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Abstract: Current systems for similarity-based virtual screening use similarity 

measures in which all the fragments in a fingerprint contribute equally to the 

calculation of structural similarity.  This paper discusses the weighting of fragments 

on the basis of their frequencies of occurrence in molecules.  Extensive experiments 

with sets of active molecules from the MDL Drug Data Report and the World of 

Molecular Bioactivity databases, using fingerprints encoding Tripos holograms, 

Pipeline Pilot ECFC_4 circular substructures and Sunset Molecular keys, demonstrate 

clearly that frequency-based screening is generally more effective than conventional, 

unweighted screening.  The results suggest that standardising the raw occurrence 

frequencies by taking the square root of the frequencies will maximise the 

effectiveness of virtual screening.  An upper-bound analysis shows the complex 

interactions that can take place between representations, weighing schemes and 

similarity coefficients when similarity measures are computed, and provides a 

rationalisation of the relative performance of the various weighting schemes.    
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INTRODUCTION 

There is much current interest in the use of virtual screening methods to enhance the 

cost-effectiveness of research programmes to discover novel drugs and agrochemicals 

[1-6].  A range of approaches, both structure-based and ligand-based, have been 

described in the literature and both play a key role in the lead-discovery stage of 

research programmes in the pharmaceutical and agrochemical industries.  In this 

paper, we focus on ligand-based virtual screening, specifically on similarity searching 

using 2D fingerprint representations of molecular structure.  

 

A 2D fingerprint is a vector that encodes the presence or absence of topological 

substructures (typically atom-, bond- or ring-centred fragments) in a molecule [7,8], 

and many different types of fingerprint have been described in the literature [9,10].  A 

fingerprint is clearly an extremely simple type of structural representation, but still 

contains sufficient information to enable effective similarity-based virtual screening to 

be carried out (see, e.g., [11-17]).  Here, the similarity is computed between a 

reference structure of known biological activity and each of the structures in a 

database; the most similar structures – the nearest neighbours – are then prime 

candidates for biological screening.  The similarity is computed using a similarity 

coefficient, normally the Tanimoto coefficient, which is based on the substructures 

common to the fingerprints representing the reference structure and the current 

database structure [18].   

 

Fingerprints have traditionally been binary in character, encoding merely the presence 

(one) or absence (zero) of a 2D substructural fragment in a molecule, but there is no 

reason why this should necessarily be the case.  Instead, it is possible to assign 

weights to fragments that describe their relative degree of importance in the molecules 

in which they occur.  Thus, a fragment with a high weight that occurred in both a 

reference structure and a database structure would make a greater contribution to the 

overall degree of similarity between those two molecules than would a fragment that 

was common to them but that had a lower weight.  Note that weighting is very 

different in nature from standardisation, which is commonly used with real-valued 

data to ensure that all of the attributes comprising a molecular representation, e.g., 

different types of computed physicochemical property, are measured on the same 

scale [19].  For example, the well-known Z standardisation ensures that attributes 
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such as logP, molecular weight, number of rotatable bonds etc. will all have means 

and standard deviations of zero and unity, respectively, and thus make comparable 

contributions to a similarity calculation.  Weighting, conversely, seeks to increase the 

differences between the various components of a molecular representation that are all 

of the same type, e.g., the occurrence of fragments in a molecule.   

 

The weighting of fragments on the basis of activity data has been extensively used in 

approaches to chemical machine learning [15,20,21], but this type of weighting 

cannot be used in chemical similarity searching, since the requisite data are not 

available; similar comments apply to approaches based on ligand-protein interactions, 

e.g., recent work on the weighting of substructural features using the FlexX scoring 

function [22] or the use of X-ray or NMR data [23].  In the typical similarity-

searching context, conversely, very limited information is available for the 

computation of fragment weights, specifically the identity of one, or a few, active 

molecules.  In one of the very first studies of similarity searching, Willett and 

Winterman discussed three types of weighting: weighting based on the number of 

times that a fragment occurred in an individual molecule; weighting based on the 

number of times that a fragment occurred in an entire database; and weighting based 

on the total number of fragments within a molecule [24].  In addition, Jorgensen et al. 

have discussed weighting based on the type of fragment (ring system, linker or side-

chain) that is common to a pair of molecules that is being compared [25].  In this 

paper, we focus on the first of the types discussed by Willett and Winterman: 

specifically, we compare occurrence-based representations (i.e., weighted ones that 

encode how often a fragment substructure occurs in a molecule) with incidence-based 

representations (i.e., binary ones that encode merely the presence or absence of a 

fragment substructure).   

 

Willett and Winterman reported detailed experiments in which simulated property 

prediction was carried out on 16 QSAR and QSPR datasets represented by lists of 

atom-centred or bond-centred fragments [24].  They concluded that occurrence-based 

representations were slightly, but significantly, superior to incidence-based 

representations; however, the experiments were on a very small scale with the datasets 

only containing 20-129 structures.  Property prediction experiments using small 

QSAR and QSPR datasets were also reported by Olah et al. [26] and by Azencott et 
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al. [27], both of whom again found that occurrence-based representations performed 

better than the corresponding incidence-based representations.  A preference for 

occurrence-based representations was observed by Chen and Reynolds in simulated 

virtual screening experiments using the NCI AIDS and MDL Drug Data Report 

(MDDR) databases [28], although they noted that the highly specific fragment 

definitions that were employed (atom-pairs and atom-sequences) meant that there was 

often little difference between the two types of representation.  The autocorrelation 

descriptors used by Fechner et al. contained normalised counts of two-point 

pharmacophores, these being defined by generalised atom-types that resulted in 

multiple occurrences in molecules [29].  Simulated virtual screening experiments on 

the small COBRA dataset showed that these occurrence-based representations were 

slightly better than the corresponding incidence-based versions, although the authors 

concluded that the latter could be used with little loss of performance.  In like vein, 

Stiefl et al. discussed the use of two-point topological pharmacophore points derived 

from reduced graphs, and found little difference between weighted and binary forms 

in searches of the MDDR database [30].  Brown and Martin used binary and 

occurrence-weighted MACCS keys for cluster-based property prediction and found 

that the latter were slightly superior [31]; Ewing et al. discussed searches of small, in-

house GPCR files using MACCS keys and three-point topological pharmacophores in 

both weighted and binary forms, and found that the occurrence-based representations 

were consistently superior [32]; and Good et al. found that inclusion of frequency 

information enhanced the performance of four-point pharmacophores in 3D searches 

of a Factor Xa dataset [33]. 

 

The work to date hence suggests that fingerprints encoding the occurrences of 

substructural fragments may be able to give better screening performance than 

conventional, binary fingerprints.  However: the results have been far from consistent 

and the performance differences often quite small; many of the previous studies were 

limited, either in terms of the numbers of molecules involved or in the extent to which 

the weighted and binary fingerprints differed; and there has been no attempt to explain 

the observed levels of performance.  It hence seems appropriate to revisit the use of 

occurrence-based weighting schemes, especially given that non-binary fingerprints are 

becoming more common in modern chemoinformatics systems, and we here report a 

detailed study of the use of such schemes in similarity-based virtual screening.   
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METHODS 

Datasets 

Our experiments have involved carrying out simulated virtual screening experiments, 

in which the similarity is computed between a reference structure of known biological 

activity and each of the molecules in a database.  The molecules are ranked in 

decreasing similarity, a threshold is applied to retrieve some fixed number of the top-

ranked molecules, and the activity (or otherwise) of these nearest neighbours noted as 

a measure of the effectiveness of the search.  This is possible here since the databases 

used – the MDL Drug Data Report database (MDDR, from Symyx Technologies at 

http://www.mdli.com/products/knowledge/drug_data_report/index.jsp) and the World 

Of Molecular Bioactivity database (WOMBAT, from Sunset Molecular Discovery 

LLC at http://sunsetmolecular.com/products/?id=4) – both contain information about 

the activities of their constituent molecules.  In the case of MDDR, the bioactivity 

data is qualitative: a molecule is noted as exhibiting a specific activity, and it is 

assumed to be inactive if that is not the case.  In the case of WOMBAT, the original 

bioactivity data is quantitative: we have converted this to qualitative for our 

experiments by marking a molecule as inactive if the measured activity value is less 

than a threshold value, as described below.     

 

Several activity classes were chosen for each of the two databases, as listed in Table 

1.  Table 1a lists the MDDR classes, which were selected in collaboration with the 

Novartis Institutes for BioMedical Research and which have been used in several 

previous studies of ligand-based virtual screening by both ourselves and others (e.g., 

[34-38]).  Each row of the table contains an activity class, a short abbreviation of the 

name, the number of molecules belonging to the class, the number of distinct ring 

systems occurring in the set of active molecules for the class, and an indication of the 

class’s diversity.  The ring systems considered here (referred to as “active ring 

systems” in the following) are based on the atomic frameworks of Bemis and Murcko 

[39], as implemented in the Murko scaffolds routine in the Pipeline Pilot software.  

The diversity figures were obtained by matching each molecule with every other in its 

activity class, calculating similarities using the standard Tripos Unity 2D fingerprint 

and the Tanimoto coefficient, and then computing the mean intra-set similarity.  The 

WOMBAT activity classes in Table 1b mirror closely the MDDR classes in Table 1a.  
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We have chosen for each activity that species for which there is the largest number of 

molecules with a measured pIC50 >= 5.0; these molecules are marked as active for 

that class; molecules with pIC50 <5.0 for that species are removed from the dataset, 

as are all molecules with the chosen activity but tested in species other than the 

chosen one.  In all there were 102,535 molecules in the MDDR dataset and 138,127 

molecules in the WOMBAT dataset.  

 

In each case, ten representative reference structures from an activity class were chosen 

for searching: the choices were made using a MaxMin diversity selection procedure, 

to ensure that the reference structures covered the full range of structural types within 

each activity class [40].  The numbers of actives retrieved in these similarity searches 

then averaged over the ten reference structures, using cut-offs of the top-1% and the 

top-5% of the similarity rankings.  We also noted the numbers of distinct Murcko 

scaffolds in the active molecules that were retrieved, rather than just the number of 

active molecules.  As recommended by Good et al. [33], this was done to assess the 

effectiveness of the various weighting schemes for scaffold-hopping [41-43]. 

 

Structural representations 

The MDDR and WOMBAT molecules were represented by fingerprints encoding 

three types of topological descriptors: Tripos molecular holograms (available from 

Tripos Inc. at http://www.tripos.com); Pipeline Pilot ECFC_4 circular substructures 

(available from Accelrys Software Inc. at http://www.accelrys.com); and Sunset 

Molecular Discovery LLC keys (available from http://www.sunsetmolecular.com).  

These have been chosen as exemplifying three very different approaches to the 

representation of molecular topologies that are all available in commercially available 

chemoinformatics software systems. 

 

The Tripos holograms were originally developed for 2D QSAR applications and are 

vectors in which each element contains the number of times that a specific bit has 

been set by a superimposed-coding procedure [44,45].  The fragments here are chains 

of atoms containing 4-7 atoms and ignoring connected hydrogens and 

stereochemistry, with each such chain hashed into a fixed-length vector containing 

997 elements using three different hashing procedures.  The Pipeline Pilot ECFC_4 

fingerprints encode circular substructures describing a central atom and all atoms 
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within a two-bond radius of it.  These substructures are processed using a hashing 

scheme based on the Morgan algorithm for graph canonicalisation [46]; in our 

experiments, the resulting integer codes were again hashed to give a fixed-length 

fingerprint containing 1024 elements, a procedure that we have found to be highly 

effective in similarity-based virtual screening experiments [10,47].  The two types of 

descriptor hence differ in both the types of topological substructure that are encoded 

(linear or circular, for holograms and ECFC_4, respectively) and in the number of 

fingerprint-elements associated with each fragment (three or one, for holograms and 

ECFC_4, respectively); however both types of substructure are highly specific in 

nature and the resulting fingerprints hence provide a very precise description of 

molecular topology.   

 

The Sunset keys are rather different in that they derive from two, more generic, 

approaches to the description of molecular topology. Specifically, they have been 

inspired by the MDL 320 keys [48] and the CATS (chemically advanced template 

search) concept [49]: they hence combine chemical substructure recognition (MDL-

style) with topologically-relevant pharmacophore patterns based on atom-pairs 

(CATS-style), in an effort to bridge the gap between substructural and pharmacophore 

descriptors.  The fingerprints are thus more general in nature than the two previous 

ones; they have been studied previously in an extended evaluation of descriptors for 

mapping chemistry-biology relationships, this validation involving over a thousand 

QSAR series, each containing 25 or more compounds and spanning 2 log units in 

activity, using automated multivariate statistics [26,50].  The Sunset key-set contains 

560 keys encoded by SMARTS: our experiments used 559 of these since one 

SMARTS (although correctly formed) could not be processed by Pipeline Pilot.     

 

Weighting schemes 

Each of the molecular representations (which will be described subsequently as 

hologram, ECFC_4 or Sunset) can be considered as a vector, X, where the i-th 

element, xi, denotes the weight that the i-th fragment has in that molecule.  Assume 

that this i-th fragment occurs fi times in a molecule, where fi ≥ 0.  Then we consider in 

this study the following five weighting schemes (W1-W5): 

W1: 1=ix   
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This is the simplest, binary weight, encoding just the incidence (i.e., the presence or 

absence) of the i-th fragment, and was obtained by setting to unity all elements in X 

for which the corresponding fragment occurred one or more times.  Alternatively, the 

occurrence of the i-th fragment is encoded by setting 

W2: ii fx = , 

i.e., using the raw frequency data in the representation.  W1 and W2 are the obvious 

weighting schemes, and the ones that are normally meant when binary and weighted 

fingerprints are referred to in the literature.  However, we have also considered three 

further ways in which the occurrence frequencies can be used.  The first two are 

standard normalisations in data analysis, and involve taking either the natural 

logarithm, 

W3: )ln( ifxi =  

or the square root,  

W4: ii fx =  

of the frequency of occurrence.  Given that the log of unity is zero, the use of W3 

yields a fingerprint that focuses on the more-frequently occurring fragments in a 

molecule.  The effect of the W4 weight is to lessen the contribution of the more 

generic fragments that can occur relatively frequently within molecules and that thus 

result in high values for W2 (as demonstrated by the values for W2 in the Mean value 

of non-zero elements” part of Table 2, as discussed further below).  The final scheme, 

W5, is a normalised version of W2 in which the observed occurrence is expressed as a 

fraction of the largest value for fi (i.e., the most frequently occurring fragment in that 

molecule), and the result further normalised to give a value between 0.5 and 1.  This 

procedure hence takes molecular size (as approximated by numbers of fragment 

substructures) into account and has been found to be very successful in studies of 

index-term weighting in text retrieval [51,52].   

W5: 
}max{

5.05.0
i

i
i f

fx += . 

 

The molecular characterisations of the MDDR and WOMBAT datasets resulting from 

the five weighting schemes are summarised in Table 2.  Reading down from the top: 

the first row contains the total number of non-zero elements in all the fingerprints 
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representing a dataset; the second row contains the mean number of non-zero 

elements when averaged over all of the fingerprints in the dataset (102535 for MDDR 

and 138127 for WOMBAT); the third row contains the fingerprint density, i.e., the 

mean number of non-zero elements divided by the number of elements in the entire 

fingerprint (997 for holograms, 1024 for ECFC_4 and 559 for Sunset); the next three 

rows contain the same three sets of data for W3 (where use of the logarithm has 

converted all of the fi=1 values to zero); and the final five rows contain the mean 

value of each non-zero element.  Several features of the representations are evident 

from this table: the ECFC_4 fingerprints are much sparser than the hologram and 

Sunset fingerprints; the use of W3 results in a marked, and in some cases an 

extremely marked, reduction in the number of non-zero elements (since the log 

function converts all the unity-valued elements to zero); the non-binary Sunset 

elements have noticeably larger values than the corresponding hologram and ECFC_4 

elements; and, as would be expected from their definitions, the mean non-zero 

element values for W2-W4 are greater than unity (the value for W1) whereas the 

value for W5 is less than unity.  

 

Similarity coefficient 

The similarity SXY between two fragment vectors X and Y was computed in all cases 

using the full form of the Tanimoto coefficient [9]. 

∑ ∑∑
∑

−+
=

iiii

ii
XY

yxyx
yx

S 22
, 

where the summations are over all of the elements in each fingerprint (i.e., 997, 1024 

or 559 elements for holograms, ECFC_4 and Sunset, respectively). 

 

RESULTS 

Each of the five different weighting schemes can be applied to the reference structure 

and to each of the database structures, giving a total of 25 possible similarity measures 

for the searches using a given type of fingerprint.  Our principal interest is in W1 and 

W2 (the incidence and occurrence representations) and we have hence considered all 

of the measures that involve either or both of these two schemes; we have also 

considered those measures where both the reference structure and the database 

structures are weighted using W3, W4 or W5.  In what follows, we refer to each 



10 
 

similarity measure by Mab, where a denotes the weight applied to the database 

structures’ fingerprints and b the weight applied to the reference structure’s 

fingerprint so that, e.g., M13 refers to the set of searches (ten searches for each of the 

chosen activity classes) in which the database structures are coded using W1 

(conventional binary weighting) and the reference structures are coded using W3 (the 

natural logarithm of the occurrence frequencies).   

 

Initial results 

Our initial results are summarised in Table 3, which lists the averaged results 

(numbers of retrieved actives in the top-5% of a sorted ranking) for the searches of the 

eleven MDDR activity classes using the Tripos holograms.  Each column lists the 

mean values for the searches for a particular activity class (as denoted by the 

abbreviated form of the class name from Table 1a), and the penultimate column on the 

right-hand side of the table is the mean value for that similarity measure when 

averaged over the eleven activity classes (the final column is discussed below).  The 

weighting scheme with the best average recall in each column (i.e., the most effective 

screening when averaged over the ten active reference structures for that activity 

class) is strongly shaded and the recall value bold-faced; any scheme with an average 

recall within 5% of the value for the best weighting scheme is shown lightly shaded. 

 

Visual inspection of the results in Table 3 suggests the following.  First, symmetric 

measures where both the reference structure and the database structures are 

represented in the same way give good results: indeed, for all but W1, the most 

effective screening for a given weighting of the reference structure is often when that 

same weighting scheme is also used to weight the database structures.  Second, the 

best searches are obtained with M22 (raw fragment occurrences for both reference 

structure and database structures), followed by M33 and then M44 (the logarithm and 

the square root, respectively, of these fragment occurrences).   

 

The significance, if any, of the differences in performance was tested with Kendall’s 

W test of statistical significance, which is used to evaluate the consistency of k 

different sets of ranked judgements of the same set of N different objects [53].  Here, 

we have considered each of the activity classes as a judge ranking the different 

similarity measures in order of decreasing effectiveness (as measured by the mean 
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number of actives retrieved), i.e., k=11 and N=19.  Converting the values in Table 3 to 

ranks, the computed value for W is 0.44.  The significance of this value can be tested 

using the χ² distribution since for N>7,  

WNk )1(2 −=χ  

with N-1 degrees of freedom.  This yields a value of 86.3 for χ² with 18 degrees of 

freedom, which is significant at the 0.01 level of statistical significance.  Given that a 

significant level of agreement has been achieved, Siegel and Castellan suggest that the 

best overall ranking of the N objects can be obtained using their mean ranks averaged 

over the k judges[53].  These mean ranks are listed in the final column of Table 3, 

where it will be seen that M22 and M33 are by some way the most effective of the 

two approaches.  There is little to choose between these two measures: M33 is better 

in terms of the mean rank, but M22 in terms of the mean number of actives retrieved; 

M22 is better than M33 for six of the eleven activity classes (5HT3, REN, ANG, 

SUBP, HIV and COX), while M33 is better than M22 for the remainder (5HT1, 5HT, 

D2, THR and PKC).  These two measures are also the most highly ranked, when 

medians, rather than means, are used to compute the average numbers of actives 

retrieved in the top-5% of the ranking.   

 

Full results 

Table 3 has been discussed in some detail to illustrate the data collected in this study 

and the analyses carried out.  However, we have found [54] that it is always unwise to 

base conclusions as to the relative merits of different chemoinformatics techniques on 

a limited set of experiments, and results analogous to those in Table 3 were hence 

generated under the following conditions: MDDR or WOMBAT databases; hologram, 

ECFC_4 or Sunset fingerprints; analysis of the top-1% or the top-5% of the search 

rankings; mean numbers of active molecules or mean numbers of active ring systems.  

Taking these conditions together, our experiments have been carried out on a very 

large scale.  Thus, just Table 3 on its own represents a total of 2,090 database 

similarity searches (ten reference structures for each of eleven activity classes 

searched using 19 weighting schemes), and the complete set of runs (as discussed 

below) comprised a total of 14,268 database searches (each evaluated in four different 

ways): we can thus have some confidence in the conclusions that we shall draw from 

the experiments.   
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The averaged results are presented in Tables 4 and 5 for the MDDR and WOMBAT 

databases, respectively: for example, the average results shown in the penultimate 

column on the right-hand side of Table 3 form the first column of results in Table 4b.  

We note here that every single column in Tables 4 and 5 gave a statistically 

significant ranking of the weighting schemes at the 0.01 level of statistical 

significance, when the data were analysed in the manner described above for Table 3.   

 

Inspection of the results in Tables 4 and 5 shows that the two performance criteria – 

number of actives and number of active ring systems – tend to give analogous 

rankings of the various similarity measures; thus, if a measure performs well in terms 

of number of actives then it will also generally perform well in terms of the number of 

active scaffolds.  In like manner, measures that perform well when the top-1% of the 

ranking is considered will generally perform well when the top-5% of the ranking is 

considered.  Inspection of the shaded elements shows that the relative performance of 

the similarity measures involving Tripos holograms is rather different from that 

observed when the other two representations are used.  In this respect, we note that the 

hologram representation involves a superimposed coding procedure that results in 

each element of the fingerprint encoding information about multiple linear 

substructures, and each linear substructure contributing to the occurrences in multiple 

fingerprint elements.  This many-to-many mapping is very different from the one-to-

one mapping represented by the Sunset fingerprints and the near one-to-one mapping 

represented by the ECFC_4 fingerprints (where the hashing to 1024 elements 

introduces a very limited degree of fragment overlap [10]).   

 

Two other observations can be made on the results in Tables 4 and 5.  First, while 

ECFC_4 and Sunset are both based on one-to-one mappings, there are often 

noticeable differences in performance, with some of the Sunset measures (notably 

M21, M23, M24 and M25) resulting in very poor retrieval indeed.  Second, as noted 

previously when discussing Table 3, there is a marked tendency for the five 

symmetric measures (i.e., those measures Mab for which a=b) to perform better than 

the 14 asymmetric measures (i.e., those where a≠b).  These two observations are 

discussed further in the next section. 
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We have carried out a series of analyses using the Kendall-W approach described 

previously for the data in Table 3.  Thus, using the top-1% of the actives as the 

performance criterion, we can compute the degree of agreement between the six 

rankings (i.e., three types of fingerprint in each of the two databases) of the 19 

similarity measures.  The computed value for W is 0.65: this yields a value of 70.51 

for χ² with 18 degrees of freedom, which is significant at the 0.01 level of statistical 

significance. The resulting ranking of the 19 measures is: 

M44 > M14 > M55 > M51 > M11 > M33 > M22=M12 >M41 > M15 > 

M31=M42=M52 > M13 > M24 > M32 > M21 > M23 > M25 

Similar rankings are obtained using the other three performance criteria.  Using the 

top-1% of the active scaffolds, the value for W is 0.65 (again significant) with the 

ranking: 

M44 > M14 > M55 > M11 > M51 > M12 > M33 > M22 > M41 > M15 > M42 > M52 

> M13=M31 > M24 > M32 > M21 > M23 > M25. 

Using the top-5% of the actives, the value for W is 0.57 (this yields a value for χ² of 

61.11 which is again significant) with the ranking: 

M44 > M14 > M33=M55 > M11=M12=M51 > M22 > M31 > M42 > M41 > M15 > 

M52 > M13 > M24 > M32 > M23 > M21 > M25. 

Using the top-5% of the active scaffolds, the value for W is 0.58 (this yields a value 

for χ² of 62.22 which is again significant) with the ranking: 

M44 > M14 > M12 > M11=M55 > M51 > M33 > M42 > M31 > M22 > M15 > M52 

> M41 > M13 > M24=M32 > M21=M23 > M25. 

 

Given the similarities noted previously, it is hardly surprising that all the criteria give 

broadly comparable results: M44 and then M14 are at the top of all rankings; M11, 

M33, M55, M51 and M22 all do well; M32, M21, M23, M24 and M25 perform very 

poorly.   

 

As an alternative way of comparing the measures we have counted the number of 

times that an element is shaded in Tables 4 and 5.  The ranking here is fairly similar, 

with the following measures being shaded at least once (just once in the cases of M31 

and M41): 

M51 > M14=M44 > M11 > M12=M22=M52=M55 > M33 > M31=M41. 
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The main difference from the Kendall rankings is for M51, which is very frequently 

shaded for ECFC_4 and Sunset but never shaded for holograms; conversely, M22 is 

always shaded for holograms but never for ECFC_4 and Sunset.  Thus, while we have 

focused here on the overall performance, there are marked differences when account 

is taken of the representation that is being used, i.e., the best type of weighting scheme 

for one type of fingerprint may not be the best for another type of fingerprint. 

 

DISCUSSION 

As noted above, the five symmetric measures generally give better results than the 14 

asymmetric measures.  If, for example, we consider the numbers of actives in the top-

1% of the rankings as the performance criterion, then Table 6 lists the mean numbers 

of actives when averaged over the symmetric and over the asymmetric measures: it 

will be seen that the former markedly out-perform the latter for all combinations of 

dataset and representation.  That said, there are many individual cases where an 

asymmetric measure gives excellent results, as exemplified by the multiple shadings 

in Tables 4 and 5 for M51.    

 

An explanation for this behaviour can be obtained from a consideration of the 

interactions that occur when two weighting schemes a and b are combined to form a 

measure Mab and when the resulting combination is used in the computation of the 

Tanimoto coefficient.  To simplify the following description, we shall initially 

consider the use of two weighting schemes when a molecule is compared with itself. 

 

The basic form of the Tanimoto similarity coefficient between molecules X and Y is  

∑ ∑∑
∑

−+
=

iiii

ii
XY

yxyx
yx

S 22
. 

When a molecule is matched with itself, i.e., when X=Y, all of the fragment 

substructures are identical.  If a symmetric measure is used then xi=yi for all i and the 

Tanimoto coefficient has the value 

122 =
−+

=
∑ ∑∑

∑
iiii

ii
XX xxxx

xx
S . 
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The value of unity is the upper-bound value for this coefficient: the lower-bound for 

the coefficient is zero when, as here, only non-negative elements are involved (if this 

is not the case then the lower-bound is -1/3).   

 

The upper-bound value will not, however, in general be unity if an asymmetric 

measure is used.  To demonstrate this we make the (grossly) simplifying assumption 

that all of the fragments that are present in the molecule occur the same number of 

times, and are thus assigned the same weight; let this weight be WNZ, the mean value 

of the non-zero elements in a fingerprint (as listed in the bottom part of Table 2).  

Then for a measure Mab with mean values WNZ(a) and WNZ(b), the similarity of a 

molecule with itself will be  

∑ ∑∑
∑

−+
=

)()(

)()(

)()( 22 bWaWbWaW
bWaW

NZNZNZNZ

NZNZ
XXS  

where the summations are over the non-zero elements in each fingerprint.  The value 

of the resulting similarity can be calculated from the data in Table 2.  Thus, if using 

the MDDR holograms and the W1 and W2 weights, then the values of WNZ from 

Table 2 are 1.00 and 2.45, respectively; substituting these into the expression above, 

the upper-bound value of the Tanimoto coefficient for matching a molecule in the W1 

representation with itself in the W2 representation is 0.54.  The upper-bound for this 

combination of weights (M12) is still lower for MDDR Sunset (0.26) but rather higher 

for MDDR ECFC_4 (0.78): the range of computable similarity values hence varies 

significantly across these three types of fingerprint for this particular combination of 

weighting schemes.  The very low value for Sunset arises from the large difference in 

the WNZ values for W1 and W2: this difference is 3.57 (i.e., 4.57-1.00) for Sunset, as 

against 1.45 for holograms and just 0.70 for ECFC_4.   

 

The data in Table 2 can be used to compute analogous upper-bound values for all the 

possible combinations of weighting schemes, and some of the resulting values are 

listed in Table 7 (all rounded to two decimal places; the three M31 values of unity are 

all slightly less than unity when three decimal places are used).  It will be seen that the 

MDDR Sunset M21 value is one of the lowest of all the values in this table; indeed, 

the Sunset M21, M23, M24 and M25 values (both MDDR and WOMBAT) are the 

only combinations with upper-bounds lower than 0.40.  Analogous behaviour is also 
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observed for the holograms and ECFC_4: in both cases the M21, M23 and M25 

values provide the six lowest values (and M24 provides the next two lowest values for 

the holograms).  Thus, for all three types of fingerprint, combinations of the form 

M2b have low upper-bounds. 

 

Thus far, we have made two simplifying assumptions.  First, the matching of a 

molecule against itself: whereas in virtual screening, a single molecule, the reference 

structure, is matched against each of the database structures in turn (all of which are 

different from it).  Second, a focus on the upper-bound values: these are the largest 

values that could possibly be obtained, and almost certainly different from the values 

that would be obtained in practice.  We have hence taken the largest coefficient value 

for every search that was carried out, i.e., the value associated with the molecule that 

came at the top of the similarity ranking, and averaged these largest values across all 

the searches for all of the activity classes.  The resulting mean values for each 

combination of similarity measure, dataset and fingerprint are shown in Table 8, 

where it will be seen that there is a fair measure of agreement between these observed 

largest values and the computed upper-bound values in Table 7.  For example, 

considering the MDDR values (the WOMBAT ones are very similar): the lowest 

hologram values in Table 7 are for M21, M23 and M25 (0.54, 0.55 and 0.48) and this 

is also the case for Table 8 (0.40, 0.35 and 0.27).  M31 is an outlier since the upper-

bound values are high but the largest values less so, particularly for ECFC_4 where 

the observed value is really quite low (at 0.35).  However, other factors may be 

involved here since the fingerprint densities are lowest for W3, especially for ECFC_4 

where reference to Table 2 shows that less than 1% of the fingerprint elements contain 

non-zero values when this combination of parameters is employed.   

 

The change in coefficient values that accompanies a change in the measure would not, 

in itself, be a problem if all the similarities changed by the same proportion, i.e., if the 

coefficient values were scaled linearly, since a ranking of the database structures 

would remain unchanged.  This is not, however, the case, as is demonstrated by 

Figure 1.  Here, we summarise the similarity values obtained in a search of MDDR for 

one of the renin reference structures using ECFC_4 fingerprints and the M22 and M25 

measures.  Specifically, the database structures have been ranked in decreasing order 

of the M22 values, the mean similarity computed for each successive set of 1,000 
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structures using both the M22 and the M25 measure, and then the two sets of mean 

values plotted.  Figure 1 demonstrates clearly that the changes in similarity are non-

linear, with the reduction in the M22 values being proportionally greater at the top of 

the ranking than at the bottom.  This behaviour arises from the constant contribution 

that is made to the denominator of the Tanimoto expression by the sum of the squared 

elements of the fingerprint describing the reference structure: this contribution is 

invariant across all of the structure in the database, whereas the values of the other 

two components of the denominator vary from one database structure to another.   

 

This non-linear behaviour can bring about substantial reductions in the effectiveness 

of searching.  The Similar Property Principle [11,18,55] would lead us to expect that 

the active molecules in an activity class are likely to be more similar to an active 

reference structure from that class than are the inactive molecules (although there are, 

of course, many exceptions to this generalisation).  Thus, if we plot the frequency 

distributions for the similarities between the reference structure and the set of active 

molecules, and the similarities between the reference structure and the set of inactive 

molecules (which we shall refer to as the Actives distribution and the Inactives 

distribution, respectively) then we would expect a plot such as that shown in Figure 

2a, which is based on the M22 measure.  The figure shows the Actives (in blue) and 

the Inactives (in red) distributions for the MDDR search considered in Figure 1.  

There is a clear separation of the two distributions, with the overlap (shown shaded) 

comprising 33.6% of each distribution.  M22 is a symmetric measure with a 

consequent upper-bound similarity of unity, and there are large numbers of Actives 

similarities in the right-hand part of the distribution; indeed, the renin activity class is 

the most homogeneous of the MDDR classes (see Table 1a) and thus many of the 

Actives similarities are in excess of 0.80. Consider now Figure 1b, which shows the 

Actives and Inactives distributions for the same search but using the asymmetric M25.  

The Inactives distribution has moved to the left with some “squeezing” of the 

distribution, but the Actives distribution has moved much sharply to the left, 

increasing the overlap to 65.6%.  The lower-bound similarity of zero remains the 

same but the change in the upper-bound similarity for this measure disproportionally 

affects the Actives distribution since this has a much larger proportion of high 

similarity values: it is hence squeezed much more than is the Inactives distribution 
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when the similarity measure is changed from M22 to M25 and the upper-bound 

decreased accordingly.   

 

Our analysis would hence suggest that if there is large discrepancy in the weights 

computed using the two weighting schemes involved then screening effectiveness will 

be less than if the weights are comparable in magnitude.  This is observed in practice, 

with the M2b searches in particular giving a consistently low level of screening, as 

reflected in the data in Tables 4 and 5, most obviously for some of the Sunset results 

where the differences in the weights, WNZ(a) and WNZ(b), are greatest and where the 

results in Tables 4 and 5 are very poor.  This arises from the very generic nature of the 

Sunset fragments, and hence the relatively high frequencies with which individual 

fragments occur, not some limitation in the fragments themselves; indeed, any generic 

type of fragment descriptor would be expected to behave similarly in the weighting 

environment that is being investigated here.   

 

CONCLUSIONS 

In this paper, we have carried out a detailed study of the use of fragment occurrence 

data in similarity-based virtual screening.  Experiments with fingerprint 

representations that encode not just the incidence but also the occurrence of 

topological fragment substructures demonstrate that the inclusion of information 

regarding the frequencies with which fragments occur within a molecule will, in most 

cases, result in an increase in the effectiveness of screening when compared to 

comparable searches that use just incidence information.  The extensive results 

presented here suggest that the best searches are obtained from fingerprints involving 

the square root of the raw fragment occurrence data, with an analysis of the observed 

variations in performance showing that the use of different weighting schemes for the 

reference structure and for the database structures can result in poor screening 

performance.  Our results and discussion demonstrate, more clearly than in any 

previous study of which we are aware, the detailed interactions that can take place 

between representation, weighting scheme and similarity coefficient when a chemical 

similarity measure is created.   

 

We have chosen to use the Tanimoto coefficient in our experiments given its known 

effectiveness and extensive use for binary, i.e., unweighted, similarity searching.  
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However, there are many other coefficients that can be used for this purpose  and 

some of these, such as the Forbes or Russell-Rao coefficients, may be superior to the 

Tanimoto coefficient for binary similarity searching in some circumstances [56,57]: 

this may also be the case in a weighted searching environment, and we intend to 

explore this possibility in future work.  We also intend to study the use of data fusion 

to combine rankings produced using different occurrence-based weighting schemes 

[58], and to explore the use of weighting schemes that take account of the frequency 

with which a fragment occurs in an entire database of molecules (rather than its 

frequency in a single molecule as here) [24].   
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Activity class (abbreviation) Active 

molecules 
Active ring 

systems 
Mean 

pairwise 
similarity 

5HT3 antagonists (5HT3) 752 417 0.35 
5HT1A agonists (5HT1) 827 450 0.34 
5HT reuptake inhibitors (5HT) 359 181 0.35 
D2 antagonists (D2) 395 258 0.35 
Renin inhibitors (REN) 1125 554 0.57 
Angiotensin II AT1 antagonists (ANG) 943 464 0.40 
Thrombin inhibitors (THR) 803 425 0.42 
Substance P antagonists (SUBP) 1246 586 0.40 
HIV protease inhibitors (HIV) 750 461 0.45 
Cyclooxygenase inhibitors (COX) 636 282 0.27 
Protein kinase C inhibitors (PKC) 453 171 0.32 
 

(a) 
 
Activity class (species) Active 

molecules 
Active ring 

systems 
Mean 

pairwise 
similarity 

5HT3 antagonists (rat) 220 117 0.38 
5HT1A antagonists (rat) 592 224 0.40 
D2 antagonists (rat) 910 324 0.37 
Renin inhibitors (human) 474 253 0.59 
Angiotensin II AT1 antagonists (rat) 724 253 0.44 
Thrombin inhibitors (human) 421 196 0.42 
Substance P antagonists (human) 558 186 0.43 
HIV protease inhibitors (human) 1128 473 0.44 
Cyclooxygenase inhibitors (human) 965 220 0.32 
Protein kinase C inhibitors (rat) 142 31 0.57 
Acetylcholine esterase inhibitors (human) 503 220 0.37 
Factor Xa inhibitors (human) 842 328 0.39 
Matrix metalloprotease inhibitors (human) 694 280 0.44 
Phosphodiesterase inhibitors (human) 596 270 0.36 
 

(b) 
 
Table 1.  Activity classes used in the virtual screening experiments, chosen from the 
(a) MDDR and (b) WOMBAT databases. 
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 MDDR WOMBAT 
 Holograms ECFC_4 Sunset Holograms ECFC_4 Sunset 
Number of non-zero elements 35,010,818 5,375,756 20,454,197 44,537,885 6,950,009 26,853,131 
Mean number of non-zero elements 341.44 52.43 199.48 322.44 50.32 194.41 
Fingerprint density 0.34 0.05 0.36 0.32 0.05 0.34 
Number of non-zero elements (W3) 19,810,705 1,553,981 14,311,637 24,844,403 2,100,292 18,758,456 
Mean number of non-zero elements (W3) 193.21 15.15 139.57 179.87 15.21 135.81 
Fingerprint density (W3) 0.19 0.01 0.25 0.18 0.01 0.24 
 

Mean value of the 
non-zero elements 

        W1 1.00 1.00 1.00 1.00 1.00 1.00 
        W2 2.45 1.70 4.57 2.46 1.76 4.46 
        W3 1.04 1.07 1.43 1.04 1.08 1.41 
        W4 1.44 1.22 1.86 1.44 1.24 1.84 
        W5 0.60 0.61 0.57 0.60 0.61 0.57 

 
Table 2.  Statistical data describing the MDDR and WOMBAT fingerprints.   
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Similarity 
measure 

Activity class Mean 
5HT3 5HT1 5HT D2 REN ANG THR SUBP HIV COX PKC Actives Rank 

M11 107.7 83.6 33.8 29.6 421.0 231.2 89.7 119.3 118.5 29.2 64.9 120.8 11.3 
M12 83.0 48.4 24.4 19.6 316.3 270.0 73.1 122.4 92.7 21.5 90.8 105.7 13.8 
M13 132.8 137.3 47.1 51.9 518.6 201.6 97.3 194.1 111.0 51.3 55.7 143.3 6.7 
M14 102.3 70.3 31.3 25.7 368.4 253.2 83.2 118.1 104.4 24.0 80.1 114.6 12.6 
M15 129.9 125.1 42.2 47.9 510.9 209.2 110.9 161.5 120.1 45.8 53.2 141.5 7.4 
M21 145.9 95.8 36.9 33.2 111.3 84.0 88.2 19.4 37.7 45.1 20.6 65.3 12.7 
M22 150.9 117.4 36.2 46.8 788.2 321.5 115.4 208.6 159.8 54.9 59.9 187.2 3.9 
M23 133.0 123.6 37.1 45.1 338.7 120.2 89.2 97.3 55.1 58.2 37.9 103.2 10.6 
M24 155.4 127.9 36.0 47.6 448.3 203.6 112.8 133.7 88.3 54.2 46.3 132.2 7.9 
M25 133.1 85.4 35.4 31.0 78.7 49.0 65.4 13.2 23.6 43.8 17.4 52.4 14.8 
M31 93.0 71.5 27.0 27.4 412.4 246.0 85.9 164.9 124.3 31.3 74.7 123.5 11.4 
M32 69.9 53.7 21.0 23.7 244.1 237.6 75.7 198.9 105.2 16.3 86.3 102.9 13.6 
M33 134.7 139.8 41.6 51.2 726.6 294.2 118.5 201.4 141.6 53.7 63.7 178.8 3.5 
M41 144.4 117.1 38.7 40.9 494.2 254.3 116.5 124.2 118.1 50.4 41.4 140.0 7.4 
M42 120.6 84.5 32.8 28.8 459.3 339.0 92.6 201.2 139.1 33.2 74.4 146.0 8.4 
M44 139.2 107.0 39.6 40.2 659.5 330.0 111.4 204.0 144.9 45.5 56.7 170.7 5.4 
M51 87.2 52.8 26.2 18.4 273.4 220.6 74.9 81.3 87.3 21.1 82.5 93.2 15.0 
M52 94.6 46.7 20.9 17.0 269.1 251.4 73.9 152.1 84.4 21.0 102.6 103.1 14.5 
M55 112.9 88.6 33.6 33.3 413.5 274.0 92.8 166.1 129.6 31.6 61.9 130.7 9.1 
 
Table 3.  Mean numbers of actives retrieved in the top-5% of the ranked database in searches for the eleven MDDR activity classes using Tripos 
holograms, where the activity classes are described by the abbreviations listed in Table 1a.   In each case, the mean is averaged over searches for 
ten different reference structures.  The right-hand columns give the mean numbers of actives averaged over the ten searches for each of the 
eleven activity classes, and the mean rank when the weights are ranked in decreasing order of numbers of actives retrieved.  The weighting 
scheme with the best average recall in each column is bold-faced and strongly shaded; anything with an average recall within 5% of the value for 
the best weighting scheme is shown lightly shaded. 
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Similarity 
measure 

Holograms ECFC_4 Sunset 
Actives Rings Actives Rings Actives Rings 

M11 53.6 28.3 109.7 60.0 68.2 41.6 
M12 42.5 22.9 118.7 65.5 61.5 37.9 
M13 55.0 29.3 29.0 16.7 52.4 33.3 
M14 52.4 28.0 114.9 62.9 70.7 42.7 
M15 54.5 29.1 88.1 47.3 50.7 31.6 
M21 23.5 12.2 50.7 25.2 2.7 1.7 
M22 89.1 45.4 86.2 47.5 52.1 28.1 
M23 28.3 14.6 13.6 7.7 4.2 2.5 
M24 47.8 24.7 62.7 32.0 6.6 4.0 
M25 15.8 8.6 25.0 13.6 2.5 1.5 
M31 50.8 27.8 88.4 50.8 63.6 35.9 
M32 33.9 19.6 55.0 35.1 12.2 10.0 
M33 80.8 42.3 69.1 39.2 62.0 35.1 
M41 56.7 29.4 109.3 58.5 26.2 14.7 
M42 57.2 32.2 99.4 57.3 16.6 11.9 
M44 74.8 40.7 114.6 62.1 65.0 37.6 
M51 40.8 21.2 119.9 65.1 72.3 43.5 
M52 36.6 20.1 115.6 62.2 45.7 29.8 
M55 59.9 32.2 113.0 61.1 68.0 41.3 
 

(a) 
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Similarity 
measure 

Holograms ECFC_4 Sunset 
Actives Rings Actives Rings Actives Rings 

M11 120.8 63.6 211.9 114.4 162.0 95.2 
M12 105.7 57.3 227.2 124.5 152.8 90.2 
M13 145.3 77.7 95.2 54.4 143.6 84.5 
M14 114.6 61.5 219.4 119.0 164.7 98.0 
M15 141.5 75.8 183.3 99.2 135.0 78.5 
M21 65.3 34.3 126.4 63.9 16.5 8.3 
M22 187.2 97.7 185.8 98.9 127.0 67.9 
M23 103.2 51.5 59.1 30.8 24.1 12.9 
M24 132.2 67.6 142.8 73.0 32.2 17.4 
M25 52.4 27.5 76.2 38.2 16.6 8.5 
M31 123.5 68.3 197.6 109.1 165.3 91.9 
M32 103.0 58.5 171.0 98.1 87.4 53.2 
M33 178.8 93.2 166.7 91.8 151.8 83.8 
M41 140.0 74.8 215.0 114.6 92.5 49.2 
M42 146.0 79.4 213.7 118.1 95.6 56.9 
M44 170.7 90.9 223.5 120.2 159.1 88.9 
M51 93.3 50.6 226.8 121.9 157.8 93.1 
M52 103.1 56.1 222.5 120.7 130.2 76.4 
M55 130.7 71.0 208.3 112.4 161.8 94.6 

 
(b) 

 
Table 4.  Average numbers of active molecules or numbers of active ring systems retrieved in the top-1% (a) or the top-5% (b) of searches of the 
MDDR database using holograms and ECFC_4 fingerprints.  The weighting scheme with the best average recall in each column is bold-faced 
and strongly shaded; anything with an average recall within 5% of the value for the best weighting scheme is shown lightly shaded. 
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Similarity 
measure 

Holograms ECFC_4 Sunset 
Actives Rings Actives Rings Actives Rings 

M11 65.0 27.7 103.6 44.9 73.0 31.2 
M12 50.8 21.6 108.2 47.0 66.9 28.8 
M13 71.3 29.0 26.2 11.7 57.6 24.9 
M14 61.5 25.9 105.8 45.8 74.7 31.8 
M15 71.9 29.8 89.7 38.3 60.9 26.3 
M21 28.3 11.3 50.0 20.2 1.5 0.5 
M22 82.8 34.8 86.0 35.9 60.2 26.3 
M23 31.6 12.4 9.0 3.8 2.0 0.6 
M24 60.8 24.40 62.1 25.6 5.2 1.8 
M25 17.1 7.1 26.4 9.4 1.2 0.3 
M31 51.9 22.3 55.4 27.0 65.2 29.0 
M32 37.9 14.7 25.0 14.0 7.5 4.3 
M33 79.4 33.0 71.3 32.0 71.8 31.0 
M41 73.3 31.1 100.8 42.7 31.1 11.9 
M42 65.4 27.5 82.0 37.1 10.7 5.2 
M44 81.7 34.6 103.0 43.9 73.7 31.4 
M51 49.5 20.9 107.2 46.2 73.3 31.3 
M52 45.4 19.2 104.7 44.8 51.7 23.2 
M55 68.4 29.0 103.0 44.4 71.9 30.8 
 

(a) 
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Similarity 
measure 

Holograms ECFC_4 Sunset 
Actives Rings Actives Rings Actives Rings 

M11 118.9 52.9 188.2 81.8 157.2 69.5 
M12 105.6 47.3 193.4 84.7 153.3 69.7 
M13 143.6 59.6 85.1 37.8 137.1 60.0 
M14 114.7 50.7 191.1 83.2 165.2 74.6 
M15 140.3 59.0 163.7 70.6 131.7 57.3 
M21 65.0 26.7 116.0 46.8 10.5 4.1 
M22 152.5 63.3 165.8 68.4 139.3 58.8 
M23 91.7 37.5 40.7 16.9 15.5 5.6 
M24 120.0 49.2 133.7 54.3 24.5 9.1 
M25 47.3 19.0 66.8 26.4 9.6 3.0 
M31 115.5 51.1 154.3 69.7 154.9 66.8 
M32 100.4 43.7 122.8 58.8 74.1 30.9 
M33 156.1 64.6 158.9 67.6 159.7 67.8 
M41 134.7 57.5 186.7 79.4 90.4 36.0 
M42 137.0 60.4 172.2 75.7 84.0 40.4 
M44 153.5 64.8 192.6 82.0 162.3 70.0 
M51 95.5 43.0 196.0 84.6 160.4 72.1 
M52 101.9 46.0 193.7 82.4 132.4 60.3 
M55 127.1 55.7 188.8 80.7 157.7 69.3 
 

(b) 
 
Table 5.  Average numbers of active molecules or numbers of active ring systems retrieved in the top-1% (a) or the top-5% (b) of searches of the 
WOMBAT database using holograms and ECFC_4 fingerprints.  The weighting scheme with the best average recall in each column is bold-
faced and strongly shaded; anything with an average recall within 5% of the value for the best weighting scheme is shown lightly shaded 
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Similarity 
measure Mab 

MDDR WOMBAT 
Holograms ECFC_4 Sunset Holograms ECFC_4 Sunset 

a=b 71.7 98.5 63.1 75.5 93.4 70.1 
a≠b 42.6 77.9 34.8 51.2 67.8 36.4 

 
Table 6.  Effect of using symmetric (a=b) or asymmetric (a≠b) similarity measures (Mab).  Each element of the table contains the mean number 
of actives in the top-1% of the ranking when averaged over the five symmetric and 14 asymmetric measures. 
 
 
Similarity 
measure 

MDDR WOMBAT 
Holograms ECFC_4 Sunset Holograms ECFC_4 Sunset 

M21 0.54 0.78 0.26 0.54 0.75 0.27 
M31 1.00 1.00 0.89 1.00 0.99 0.89 
M41 0.88 0.96 0.72 0.88 0.96 0.72 
M51 0.79 0.80 0.76 0.79 0.80 0.76 
M23 0.55 0.79 0.29 0.54 0.77 0.30 
M24 0.63 0.84 0.32 0.62 0.82 0.33 
M25 0.48 0.69 0.24 0.48 0.67 0.25 
 
Table 7.  Computed upper-bound values (to two decimal places) of the Tanimoto coefficient for combinations of similarity measure, dataset and 
fingerprint.   
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Similarity 
measure 

MDDR WOMBAT 
Holograms ECFC_4 Sunset Holograms ECFC_4 Sunset 

M21 0.40 0.41 0.22 0.39 0.41 0.26 
M31 0.50 0.35 0.57 0.51 0.36 0.57 
M41 0.78 0.83 0.58 0.78 0.83 0.58 
M51 0.78 0.78 0.75 0.77 0.79 0.75 
M23 0.35 0.33 0.35 0.36 0.35 0.38 
M24 0.66 0.67 0.53 0.65 0.66 0.54 
M25 0.27 0.30 0.15 0.26 0.30 0.18 
 
Table 8.  Observed largest values (to two decimal places) of the Tanimoto coefficient for combinations of similarity measure, dataset and 
fingerprint.  The results in each case are averaged over all of the similarity searches carried out using the specified combination of parameters. 
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Figure 1.  Percentage frequency distributions for the similarity between a renin reference structure and MDDR molecules using M22 and (b) 
M25 similarity measures.  The molecules were ranked in decreasing order of the M22 values, the mean similarity computed for each successive 
set of 1,000 structures using both M22 and M25, and then the two sets of mean values plotted.   
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Figure 2(a) 
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Figure 2(b) 
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Figure 2.  Percentage frequency distributions for the similarity between a renin reference structure and the sets of active (blue) and inactive (red) 
MDDR molecules using (a) M22 and (b) M25 similarity measures.  
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