This is a repository copy of *Early stages of pitting corrosion of UNS K03014 carbon steel in sour corrosion environments: The influence of CO2, H2S and temperature.*

White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/92551/

Version: Accepted Version

Proceedings Paper:

Reuse
Unless indicated otherwise, fulltext items are protected by copyright with all rights reserved. The copyright exception in section 29 of the Copyright, Designs and Patents Act 1988 allows the making of a single copy solely for the purpose of non-commercial research or private study within the limits of fair dealing. The publisher or other rights-holder may allow further reproduction and re-use of this version - refer to the White Rose Research Online record for this item. Where records identify the publisher as the copyright holder, users can verify any specific terms of use on the publisher’s website.

Takedown
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.
Early stages of pitting corrosion of UNS K03014 carbon steel in sour corrosion environments:
The influence of CO\(_2\), H\(_2\)S and temperature
Frederick Pessu, Richard Barker and Anne Neville
Institute of Functional Surfaces (iFS)
School of Mechanical Engineering,
University of Leeds.
Leeds,
LS2 9JT, UK

The challenges in managing localized corrosion failures in oilfields are of serious concern. In environments containing both CO\(_2\) and H\(_2\)S gas, pitting corrosion of carbon steel is considered to be a common occurrence and particularly complex. The actual mechanisms and sequence of electrochemical activities for pitting corrosion in these environments is still not fully understood. The film formation characteristics and morphology in CO\(_2\) and H\(_2\)S-containing systems is also known to influence the pitting corrosion behavior of carbon steel. However, questions still remain as to how the combined presence of CO\(_2\) and H\(_2\)S gas both influence the corrosion mechanisms, as well as pit initiation and propagation. This paper presents part of an ongoing parametric study to investigate pitting corrosion behavior of carbon steel in CO\(_2\)/H\(_2\)S-containing environments. The work presented explores the impact of changes in two key process parameters (namely; temperature, absence/presence of 10% H\(_2\)S and absence/presence of CO\(_2\) in the gas phase) on the early process of pitting corrosion on carbon steel in NaCl brines. A pit initiation study is conducted up to 7 hours based on changes in temperature and presence/absence of H\(_2\)S gas. Corrosion film properties and morphology are studied through a combination of electrochemical and surface analysis techniques which include scanning electron microscopy (SEM) and X-ray diffraction (XRD). The extent of corrosion damage of the carbon steel is evaluated through the implementation of surface interferometry to study discrete pit geometry; namely, the size and depth. The results show that the depths of pits initiated after 7 hours were higher in H\(_2\)S-containing environments (10% H\(_2\)S in the gas phase), while general corrosion rates dominate the degradation mechanism when CO\(_2\) gas is solely present.

KEY WORDS: Carbon dioxide corrosion, hydrogen sulfide corrosion, Iron sulfide, uniform corrosion, pitting, localized corrosion.

INTRODUCTION
In the oil and gas industry, corrosion related failures have been reported to constitute over 25% of total safety incidents\[^{[1,2]}\] The problem of corrosion in oilfield environments is mainly associated with the presence of dissolved acidic gases in reservoir brines, namely CO\(_2\)-containing (sweet) and H\(_2\)S-containing (sour) systems\[^{[2,3]}\] Pitting corrosion remains one of the main modes of corrosion related failures encountered during oilfield production, constituting 12% of all oilfield corrosion incidence\[^{[4]}\] and generating a significant impact on the economics of production\[^{[4]}\]
This localised mode of corrosion is of particular concern because of its unpredictable nature and the difficulty associated with inhibiting pit propagation once it has initiated. Such incidences of pitting corrosion failures are commonly encountered in oil and gas pipelines exposed to CO$_2$-H$_2$S saturated brines4-6. The tendency for pits to initiate and propagate in an un-buffered corrosion environment can be influenced by environmental and physical factors7.

The corrosion mechanisms associated with both CO$_2$ and H$_2$S-containing environments can be generalised using the following reactions2:

In CO$_2$ systems:

\[
\text{Fe} + \text{H}_2\text{CO}_3 \rightarrow \text{FeCO}_3 + \text{H}_2(\text{g}) \quad \text{(film formation)}
\]

In H$_2$S systems:

\[
\text{HS}^- + \text{e}^- \rightarrow \text{H}^- + \text{S}^2^-(2a)
\]

\[
x\text{Fe} + y\text{H}_2\text{S}_{(aq)} \rightarrow \text{Fe}_x\text{S}_y + y\text{H}_2 \quad (2b)
\]

The generic equations of 2b with arbitrary stoichiometric annotations are often used to reflect the intrinsic complexities associated with sour corrosion and formation of an iron sulfide film8.

Pitting corrosion attack in CO$_2$-H$_2$S saturated environments is such that it is strongly influenced by the independent reaction kinetics of CO$_2$ and H$_2$S corrosion as well as the rate of FeCO$_3$ and Fe$_x$S$_y$ precipitation. It has been suggested that H$_2$S corrosion is primarily dominated by two electrochemical processes; “solid state” corrosion reaction and aqueous phase corrosion reactions9-11. The former is a direct heterogeneous chemical reaction between H$_2$S and Fe at the steel surface leading to the formation of iron sulfide films; mainly mackinawite12 while in the later reaction, H$_2$S acts as a corrosive specie like every other dissolved acidic gases that influences the cathodic process9. However, a clear understanding of the level of influence and/or interaction of the combining gases on pitting corrosion in these systems has remained elusive. It is also important to understand how other parameters such as temperature (in the case of this work) could be influencing the envisaged interaction and/or influence of the combining H$_2$S-CO$_2$ gases. It has also been reported that the initial layer of mackinawite formed in H$_2$S-containing environments is usually very thin and susceptible to failure which may lead to localized corrosion/pitting. This is somewhat dependent on the level of saturation with respect to Fe$^{2+}$ and HS$^-$ ions, as well as other environmental parameters8,9,13,14. The FeS films formed in sour corrosion systems have also been reported to be electronically conductive, with potential to generate local galvanic cells around unprotected areas of steel surface, creating electrode potential gradients to drive the pitting process15.

Several studies on the mechanism of corrosion in H$_2$S-containing environments have presented contrasting viewpoints on the effect of H$_2$S gas on the corrosion of carbon steel in mixed CO$_2$-H$_2$S containing environments. Videm and Kvarekvål16 reported an increase of uniform corrosion rate of carbon steel in mixed CO$_2$-H$_2$S containing environments with small amounts of H$_2$S gas. On the other hand, Zheng et al17 and Ma et al14 reported a decrease in general corrosion rate of carbon steel in mixed CO$_2$-H$_2$S and H$_2$S-containing environments, respectively with small amounts of H$_2$S gas. Zheng et al17 attributed this effect to the inhibition of the reduction of H$_2$CO$_3$, but with no consideration to the formation of iron sulfide film, while Ma et al14 on the other hand suggested that such observation was due to the influence of the formation of iron sulfide film in a H$_2$S-containing acidic environment. Other authors have also reported an increase in general corrosion rate of carbon steel with an increase in H$_2$S concentration and/or partial pressure up to 36 kPa in both mixed CO$_2$-H$_2$S and pure H$_2$S-containing environments at 30ºC17-19. Such conflicting observations suggest a lack of clarity on this subject, especially since there is only limited literature on the interaction between CO$_2$ and H$_2$S. The effect of other environmental parameters on the corrosion damage morphology of carbon steel in mixed CO$_2$-
H₂S containing environment still remains unclear. It must also be emphasized that steel may experience pitting corrosion as observed by Brown and Nesic [20]. Little research has been conducted to help understand the role of the combining gases (CO₂ and H₂S) and corrosion product formation, composition and morphology (FeCO₃ and FeS) on the localized corrosion of carbon steel in mixed CO₂-H₂S environment.

It is therefore important as part of this research to explore parametric (temperature and H₂S/CO₂ presence/absence) based experimental routes to elucidate some aspects of pitting corrosion of carbon steel materials in H₂S-CO₂ environments. The results will be aimed at answering questions related to pitting corrosion initiation in sour conditions. This approach will help to isolate the role of CO₂ and H₂S gas presence on the general and localized corrosion damage of carbon steel in CO₂/H₂S-containing environments, as well as the influence of temperature during the early stages of corrosion. Aspects such as the possible role FeₓSᵧ corrosion films will be explored.

EXPERIMENTAL PROCEDURE

The purpose of this work was to assess the corrosion behavior of UNS K03014 steel exposed to three different gas systems; a pure CO₂ gas system, a CO₂-H₂S gas system and a N₂-H₂S gas system, all dissolved in a 3.5 wt.% NaCl solution at different temperatures (30°C, 50°C and 80°C). The emphasis of this study will include corrosion product formation, uniform and pitting corrosion quantification for short term experiments up to 7 hours to determine the role the film formation and environment plays on the general and localized corrosion behavior of the steel substrate. Temperatures and partial pressures of the gases within the system are provided in the matrix in Table 1.

Table 1: Temperature of experiments and associated partial pressures of gases at atmospheric pressure in the tested brine solution

<table>
<thead>
<tr>
<th>Temperature (°C)</th>
<th>Partial Pressure, p (bar)</th>
</tr>
</thead>
<tbody>
<tr>
<td>30</td>
<td>0.97</td>
</tr>
<tr>
<td>50</td>
<td>0.89</td>
</tr>
<tr>
<td>80</td>
<td>0.55</td>
</tr>
</tbody>
</table>

Materials: UNS K03014 carbon steel samples were used as the working electrode in a three electrode electrochemical cell. The composition of UNS K03014 steel is provided in Table 2. The carbon steel was sectioned into 10 mm x 10 mm x 5 mm samples. Wires were soldered to the back of each test specimen and then embedded in a non-conducting resin. Prior to the start of each experiment, test samples were wet ground up to 1200 silicon grit paper, degreased with acetone, rinsed with distilled water and dried with compressed air before immersion into the test brine. A surface area of 1 cm² was exposed to the electrolyte for each sample.

Table 2: UNS K03014 Carbon steel composition (wt.%)

<table>
<thead>
<tr>
<th>C</th>
<th>Si</th>
<th>P</th>
<th>S</th>
<th>Mo</th>
<th>Mn</th>
<th>Ni</th>
<th>Nb</th>
<th>V</th>
<th>Fe</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.15</td>
<td>0.22</td>
<td>0.025</td>
<td>0.002</td>
<td>0.17</td>
<td>1.422</td>
<td>0.09</td>
<td>0.054</td>
<td>0.057</td>
<td>97.81</td>
</tr>
</tbody>
</table>

Experimental setup: Sweet and sour corrosion experiment were conducted using separate bubble cell systems, but with the same sample surface area to brine volume ratio of 5 cm² per 1 liter of test solution maintained at the start of all tests. CO₂ corrosion experiments were conducted in two vessels which were each filled with 2 liters of brine. The vessels were sealed in every test with 10 samples immersed per vessel and CO₂ was bubbled into the test solution continuously to ensure complete saturation of the solution. Sour corrosion experiments were also conducted in two vessels which were each filled with 1 litre of brine, but only 5 samples
were present in this case. Pre-mixed 10 mol.% H_2S – 90 mol.% CO_2 gas and 10 mol.% H_2S – 90 mol.% N_2 gas were bubbled into the test solution continuously to ensure complete saturation of the solution.

Brine preparation and solution chemistry characterization: A 3.5 wt.% NaCl brine solution was used for all experiments. The test solution for pure CO_2 corrosion experiments was saturated with CO_2 for a minimum of 12 hours prior to starting each experiment to reduce oxygen concentration down to 20 ppb, simulating oilfield environments. On the other hand, N_2 was used for H_2S-containing environment. Prior to commencement of electrochemical measurements for sour corrosion tests, the test samples were initially placed in a N_2 saturated brine solution, after which H_2S-containing gas mixtures were bubbled into the solution for about 20-30 minutes until in-situ pH stabilizes. All tests were conducted at atmospheric pressure.

In-situ electrochemical measurements: Electrochemical measurements were conducted on two samples per test cell. Each sample formed the working electrodes in a three electrode cell which also comprised of an Ag/AgCl reference electrode and a platinum auxiliary electrode. Corrosion rate measurements were conducted using DC measurements with an ACM Gill 8† potentiostat. Linear Polarization Resistance (LPR) measurements were performed by polarizing the working electrode from ±15 mV about the OCP at a scan rate of 0.25 mV/s to obtain a polarization resistance measurement (R_p). Electrochemical impedance spectroscopy (EIS) measurements were performed to determine and compensate for solution resistance and approximate values for each test are presented in Table 3. Tafel polarization measurements were performed using the same potentiostat on freshly polished samples at each experimental condition to determine anodic and cathodic Tafel constants and ultimately the Stern-Geary coefficient, which was subsequently used in conjunction with the measured values of R_p to estimate general corrosion rates. Tafel plots were obtained by performing anodic and cathodic sweeps as two separate sweeps on two different samples in the same test cell, ±250 mV about the OCP at a scan rate of 0.25 mV/s. Both anodic and cathodic sweeps were performed on separate samples to ensure reliable measurements and the cathodic sweep was always performed first.

Table 3: Solution resistance of solution at different temperature and gas atmosphere

<table>
<thead>
<tr>
<th>Temperature (°C)</th>
<th>Solution resistance</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>100mol.% CO_2 (Ohm.cm²)</td>
</tr>
<tr>
<td>30</td>
<td>9.2</td>
</tr>
<tr>
<td>50</td>
<td>7.3</td>
</tr>
<tr>
<td>80</td>
<td>4.2</td>
</tr>
</tbody>
</table>

Characterization of pitting corrosion damage: Corrosion tests were conducted for 7 hours with the aim of investigating the initial film formation of iron sulfide corrosion products and the impact these had on the growth of surface pits. Pit depth measurements were conducted in alignment with ASTM G46-94\(^{(1)}\). An NPFLEX 3D† interferometer was used in this study for defining the discrete geometry of pits on almost the entire steel sample surface area. Pits were identified based on carefully chosen thresholds with distinct pit depths, diameters, and areas being quantified. ASTM G46-94 stipulates that an average of the 10 deepest pits and the maximum pit depth (based on relative pit depth measurement after removal of corrosion products) should be

used for pit damage characterization for the sample area. A sample surface area of 9 x 9 mm2 was analyzed for pits from the 10 x 10 mm2 sample. A systematic stitching approach is adopted whereby 9 different 3 x 3 mm2 areas are stitched together.

It is very important to note here that there is no generally accepted consensus on the minimum dimensions a pit can take in terms of depth and diameter, especially in non-passivating alloys like carbon steels. However, there are various suggestions of the different possible shapes, orientations and sizes of pits in the ASTM G46-94. Nonetheless, visual evidence of pits/cavities in terms of the maximum pits identified by the techniques implemented in this work is provided later within this paper.

RESULTS AND DISCUSSION

Tafel plot and electrochemical observations: Figure 1 shows the Tafel plots obtained at the end of the test by performing separate anodic and cathodic sweeps ±250 mV about the OCP of UNS K03014 carbon steel at a scan rate of 0.25 mV/s after 7 hours of immersion in the test solution. The graphs correspond to solutions at temperatures of 30, 50 and 80°C. Repeatable Tafel polarization test results were carried out after monitoring the corrosion rates from LPR measurements for 7 hours. Corrosion rate in this instance was found to be exactly the same as the corrosion rates presented in Figures 2, 4 and 6 in separate tests. Table 5 indicates the measured Tafel constants and the resulting Stern-Geary coefficient for all test conditions. Each respective value of Stern-Geary coefficient was used with the polarization resistance (R_p) to determine corrosion rate as a function of time. The repeatability of the Tafel polarization curves was also confirmed by comparing corrosion rate from Tafel extrapolation with estimated corrosion rate from linear polarization measurements after 7 hours. This is provided in Table 6.

In order to fully appreciate the effect of H$_2$S in this work, it is important to afford consideration to the complex cathodic reaction mechanisms that defines the term “CO$_2$ corrosion” as emphasized by Dugstad. At lower pH and in an un-buffered system as is the case of this work, both the H$^+$ reduction reaction and direct reduction of H$_2$CO$_3$ will contribute to the total cathodic current. Consequently, the cathodic currents represented in the Tafel polarization plots presented in Figure 1 for pure CO$_2$ corrosion environments represent the collective influence of H$^+$ reduction and H$_2$CO$_3$ reduction reactions (and water reduction and low potential). It has also been shown by Nesic et al. that the H$^+$ reduction reaction becomes less dominant with increasing pH.

Table 4: Average measured in-situ pH of test solutions-gas systems for the first 7 Hours

<table>
<thead>
<tr>
<th>Temperature (°C)</th>
<th>In-situ pH of test solutions</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>100% CO$_2$</td>
</tr>
<tr>
<td>30</td>
<td>4.0 ± 0.2</td>
</tr>
<tr>
<td>50</td>
<td>4.1 ± 0.2</td>
</tr>
<tr>
<td>80</td>
<td>4.3 ± 0.3</td>
</tr>
</tbody>
</table>

Table 5: Tafel constants at different temperatures and gas mixtures

<table>
<thead>
<tr>
<th>Temperature (°C)</th>
<th>Mole % of combining gases</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>100mol.% CO$_2$</td>
</tr>
<tr>
<td></td>
<td>β_a</td>
</tr>
<tr>
<td>30</td>
<td>32.5</td>
</tr>
<tr>
<td>50</td>
<td>40</td>
</tr>
<tr>
<td>80</td>
<td>57.5</td>
</tr>
</tbody>
</table>
Table 6: Comparison between corrosion rates (mm/yr) obtained from Tafel extrapolation and from the use of the estimated Stern-Geary constants.

<table>
<thead>
<tr>
<th>Temperature (°C)</th>
<th>Corrosion rate (mm/yr) after 7 hours</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>100mol.% CO₂</td>
</tr>
<tr>
<td>30</td>
<td>1.05</td>
</tr>
<tr>
<td>50</td>
<td>2.10</td>
</tr>
<tr>
<td>80</td>
<td>4.77</td>
</tr>
</tbody>
</table>

Tafel plots within Figure 1 suggest that the presence of 10 mol. % H₂S gas, in the CO₂ gas phase, influences both the anodic and cathodic reactions at all temperatures. However, its influence on the cathodic reaction is more significant than on the anodic reaction. There is a shift from a cathodic process significantly controlled by mass-transfer in completely sweet environment to an activation controlled cathodic reaction in H₂S-containing environment. This shift has been attributed to the suppression of the collective influence of H⁺ and H₂CO₃ reduction reaction \(^{17,24}\) that dominates the cathodic current in sweet corrosion environment even with the addition of 0.65% of H₂S. There is also the addition of a direct or heterogeneous cathodic reduction reaction of HS\(^-\) \(^{18,24}\) especially at higher concentration of H₂S gas in the gas phase, as is the case in this work. The shift from mass transfer influenced cathodic process in sweet corrosion environment to activation-controlled in H₂S-containing environment becomes more apparent with decreasing temperature.
This behavior suggests that there is still a significant contribution of $\text{H}_2\text{CO}_3/\text{H}^+$ reduction reactions to the total cathodic current with a shift from completely sweet corrosion scenario to sour corrosion scenario. This has also been confirmed by Kittel et al.24 for experiments carried out using 316 stainless steel. The contribution of $\text{H}_2\text{CO}_3/\text{H}^+$ reduction reactions to cathodic current appears to increase with temperature for systems containing 10 mol.% H_2S – 90 mol.% CO_2. It is also expected that the un-buffered pH of the test solutions may vary slightly for the three gas systems under investigation as provided in Table 4. Thus it would be expected that the pH and hence H^+ reduction reaction may become significant to varying degree for the different experimental conditions. While Zheng et al.17 had reported that the main contribution to the cathodic current at 10% H_2S concentration is from the direct reduction of aqueous H_2S species, it can also be argued from results shown in Figure 1 that the corrosion reaction of steel with H_2S in H_2S-containing environments dominates the reaction mechanism at lower temperature and becomes less dominant as the temperature increases and that the H^+ reduction mechanism which is strongly influenced by solution pH (and H^+ concentration) is not as influential.

Corrosion rate and corrosion products at 30ºC:

The corrosion rate measurements at 30ºC for test solutions saturated with 100 mol. % CO_2 gas, 10 mol. % H_2S – 90 mol. % CO_2 gas mixture and 10 mol. % H_2S – 90 mol. % N_2 gas mixtures for 7 hours are presented in Figure 2. The corrosion rate is constant for the three different gas systems. However, with 100 mol. % CO_2 in the gas phase, the corrosion rate is three times higher than a gas phase composition of 10 mol. % H_2S – 90 mol. % CO_2 gas and four times higher than a gas phase composition of 10 mol. % H_2S – 90 mol. % N_2. There was no significant difference between corrosion rate of carbon steel with a gas phase of 10 mol. % H_2S – 90 mol. % CO_2 gas mixture and 10 mol. % H_2S – 90 mol. % N_2. This correlates well with the Tafel polarization plot of Figure 1(a) as well as observations by other authors14,17. It also suggests that reduction reactions associated with H_2S dominate the cathodic current at 30ºC as observed by Zheng et al.17 at pH of 4. Since the pH for 10 mol. % H_2S – 90 mol. % CO_2 is always slightly lower than for 10 mol. % H_2S – 90 mol. % N_2 (Table 4), It can therefore be inferred that $\text{H}_2\text{S}/\text{HS}^-$ reduction dominates the cathodic reaction mechanisms in H_2S-containing systems. While Zheng et al.17 observed a slight drop in corrosion rate from ~1.8 mm/yr in 100% CO_2 system to ~1.2 mm/yr in 10 mol. % H_2S – 90 mol. % CO_2 at 30ºC, pH of 5, rotating speed of 1000rpm and after 2 hours, results by Ma et al.14 confirmed that with increased exposure time,
the formation of an iron sulfide corrosion layer would reduce the corrosion rates similar to those presented in Figure 2.

Figure 2. Corrosion rate of UNS K03014 carbon steel in 3.5 wt.% NaCl solution saturated with gas streams of different composition at 30ºC.

Figure 3: SEM images of corrosion product layer on UNS K03014 carbon steel in 3.5 wt.% NaCl solution saturated with (a) 100 mol. % CO₂, (b) 10 mol. % H₂S- 90 mol. %CO₂ and (c) 10 mol. % H₂S-90 mol. % N₂ at 30°C. (d) XRD pattern for corrosion product layer on UNS K03014 carbon steel in 3.5 wt.% NaCl solution saturated 10 mol. % H₂S-90 mol. %CO₂ and 10 mol. % H₂S-90 mol. % N₂ at 30°C. Images are for test duration of 7 hours. (Note that the intensity scale is arbitrary).
So much of reduction effect has either been attributed to the suppression of the collective contribution of H⁺ and H₂CO₃ reduction reaction due to the presence of H₂S gas by Zheng et al.\(^{17}\) or to the formation of iron sulfide corrosion products (most likely mackinawite) by other authors.\(^{9,14}\) The latter is known to be a “kinetically-favored” phase of iron sulfide.\(^{9}\) Figures 3(a), (b), and (c), shows the SEM images of corrosion product layer for gas phase composition of 100 mol. % CO₂, 10 mol. % H₂S – 90 mol. % CO₂ and 10 mol. % H₂S – 90 mol. % N₂ at (a) 30° C at the end of test in Figure 2 respectively. From SEM images of Figure 3(a), the corrosion product layer on steel is not surprisingly mainly empty cementite for a gas system composed of only CO₂ gas. However, Figure 3(b) and (c) show the presence of a very thin non-crystalline and a “smudge-like textured” iron sulfide corrosion product layer with a non-uniform coverage for gas systems composed of 10 mol. % H₂S – 90 mol. % CO₂ and 10 mol. % H₂S – 90 mol. % N₂, respectively. The corrosion product layer on carbon steel exposed to gas systems composed of 10 mol. % H₂S – 90 mol. % CO₂ and 10 mol. % H₂S – 90 mol. % N₂ has been confirmed to be iron sulfide films from EDX analysis and the XRD pattern provided in Figure 3(d). Although it is apparent that the film morphology in both gaseous systems are physically different, it is still not clear if the presence of, or absence of CO₂ gas in the gaseous phase is the cause of this difference, especially as the presence of, or absence of CO₂ gas appears to have a slight influence on the solution pH of the test solutions in H₂S-containing environments (Table 4).

Corrosion rate and corrosion products at 50ºC

The corrosion rate of carbon steel in the test solution shown in Figure 4 depicts a distinctive difference in magnitude for the gas systems used in this work. The results show that highest corrosion rate values were recorded with a gas phase composed of only CO₂. This was almost three times higher than a gas system composed of 10 mol. % H₂S – 90 mol. % CO₂ and 10 mol. % H₂S – 90 mol. % N₂ at the start of the experiment. While this trend appears different from the results published by Zheng et al.\(^{17}\) for test at 30ºC, the easily noticed disparity in the magnitude of corrosion rate among the three gas systems, increases with time. This suggests that with increase in temperature, the combined H⁺ and H₂CO₃ reduction reactions become increasingly influential. This can easily be related to the Arrhenius-type dependence of CO₂ corrosion on temperature.\(^{23,25}\)

![Figure 4: Corrosion rate of UNS K03014 carbon steel in 3.5 wt.% NaCl solution saturated with gas streams of different composition at 50ºC.](image)

The SEM images shown in Figure 5 confirms the existence of an empty cementite network as the main corrosion product layer with 100 mol. % CO₂ in the gas phase and a corrosion product layer of iron sulfide when the gas phase composed of 10 mol. % H₂S – 90 mol. % CO₂ gas and 10 mol. % H₂S – 90 mol. % N₂. The iron sulfide layer at 50ºC is quite obvious with stronger signal for Iron sulfide on the XRD (Figure 5(d)). The morphology of the iron sulfide films are also quite different for 10 mol. % H₂S – 90 mol. % CO₂ gas and 10 mol. % H₂S – 90 mol. % N₂ gas...
combination. There was also observation of delamination of the iron sulfide film in Figure 5(b) which is similar to the findings of other authors such as Brown and Nesic.

Figure 5: SEM images of corrosion product layer on UNS K03014 carbon steel in 3.5 wt. % NaCl solution saturated with (a) 100 mol. % CO$_2$, (b) 10 mol. % H$_2$S-90 mol. % CO$_2$ and (c) 10 mol. % H$_2$S-90 mol. % N$_2$ at 50°C. (d) XRD pattern for corrosion product layer on UNS K03014 carbon steel in 3.5 wt.% NaCl solution saturated 10 mol. % H$_2$S-90 mol. % CO$_2$ and 10 mol. % H$_2$S-90 mol. % N$_2$ at 50°C. Images are for test duration of 7 hours. (Note that the intensity scale is arbitrary).

Corrosion rate and corrosion products at 80°C:

The corrosion rate of carbon steel in brine saturated with the three different gas combinations at 80°C is given in Figure 6. The difference in corrosion rate over the duration of the test is consistent with the behavior observed at 50°C. At 80°C, the contribution of the H$_2^+$ and H$_2$CO$_3$ reduction reactions to total cathodic current in 10 mol. % H$_2$S-90 mol. % CO$_2$ containing atmosphere appears to be more significant than at lower temperatures. This also correlates well with the observation from potentiodynamic sweep (Figure 1(c)). Such observation at 80°C is an indication for the potential increased contribution from uniform corrosion to total material penetration. There is also marginally enhanced contribution from cumulative uniform corrosion to total metal penetration at 80°C for 10 mol. % H$_2$S-90 mol. % N$_2$ gas systems than at 50°C. However, the uniform corrosion contribution was relatively higher for 10 mol. % H$_2$S-90 mol. % CO$_2$ gas system due to the presence of CO$_2$ gas in the gas phase. It is believed that the
significant increase in corrosion rate at 80ºC when compared to 30 and 50ºC could be linked to the combined effect of H⁺ and H₂CO₃ reduction reactions to the corrosion process.

Figure 6: Corrosion rate of UNS K03014 carbon steel in 3.5 wt.% NaCl solution saturated with gas streams of different composition at 80ºC.

Figure 7: SEM images of corrosion product layer on UNS K03014 carbon steel in 3.5 wt.% NaCl solution saturated with (a) 100 mol. % CO₂, (b) 10 mol. % H₂S- 90 mol. %CO₂ and (c) 10 mol. % H₂S-90 mol. % N₂ at 80ºC. (d) XRD pattern for corrosion product layer on UNS K03014 carbon steel in 3.5 wt.% NaCl solution saturated 10 mol. % H₂S- 90 mol. % CO₂ and 10 mol. % H₂S-90 mol. % N₂ at 80ºC. Images are for test duration of 7 hours. (Note that the intensity scale is arbitrary).
What remains unclear thus far is the extent to which the temperature changes could be influencing the kinetics of iron sulfide formation. A slight indication of such effect can be seen on the SEM images of Figure 7(a) – (c) and the corresponding XRD pattern (Figure 7(d)). The empty cementite network of Figure 7(a) for the test containing only CO$_2$ gas corresponds to what has been initially reported to contain only traces of a non-crystalline forms of iron carbonate corrosion products at 80ºC[7] However, the iron sulfide corrosion product layer appears to be a continuous layer with heavily corroded localized regions, showing empty cementite with the test containing 10 mol. % H$_2$S – 90 mol. % CO$_2$ gas. When the system is saturated with 10 mol. % H$_2$S – 90 mol. % N$_2$, the corrosion product morphology is quite different from the former and shows evidence of less corrosion of surrounding regions without the iron sulfide films. This could be related to the absence of CO$_2$ gas as well as the combined effect of H+ and H$_2$CO$_3$ reduction reactions to the corrosion process. The peaks of the XRD pattern confirm the formation of iron sulfide.

Pitting corrosion initiation in sweet and sour corrosion systems: The main focus of this research is to assess the initiation and/or propagation of pitting corrosion of carbon steel material in sour corrosion environments with respect to sweet corrosion environments. Figures 8 present the maximum and average pit depth of almost the entire exposed surface of the samples (relative to the corroded surface after removal of corrosion products) respectively. The average pit depth represents an average of the 10 deepest pits as stipulated by ASTM G46-94[21] Referring to Figures 10 and 11, at the end of the 7 hours, there were no pits on the test sample at 30ºC in a test atmosphere composed of 100mol.% CO$_2$. In this same gas atmosphere, the maximum pit depth on the surface also increases to a maximum at 50ºC and then decreases slightly at 80ºC. Similar behavior with temperature change has previously been reported[7] in separate tests.

The initial increase in pit depth from 30 to 50ºC was attributed to the effect of temperature on the kinetics of corrosion and the rate of revealing of empty cementite. Empty cementite has been linked to potential galvanic effect ultimately leading to pitting/localized corrosion[4,26] However, the slight decrease in pit depth at 80ºC is due to the extensive uniform corrosion of surround surfaces[2] Examples of the maximum pit depth identified in H$_2$S-CO$_2$ containing gas atmosphere are provided in Figure 9 as visual evidence of measurable pits. In the 10mol. % H$_2$S - 90mol. % CO$_2$ and 10mol. % H$_2$S - 90mol. % N$_2$ gas atmosphere, the results in Figure 8 also shows that the pit depth increases from a gas atmosphere of 100 mol. % CO$_2$, to 10mol. % H$_2$S.
- 90mol. % CO$_2$ and 10mol. % H$_2$S - 90mol. % N$_2$, while at the same time the general corrosion rate increases in the reverse direction.

![Figure 9](image)

Figure 9: 2D and 3D images of Deepest pit (relative to corroded surface) on UNS K03014 carbon steel surface exposed to corrosion system under 10mole% H$_2$S - 90mole% CO$_2$ for 7 hours at (a) 30°C, (b) 50°C, and (c) 80°C.

This was observed to be similar for all temperatures. However, the trend of change in pit depth with changing temperature was the same for all gas combinations. This suggests that CO$_2$ corrosion rate manifests mainly in the form of uniform corrosion in an un-buffered test system.

It is also important to recognize that the significant pitting or propensity for pit to initiate in 10mol. % H$_2$S - 90mol. % CO$_2$ and 10mol. % H$_2$S - 90mol. % N$_2$ gas atmosphere is much related to the formation of iron sulfide films. These films have been confirmed to be mainly makinawite using the XRD pattern of 3(d), 5(d) and 7(d) and literature data [27,28]. Pitting corrosion as observed in this work and in H$_2$S containing gas atmosphere has also been reported by other authors [20]. However, it has clearly been shown here that the presence of H$_2$S gas and formation of iron sulfide (mackinawite) are the main agents for pit initiation and that the presence of CO$_2$ may increase total material loss due to the CO$_2$ corrosion contribution, but minimise the extent of pitting. However, the contribution of CO$_2$ corrosion to material loss has been shown to be suppressed by low levels of H$_2$S gas and much more lower than levels used in this work [16,17].
The concept of total metal penetration and pitting factor: The concept of total metal penetration has been introduced in previous publications as a useful tool for characterising the corrosion damage morphology in carbon steel in environments where the steel is predisposed to both pitting and uniform corrosion. When considering the threat posed to carbon steel pipework subject to the prospect of pitting corrosion, the potential failure of a pipeline will always depend not only upon the rate at which pits propagate relative to the corroding surface, but also on the uniform corrosion rate of the surrounding area. Referring to Figure 10, the change in total penetration depth (i.e. uniform thickness plus pit depth relative to the corroded surface) as a function of temperature can be observed for each of the three gas systems used in this work. The results indicate that due to the substantial general corrosion rate of the sample exposed to solution in 100mol.% CO₂ gas atmosphere, the total thickness loss or total penetration depth far exceeds that of the samples exposed to the solution under 10mol. % H₂S - 90mol. % CO₂ gas and 10mol. % H₂S - 90mol. % N₂ gas atmosphere, where the uniform thickness loss is negligible in comparison to the pit depth relative to corroded surface. The uniform corrosion contribution to total metal penetration also increases with temperature and CO₂ content in the gas phase.

Figure 10: Total pit penetration on UNS K03014 carbon steel surface exposed to corrosion system under 100mol. % CO₂, 10mol.% H₂S - 90mol. % CO₂ and 10mol.% H₂S - 90mol. % N₂ gas atmosphere as a function of temperature indicating the contribution of general thickness loss (from LPR) and pit depth relative to corroded surface (determined from surface profilometry)

It could be considered that the high general corrosion rate observed at 80°C and in 100mol. % CO₂ gas atmosphere has the ability to essentially mask pit growth. However, the uniform corrosion contribution reduces significantly with the presence of H₂S gas, but still higher than at 50°C. This suggests that at 80°C, there is significant protection from iron sulfide that must have reduced both pitting and uniform corrosion. The mechanism by which this may be occurring remains unclear, but could be related to the contribution of iron sulfide formation from the aqueous corrosion reaction mechanism as suggested by other authors. It could be imagined that the higher rate of metal dissolution at the start of the experiment at 80°C could be favouring the kinetics of iron sulfide formation in the corrosion interface.

Theoretically, metal penetration is occurring at a faster rate than that identified from purely the profilometry depth measurements relative to the corroding surface. Affording consideration to the uniform corrosion rate of the surrounding area is a fundamental consideration when
reviewing the susceptibility of the carbon steel to pitting corrosion when the general corrosion rate is appreciable. For tests performed under 10mol. % H_2S - 90mol. % CO_2 gas and 10mol. % H_2S - 90mol. % N_2 gas atmosphere, initiation of pit is not significantly masked by the general corrosion rate. The results shown in Figure 10 also suggest that the presence of H_2S gas in the gas atmosphere is reducing the general corrosion rate, but not necessarily reducing the risk of pitting of carbon steel pipelines.

Pitting Factor: The concept of pitting factor (P_f) has been introduced as a tool for characterization of the nature of corrosion damage in this work. The pitting factor is used to reflect the relative contribution of corrosion damage mechanism (between uniform and pitting corrosion) at each experimental sampling time and is defined in ASTM G46-94 as:

\[P_f = \left(\frac{P_d}{P_u} \right) \]

(3)

Where P_d is the deepest metal penetration (µm) for the whole exposed surface area (sum of maximum pit depth (d_max) (after removal of corrosion products) plus the average metal penetration (µm) from general corrosion rate measurement (termed P_u), i.e; \(P_d = P_u + d_{\text{max}} \). A pitting factor of 1 represents uniform corrosion. The greater the pitting factor, the greater the depth of penetration relative to the surrounding surface area.

The pitting factor analysis presented in Figure 11 are a clear indication that the corrosion damage mechanism observed in test solution under the 100mol. % CO_2 gas atmosphere is actually pitting even while there is still substantial uniform corrosion taking place. Under a gas atmosphere of 10mol. % H_2S - 90mol. % CO_2 gas and 10mol. % H_2S - 90mol. % N_2, the pitting factor was higher and decreases with temperature because of the effect of uniform corrosion of the surrounding surface. This suggests that pit initiation occurs and dominates the corrosion damage mechanism in sour corrosion environment once iron sulfide is formed. The pitting factor of carbon steel under a purely CO_2 corrosion atmosphere confirms that there was very significant general corrosion.

![Figure 11: Variation of pitting factor for UNS K03014 carbon steel surface exposed to corrosion system under 100mole% CO_2, 10mole% H_2S - 90mole% CO_2 and 10mole% H_2S - 90mole% N_2 gas atmosphere as a function of temperature.](image)

CONCLUSION

The corrosion behavior of carbon steel material in CO_2 and H_2S containing brine has been investigated at three different temperatures and with emphasis on iron sulfide film formation, uniform corrosion and pit initiation. The following conclusions were deduced from the results of this work.

- In pure CO_2 corrosion systems, uniform corrosion was dominant, which tends to mask the true extent of total material penetration, especially at higher temperatures.
The presence of H$_2$S in the gas phase appears to be having a two pronged effect on corrosion behavior of carbon steel.

1) Supressing the combined contribution of CO$_2$/H$_2$CO$_3$ and/or H$^+$ reduction reaction to total cathodic current and hence producing a lower corrosion rate of steel. The former is correlated on the slight influence of H$_2$S on the pH in CO$_2$-H$_2$S systems.

2) The very fast process of formation of iron sulfide films from direct reduction reaction of H$_2$S/HS$^-$ and acting as the precursor for more pitting in tests under 10mol. % H$_2$S - 90mol. % CO$_2$ gas and 10mol. % H$_2$S - 90mol. % N$_2$ gas atmosphere when compared to tests in pure CO$_2$ systems.

The effect of H$_2$S gas on reducing the corrosion rate (by magnitude) of carbon steel material becomes significant with increase in temperature for tests under 10mol. % H$_2$S - 90mol. % CO$_2$ gas and 10mol. % H$_2$S - 90mol. % N$_2$ gas.

The contribution of H$^+/\text{HCO}_3^-$ reduction to cathodic current and overall corrosion rate (by magnitude) in H$_2$S-CO$_2$–containing environment also becomes dominant with increasing temperature.

Pits initiate quickly in H$_2$S containing environments than in only CO$_2$-containing environments. For all temperatures, the recorded pit depth was higher in sour gas systems without CO$_2$ gas. This is strongly related to the formation of iron sulfide films as well as the fact that the presence of CO$_2$ gas could be increasing the uniform corrosion contribution to material loss and hence masking the true extent of metal penetration. This is more significant at higher temperatures.

REFERENCES