13.90 6.01 15.1 412.2 9.95 3.95 9.93 10 Pz34

Hard PZT 4.14 67.57 14.20 1200 265 0.66 0.40 30.30 5.72 27.9 37.6 18.01 73.10 3.03 10 PIC 181

Soft PZT 4.14 67.57 19.00 2400 500 0.69 0.40 43.06 5.14 34.1 18.8 24.10 184.56 2.48 10 PIC 151

PMN-PT (111 poled) 5.81 65.5 13.30 640 190 0.69 0.42 57.99 10.55 14.5 74.1 34.27 137.52 5.91 19

PMN-PT (100 poled) 4.03 65.5 120.00 8200 2820 0.91 0.42 290.91 6.64 25.0 5.8 148.77 6145.87 3.44 19
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“soft” material exhibits an effective charge 20% higher than

the “hard” equivalent, its softer bond compliance (c1) is

more than 40% larger. Arlt and Pertsev21 have proposed that

the domain wall contributions to the primary coefficients fol-

low the following expressions, from which an orientation

factor has been omitted

sE
33D �

x2
s cD

w
; (42)

eX
33D �

P2
s cD

w
; (43)

d33D �
xsPscD

w
; (44)

where xs is the spontaneous strain, w is the domain width,

and cD is the inverse force constant for domain wall motion.

Given the similarity in form of these contributions, to the

intrinsic contributions in the 3 atom model, it is not surpris-

ing that the parameter analysis undertaken above does not

distinguish between intrinsic and extrinsic contributions and

assigns parameters based on the total coefficient values.

PMN-PT single crystals do not follow all the trends set

by the majority of the large dataset. They have the highest

values of d33, eX
33, and k33 and are also amongst those with

the highest sE
33 values. Compared to the other single crystals

in Table II, they also exhibit relative high q and c1 values.

The PMN-PT data in the large dataset are for rhombohedral

crystals, with an intrinsic polar vector lying along the [111]

direction. As is made clear in Table II, the largest piezoelec-

tric coupling is observed for materials poled and then meas-

ured along the pseudo-polar [001] axis; the same materials

poled and measured parallel to [111] have only moderate

piezoelectric activity.19 Under [100] poling these materials

exhibit, the phenomenon widely known as polarization rota-

tion, in which under fields applied along [001], the polariza-

tion vector rotates in the (110) plane from [111] towards

[001].22 Similar to the case of the dielectric anisotropy of

BaTiO3 discussed above, q is large for fields applied along

[001], but in contrast to BaTiO3, c1� c2 in this direction is

exceptionally large compared to the polar [111] direction.

This anomalous softening is assumed to be due to the close

proximity of the composition to a rhombohedral-tetragonal

structural phase transition. Hence, d33, eX
33, and k33 are corre-

spondingly large for driving forces along [100].

The literature values of spontaneous polarization are

also included in Table II, from which are calculated the polar

displacement d via Eq. (8). The values for BaTiO3, KNbO3,

and PbTiO3 are compared in Table III with the literature val-

ues of the room temperature B-site and oxygen ion shifts.23

The calculated value of the d parameter is smallest for

BaTiO3 and largest for PbTiO3. The trend and values are

consistent with magnitudes of the experimentally recorded

shifts for the B- and O-sites across the three materials.

VI. CONCLUSIONS

Motivated by the observation that the primary electro-

mechanical coefficients sE, eX, and d are not mutually inde-

pendent for a wide range of materials, the static, weak-field,

electromechanical properties of a 3 atom, dipolar molecule

have been derived in terms of the ionic charge and intera-

tomic bond strengths. Whilst a simple, linear elastic model

demonstrates the essence of the interdependence of the 3

coefficients and that the coupling coefficient k is purely a

function of the bond strength asymmetry, a non-linear elastic

FIG. 8. (a) Experimental values of piezoelectric charge and coupling coeffi-

cients for selected materials and (b) the equivalent values of c1, c2, and q cal-

culated from the model.

TABLE III. Comparison of model value of ionic displacement d with exper-

imental values for selected perovskites from Ref. 18.

Experimental Model

dB dOI dOII PS q/e d

Units pm pm pm C m�2 pm

BaTiO3 5 �9 �6 0.26 9.71 5.4

KNbO3 8 �13 �12 0.30 11.92 10.4

PbTiO3 17 �47 �47 0.76 3.96 38.0
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model is required to provide a self-consistent description for

both electrostriction and piezoelectricity. Employing the

model to interpret the data from a wide range of piezoelectric

materials, the model demonstrates the intrinsic deception in

the relationship k ¼ d=
ffiffiffiffiffiffiffiffiffi
sEeX
p

, explaining why, counter-

intuitively, k tends to correlate positively with sE and eX.

The applicability of the model to real materials has been

explored. Experimental electromechanical data (sE, eX, d)

can be parameterized in terms of an effective charge and the

bond compliances (q, c1, c2) for the linear model; in the case

of ferroelectric materials for which Ps is known, the non-

linear model can also yield the second order elastic coeffi-

cient g and an effective internal field Ei.

It is noted that the model does not distinguish between

intrinsic and extrinsic contributions. Hence, augmentation of

the primary coefficients due to domain wall motion will be

expressed as changes to the effective charge and bond com-

pliance in the same way as intrinsic phenomena.

Analysis of the parametrization for exemplar materials,

emphasises that large compliance, coupled with large bond

asymmetry, is necessary for maximum piezoelectric activity

in single crystals. However, it also confirms that for ceramics,

the dielectric anisotropy of the constituent crystal can play a

key role in increasing the charge coefficient above that of the

single crystal. Evaluation of the model parameters from the

experimental data for a wider range of materials may prove

whether the model may have some predictive, rather than a

simple interpretive role in materials development.

Whilst it is difficult to experimentally test the primary

outputs of the parameterization directly, the non-linear treat-

ment for ferroelectric materials does result in values for the

effective ion shifts, which when compared to the ion shifts in

BaTiO3, KNbO3, and PbTiO3 are of the correct magnitude

and sequence. Ab initio density functional calculations have

the potential to evaluate sub-cell bond compliances and

work is currently in progress to develop a method for com-

parison with the 3 atom model outputs. Such a comparison

would test the proposition that focusing on individual bonds

may provide a rapid method of assessing new candidate pie-

zoelectric materials through a direct calculation of the cou-

pling coefficient from the bond strengths, thereby avoiding

some of the uncertainties in calculating the polarization of

new structures.

A limitation of the above analyses is the static rather

than dynamic approach. Indeed, aspects of the model may be

looked upon as a time-independent solution of the diatomic

chain problem, which is at the heart of the successful lattice

dynamics approach to ferroelectric theory. The emphasis on

compliance in the static model is most probably a manifesta-

tion of the soft-mode mechanism in displacive ferroelectrics.

It would be of interest therefore to examine the parallels

between the two approaches more closely, particularly the

practical implications of large differences in the force con-

stants and whether there is a consistent signature for such

large differences in infra-red spectra, beyond that of a soft-

mode, that may provide a rapid experimental screening tech-

nique for high activity materials.

There is also an overlap between the model and the

other successful theory of ferroelectricity, the thermodynam-

ics approach of Landau-Ginzburg-Devonshire [LGD],24

which provides a description of the temperature-, field-, and

stress-dependence of polarization. As permittivity and the

piezoelectric charge coefficient are regarded as functions of

polarization, LGD also accounts for their variation under the

same variables, providing that the electrostriction coefficient

is assumed to be temperature independent. However, in the

basic LGD model, the elastic modulus is assumed to be inde-

pendent of polarization, which is not necessarily the case in

the 3 atom model. Founded on the double well potential for

polarization, there is an obvious parallel between the LGD

model and the non-linear elastic approach, however in the

latter, the polarization comprises two independent model pa-

rameters (q and d), both of which may be temperature de-

pendent. Hence, to make any progress in harmonizing the

current model with the LGD theory, it would be useful to

carry out the parameterization of the primary coefficients

for, say, BaTiO3 as a function of temperature.
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