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Tactile hyperacuity for robotics
Nathan F. Lepora, Uriel Martinez-Hernandez, Mathew Evans, Lorenzo Natale, Giorgio Metta and Tony J. Prescott

Abstract—Hyperacuity is a general aspect of animal perception
that exploits spatially overlapping sensory receptive fields to
perceive at finer acuity than the sensor resolution. Following a
recent demonstration of hyperacuity in robot touch, we present
a detailed and systematic analysis of localization acuity for both
a biomimetic fingertip and a region of tactile skin. We identify
three key factors for hyperacuity: (i) the sensor is constructed
with multiple overlapping, broad but sensitive receptive fields;
(ii) the tactile perception method interpolates between receptors
(taxels) to attain sub-taxel acuity; (iii) active perception ensures
robustness to unknown initial contact location. All factors follow
from active Bayesian perception applied to biomimetic tactile
sensors based on a capacitive technology. In consequence, we
attain extreme hyperacuity with a thirty-fold improvement of
localization acuity (0.12mm) over sensor resolution (4mm). We
envisage that these principles will enable cheap, high-acuity
tactile sensors that are highly customizable to suit various
applications in robot touch.

Index Terms—Force and tactile sensing, recognition, biomimet-
ics, contact modelling.

I. INTRODUCTION

A
LTHOUGH biological hyperacuity is most widely stud-

ied in vision [1], it also occurs for touch and audition,

and may be considered a general aspect of human/animal per-

ception. For example, Braille reading can involve perceiving

spatial patterns of finer detail than the spacing between touch

receptors in the human fingertip [2], [3]. No physical laws

are broken because the perception involves spatial averages

over the sensor distribution, which can transcend the resolution

limit. Thus, nature has discovered design principles that allow

perceptual systems to operate at finer acuity than might be ex-

pected from their sensory receptor densities. These principles

give lessons for robotics when optimizing sensor performance.

In a recent study, we gave an initial demonstration of

hyperacuity in robot touch [4] using a biomimetic fingertip [5]

constructed for the iCub robot [6]. Originally, that study began

as a demonstration that the fingertip could perceive the shape

(curvature) and horizontal location of a rod by tapping down

onto it. To our surprise, the localization acuity (∼0.5 mm)

was an order of magnitude better than the (4 mm) spacing of

the tactile pixels (taxels). Investigating why, we noticed that
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the design of the fingertip caused a contact over one taxel to

activate its neighbors; moreover, the taxel readings were highly

sensitive and decreased smoothly as a contact moved away

from the taxel center. These principles are exactly those that

enable biological systems to perceive at finer acuity than the

sensor resolution (receptor spacing), which is a phenomenon

called hyperacuity.

In this paper, we make a detailed and systematic analysis of

localization hyperacuity for both the biomimetic fingertip [5]

and a region of tactile skin [7] (an iCub palm [5]). To facilitate

this analysis, we collect contact data at a high spatial sampling

density (100 taps/mm) over a span that contains each sensor’s

entire location range (fingertip: 30 mm; skin: 50 mm). We

can then characterize how localization acuity depends on the

classification resolution for class widths & 0.1mm, a key

variable for the degree of hyperacuity. A core component

of our analysis is to compare methods for active and pas-

sive Bayesian perception [8] on the tactile dataset. We find

that active perception is key to obtaining a high degree of

hyperacuity, because it enables the sensor to relocate itself

to a region of fine localization acuity. In consequence, we

obtain extreme hyperacuity (0.12 mm acuity), with a thirty-

fold improvement over sensor resolution.

These findings have implications both for the design of high

acuity tactile sensors and the methods used for robot touch.

A frequent assumption in tactile robotics is that ‘more taxels

are better’ (or, equivalently, sensors with fewer taxels are crit-

icized). However, we disagree. Perceptual acuity depends on a

combination of factors, including taxel density, spatial layout,

pressure sensitivity and receptive field size or shape, coupled

with utilizing active and probabilistic methods for perception.

Thus, to optimize sensor performance, constraints such as

manufacturing costs and sensor robustness will necessitate a

balance between these design factors, rather than focussing on

any one in isolation. This balance will not necessarily involve

having a high taxel density. For practical applications in future

robotics, our expectation is that sensor optimization will be

a sophisticated procedure, requiring modeling and empirical

work to customize the design to suit a robot’s intended use.

II. BACKGROUND AND RELATED WORK

A. Biological sensing and hyperacuity

Our senses, such as vision, audition and touch, take their

inputs via sensory receptors that transduce stimuli from the

physical world into signals appropriate for neural processing.

For example, photoreceptors (vision) transduce light energy

and mechanoreceptors (touch and audition) transduce kinetic

energy into patterns of electrical spikes (e.g. [9], [10]). Each

receptor has a receptive field, or region of space to which it

responds, such as a cone of light rays onto a photoreceptor or
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Fig. 1. Localization hyperacuity versus sensor resolution. Top: Two point-
like (noisy) images on the mosaic of receptors can be resolved only if their
separation leaves at least one intervening receptor with a detectably different
intensity. Bottom: Two targets can be localized relative to each other to finer
acuity than the receptor spacing; the hyperacuity mechanism achieves this
by identifying the center of each target across all of the receptors it covers.
(Image reproduced from [11] under the creative commons license.)

a patch of skin activating a mechanoreceptor. For our senses to

cover their nearby environment, receptors are packed together

into mosaic-like arrays. The spacing between receptors then

defines the sensor resolution, and relates to the minimum

separation to distinguish two point-like stimuli (Fig. 1). For a

healthy human eye, the angular resolution is about 1 arcmin

(0.02 degs), or 30 cm at 1 km distance; for a human fingertip,

the two-point discrimination is about 3 mm on the skin [2].

Acuity is the sharpness of perception, and depends on both

the sensory apparatus and the computations underlying per-

ception. Measures of acuity rely on quantifying the finest

discriminable detail of a stimulus, such as reading letters on

the lowest line of a Snellen chart at 20 feet distance (called

20/20 vision). More formally, acuity can be defined as 1/RP,

where RP is the resolving power given by the angle (vision) or

distance (touch) spanned by the detail; a visual RP of 1 arcmin

is considered normal and defines 20/20 vision.

Hyperacuity is a perceptual effect where the resolving power

of the stimulus detail is finer than the sensor resolution [1].

It has been studied primarily for human visual localization,

where the parallel encoding of a stimulus across multiple

sensory receptors is known to aid computation of population

averages with finer acuity than the sensor resolution (Fig. 1).

Visual hyperacuity has been observed for curvature detection,

edge smoothness, stereoacuity (depth) and Vernier acuity

(alignment of two parallel lines). The highest hyperacuity

measured with the human eye was the relative position of a line

to 0.85 arcsec (0.0002 degs), equivalent to 4 mm at 1 km [12].

Human touch is also known to attain hyperacuity [2]: for

static (∼1 sec) touches against embossed spatial patterns, sub-

jects estimated relative interval size to 0.3 mm and (modified

Vernier) alignment to 0.4 mm. Both measurements are an order

of magnitude better than the two-point discrimination interval

(∼3 mm) and the average spacing (∼70/cm2) between (SA-I)

mechanoreceptors in the fingertip. Practical benefits include

Braille reading, which can involve sub-millimeter judgments

of surface detail that depend upon tactile hyperacuity [2], [3].

Fig. 2. Construction of tactile fingertip. A flexible PCB (a) is wrapped around
a hard core (b) then covered in a soft silicon foam insulator and conductive
rubber (c) to give a capacitive touch sensor. The lower plates of the 12 taxels
are visible as circles on the PCB. (Figure adapted from [5].)

Fig. 3. Construction of region of tactile skin. A flexible PCB (a) is mounted
on a solid base (b) then covered in a soft silicon foam insulator and conductive
fabric (c) to give a touch sensitive palm. (Figure adapted from [5].)

B. Artificial hyperacuity and robot tactile perception

Implementing hyperacuity with artificial sensors has been

confined mainly to visual imaging, where it is known as super-

resolution, or more precisely geometrical superresolution [13].

Examples include sub-pixel localization [14] from interpolat-

ing over pixel distributions, and multi-exposure noise reduc-

tion [15] by averaging several images. One should be careful to

distinguish these methods from optical super-resolution [16],

which is concerned with transcending the diffraction limit

rather than the resolution limit [13]. Advances in superres-

olution technology are impacting science from cell biology to

medical imaging ‘in ways unthinkable in the mid-90s’ [17]

and were honored as a Nature ‘method of the year’ [18].

An initial demonstration of hyperacuity in robot touch [4]

has been implemented with a biomimetic fingertip [5] mounted

on a Cartesian robot. Using a taxel-based sensor design

(Fig. 2), a cylindrical stimulus could be localized to ∼0.5 mm,

an order of magnitude better than the 4 mm taxel spacing. That

study also found that active perception helped the hyperacuity,

although the methods suffered (in hindsight) from being some-

what ad hoc and did not use location information to control the

sensor. Further, the tactile dataset was taken over a somewhat

narrow location range (16 mm) with a sampling density (320

taps) consistent with a class resolution of 1 mm, which was

wider than the attained acuity. These issues are addressed in

the current study, along with presenting a more principled and

systematic analysis of artificial tactile hyperacuity.

The present and previous implementations of artificial tactile

hyperacuity are built on two key principles: (i) the sensors

are designed with taxels having broad but sensitive receptive

fields; (ii) the method of Bayesian perception [4], [19], [20]

can exploit this stimulus encoding to attain localization hyper-

acuity. Bayesian perception is grounded in optimal decision

making in statistics and perceptual neuroscience [20], notably

models of the basal ganglia and cortex in perceptual decision

making [21], [22]. Hence, we think it reasonable to claim that

our method for implementing hyperacuity in artificial systems

mirrors the principles used in biological perception.
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Fig. 4. Experimental setup. (A) Schematic of tactile sensor tapping against a
cylindrical test object, with the pressure-sensitive taxels (colored) impinging
onto the test object. For collecting training data, each tap is then followed by
a small horizontal move to span the entire location range. (B) Forward view
of the mounted fingertip tapping against a steel rod. (C) Side view of the
tactile skin mounted on the Cartesian robot tapping against a sphere. These
experimental setups are ideal for systematic data collection to characterize the
properties of the sensor interacting with objects.

III. MATERIALS AND METHODS

A. Tactile robots and experiments

Two tactile sensors are used in this study (Figs 2,3) that

were designed originally as a tactile fingertip [5] and skin

(palm) [7] for the iCub humanoid robot. The two tactile

sensors are of a size commensurate with a human infant, in

keeping with the design of the iCub [6]. The tactile fingertip

has a rounded shape of dimensions 14.5 mm long by 13 mm

wide (Fig. 2A), covered with Ntaxels = 12 pressure sensitive

taxels. The tactile skin has 4 equilateral triangular-shaped taxel

arrays in a flat layout, each 30 mm wide and covered with

12 taxels, giving Ntaxels = 48 total (Fig. 2B). These tactile

sensors detect pressure by the capacitance change due to a

compressible insulating layer between the inner conducting

plate of the taxels and an electrically conductive outside layer.

The two sensors have a similar design for the inner conducting

plates (a flexible PCB) and insulating layer (soft silicone foam,

2 mm deep), but differ in their outside layer: the fingertip uses

conductive silicone rubber, whereas the skin uses conductive

Lycra-like fabric. For more details of their construction, we

refer to the original reference on the technologies for the

implementation of large-scale robot tactile sensors [5], [7].

Here we mount each tactile sensor as an end effector

on a two degree-of-freedom Cartesian robot (2-axis PXYx,

Yamaha Robotics). This combination of tactile sensor with

Cartesian robot has been employed previously for testing

various tactile sensors, including tactile vibrissae [23], [24]

and tactile fingertips [4], [8], [25]–[27]. The Cartesian robot

has the benefit that it can precisely position the sensor in

a two-dimensional plane (∼20µm accuracy) with excellent

repeatability. As such, it is an ideal platform to probe tactile

sensing; for example, by tapping the sensor against various test

objects over a systematic and exhaustive range of locations.

The present study focusses on the tangential localization

acuity of a curved object impinging against the tactile sensor

surface. Both types of tactile sensor were mounted with their

(horizontal) sensing surface oriented approximately perpendic-

ular to the (vertical) direction of the tapping motion (Fig. 4A).

For the fingertip, a smooth steel cylindrical rod (diameter

8 mm) was used as a test object (Fig. 4B). For the skin,

a smooth spherical stone ball (diameter 8 mm) was used

(Fig. 4C). In both cases, the perceptual task is to determine

the tangential (horizontal) localization of the test object by

tapping against it.

Touch data were collected while the tactile sensor tapped

vertically onto and off the test object, followed by a horizontal

move ∆x across the closest face of the object before making

the next tap (Fig. 2A). For the fingertip, a horizontal x-range

of 30 mm was used with a move ∆x = 0.01mm, giving 3000

taps across the cylindrical object. For the skin, a horizontal x-

range of 50 mm was used with a move ∆x = 0.01mm, giving

5000 taps across the spherical object. From each tap of a tactile

sensor against the test object, a 1 sec time series of pressure

readings (Nsamples = 50) was extracted for all Ntaxels taxels.

A 1 sec pause was taken between brief (∼0.1 sec) contacts

to ensure transients decayed; no noticeable hysteresis then

occurred. Data were collected at 8 bit resolution and then high-

pass filtered and normalized [5]. All data were collected twice

to give distinct training and test sets.

B. Bayesian perception for robotics

We use a Bayesian perception method for classifying object

location that is based on sequential analysis models of percep-

tual decision making in neuroscience and psychology [22],

[28]. Sequential analysis is a statistical technique for hy-

pothesis selection over data that is sequentially sampled until

reaching a stopping condition [29], which commonly takes the

form of a threshold on the posterior belief. Its application to

neuroscience and psychology rests on the empirical success in

modeling behavioral experiments (e.g. reaction time distribu-

tions) and also that neuronal activity during decision making is

consistent with a threshold crossing. Theoretically, hypothesis

selection via a belief threshold is known to optimize decision

making under some circumstances (e.g. two choices with a

linear cost function of decision time and error rate).

This Bayesian perception approach has been applied suc-

cessfully to robot tactile perception [4], [8], [19], [20], [25]–

[27]. The method implements a recursive Bayesian update of

the posterior beliefs for each distinct perceptual class (the

statistical hypotheses) until reaching a predefined decision

threshold. Here we consider two implementations of Bayesian

perception (Fig. 5), termed active and passive, depending on

whether or not the sensor can relocate during perception.

Although we here apply these methods to purely localization

decisions, they have more general applicability [8].
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Fig. 5. Passive and active Bayesian perception. (A) Passive Bayesian per-
ception has a recursive belief update with decision termination when the pos-
terior belief reaches threshold. (B) Active Bayesian perception has the same
recursive belief update, while also controlling sensor location according to a
belief-based control policy. Upon moving the sensor, the location components
of the posterior beliefs are re-aligned with the new sensor location. The two
algorithms differ only in the control loop for active Bayesian perception.

Passive Bayesian perception accumulates belief for Nloc

distinct location classes xl by making successive taps zt
against a test object until at least one of the posterior location

beliefs P (xl|z1:t) crosses a belief threshold θdec, when the

localization decision xdec is made. The passive nature of the

perception means that the location class xl is constant over

the decision making process (Fig. 5A).

Active Bayesian perception also accumulates belief for the

location classes xl by successively tapping until a posterior

belief P (xl|z1:t) reaches a predefined belief threshold θdec, but

in addition utilizes a posterior-dependent control policy π to

move the sensor during the perceptual process (Fig. 5B). Here

we use a ‘fixation point’ control policy (Fig. 6) that infers a

best estimate of current location xest from the location beliefs,

then calculates a relative move to a preset fixation position xfix

on the object. Provided the fixation point is a good location

for perception, this control policy can progressively improve

the perception during the decision making process from an

initially unknown location (e.g. Fig. 7B).

Formally, the Bayesian perception method applies to se-

quences of contact data z1:t = {z1, · · · , zt}, each of which is

a multi-dimensional time series of sensor values,

zt = {sk(j) : 1 ≤ j ≤ Nsamples, 1 ≤ k ≤ Ntaxels}, (1)

with indices j, k labeling the time samples and sensor taxels

respectively. This contact data gives evidence for the present

location class xl, 1 ≤ l ≤ Nloc, computed through the

Fig. 6. Fixation point active control policy. The policy calculates a relative
move to a preset fixation position xfix on the object using a best estimate of
current location xest from the location beliefs. Provided the fixation point is
a good location for perception, this control policy can progressively improve
the perception during the decision making process.

algorithms in Fig. 5, with details as follows.

1) Measurement model and likelihood estimation: The lo-

cation likelihoods P (xl|zt) are found using a measurement

model of the contact data, based on a histogram method

applied to sampling distributions from training data over the

distinct location classes [20], [30]. First, sensor values sk for

taxel k are binned into equal intervals Ib, 1 ≤ b ≤ Nbins,

with sampling distribution given by the normalized histogram

h(b, k, l) over all training data for each location class xl:

P (b|k, l) =
h(b, k, l)

∑Nbins

b=1 h(b, k, l)
, (2)

where h(b, k, l) is the sample count in bin b for taxel k over

all training data in class xl. Then, given a test contact zt with

samples sk(j), we construct a measurement model from the

mean log likelihood over all samples in that contact

logP (zt|xl) =

Ntaxels∑

k=1

Nsamples∑

j=1

logP (bk(j)|k, l)

NsamplesNtaxels

, (3)

where bk(j) is the bin occupied by sample sk(j). Technically,

this measurement model becomes ill-defined if any histogram

bin is empty, which is easily fixed by regularizing the bin

counts with a small constant (ǫ≪ 1), giving h(b, k, l) + ǫ.
2) Bayesian belief update: Bayes’ rule is used after each

successive test contact zt to recursively update the posterior

location beliefs P (xl|z1:t) for the perceptual classes with the

location likelihoods P (zt|xl) of that contact data

P (xl|z1:t) =
P (zt|xl)P (xl|z1:t−1)

P (zt|z1:t−1)
, (4)

from background information given by the prior location be-

liefs P (xl|z1:t−1) (i.e. the posterior beliefs from the preceding

contact). The marginal probabilities P (zt|z1:t−1) of the current

b bin index Nbins number of bins s sensor value z1:t contact history to time t
edec location error Nloc number of locations t time index zt contact at time t

h(b, k, l) sample histogram Nsamples number of samples tdec decision time π movement policy
Ib bin interval Ntaxels number of taxels xl location class θdec decision threshold
j sample index P (xl|z1:t) location belief xest estimated location θest intermediate threshold
k taxel index P (zt|xl) location likelihood xdec decided location (0 for active; 1 for passive perception)
l location index P (zt|z1:t) marginal probability xfix fixation location

TABLE I
SYMBOLS GLOSSARY.
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Fig. 7. Example trajectories for passive and active perception. 100 trajectories
were selected randomly for each case (θdec = 0.95). (A) Passive perception,
with sensor location constant over time. (B) Active perception, with trajecto-
ries converging on the central fixation point independent of starting position.

contact given the prior contact history are also conditioned on

the preceding contacts z1:t−1 and given by

P (zt|z1:t−1) =

Nloc∑

l=1

P (zt|xl)P (xl|z1:t−1). (5)

Iterating (4,5), a sequence of contacts z1, · · · , zt results in a

sequence of posterior beliefs P (xl|z1), · · · , P (xl|z1:t) initial-

ized from uniform prior beliefs P (xl|z0) := P (xl) = 1/Nloc.

3) Final location decision: Here we follow sequential anal-

ysis methods for optimal decision making that recursively

update beliefs up to a threshold θdec that triggers the final

decision (Fig. 8A). Thus, the update (4,5) stops when the

posterior location belief P (xl|z1:t) passes a threshold θdec,

giving a final location decision xdec from the maximal a

posteriori (MAP) estimate at time tdec

if any P (xl|z1:t) > θdec then xdec = argmax
xl

P (xl|z1:t).

(6)

This belief threshold θdec is a free parameter that adjusts the

balance between decision time tdec and accuracy edec. For a

choice between two outcomes this speed-accuracy balance can

be proved optimal [29]; optimality is not known for the many

perceptual choices considered here, so we make a reasonable

assumption of near optimality [20].

4) Online re-location estimate: Analogously to the stop

decision, a sensor move requires a location belief to cross its

own decision threshold [8], with the MAP estimate giving an

intermediate location estimate for use in controlling the sensor

if any P (xl|z1:t) > θest then xest = argmax
xl

P (xl|z1:t).

(7)

Here we consider two particular cases (Figs 5A,B), termed:

(A) passive perception: θest = 1 (never moves)

(B) active perception: θest = 0 (always tries to move).

For simplicity, we consider a control policy π for moving

the sensor x ← x + π(xest) that depends only on present

estimated location xest. Upon performing the resulting move,

the location beliefs P (xl|z1:t) should then be kept aligned with

Fig. 8. Effect of decision threshold on perception. (A) Example decision,
with evidence integrated over successive taps until a location belief crosses the
decision threshold. (B) Histograms of decision times across many decisions;
the distribution peak shifts to longer decision times for increased thresholds.

the sensor by shifting them by the number of classes moved

if 1 ≤ xl − π(xest) ≤ Nloc then

P (xl|z1:t)← P (xl − π(xest)|z1:t), (8)

if xl − π(xest) < 1 or xl − π(xest) > Nloc then

P (xl|z1:t)← p0,

where we recalculate the beliefs p0 lying outside the original

range by assuming they are uniformly distributed and the

shifted beliefs P (xl|z1:t) sum to unity. The left arrow denotes

that the quantity on the left is replaced with that on the right.

5) Active control policy: The final component of the active

perception algorithm is to define the control policy for moving

the sensor based on the posterior beliefs. For simplicity, here

we consider a ‘fixation point’ policy motivated by orienting

movements in animals: the control policy attempts to move the

sensor to a predefined fixation point xfix relative to the object

assuming it is at the estimated location xest on the object,

x← x+ π (xest) , π(xest) = xfix − xest, (9)

where x is the actual (unknown) location of the sensor. In

practice, only the move π (xest) need be found, to instruct the

sensor how to change relative location. Example trajectories

resulting from this active control strategy are shown in Fig. 7B.

Provided the fixation point is set to be a good location

for perception, this control policy can progressively improve

the perception during the decision making process from an

initially unknown location where the perception may be poor.

C. Virtual environment estimate of location acuity

The aim of our data collection is to set up a ‘virtual environ-

ment’ in which methods for perception can be compared off-

line on identical data. This is achieved by measuring contact

signals over an exhaustive range of object locations. We can

then use Monte Carlo validation to ensure good statistics:

perceptual errors are averaged over many test runs with contact

data drawn randomly from the perceptual classes (typically

10000 runs per data point plotted in the results).

For analysis, the data were separated into Nloc distinct

classes, by collecting groups of contact data each spanning

part of the overall range. For the tactile fingertip, we con-

sidered 10, 15, 30, 60, 100, 150, 300 location classes spanning
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Fig. 9. Tactile data. Collected as the fingertip taps against a test rod (dia. 8 mm) at constant rate of 1 tap/second, with 0.01 mm displacement after every tap
to span a 30 mm location range with 3000 taps. (B-E) Individual tap data taken from panel (A). Taxels are colored according to their layout on the fingertip.

a 30 mm range (class widths 3, 2, 1, 0.5, 0.3, 0.2, 0.1mm).

For the tactile skin, we considered 25, 50, 100, 200, 250,

500 location classes spanning a 50 mm range (class widths

2, 1, 0.5, 0.25, 0.2, 0.1mm). The localization decision error

edec was then quantified with the mean absolute error (MAE)

|x− xdec| between the actual x and classified values xdec of

object location over all test runs.

Perceptual acuity can then be defined as the maximum of

the mean localization error edec and the class width. For large

class widths (small Nloc), the mean error is less than the

class width, so the class width limits the perception; for small

classes (large Nloc), the error is larger than the class width,

and the localization error limits the perception.

IV. RESULTS

A. Tactile fingertip

1) Inspection of data: Data for the tactile fingertip (Fig. 9)

were collected while the sensor tapped vertically onto and

off the test object (cylindrical rod, 8 mm diameter). Each tap

was followed by a horizontal move across the closest face of

the rod before making the next tap to sample across a 30 mm

position range. The initial and final parts of the data collection

are for contacts either at the fingertip’s non-sensitive base or

missing the object entirely, with little or no tactile response.

Between these extremes, the first sensed contacts are with the

taxels at the sensor’s base, followed by the middle taxels and

finally the taxels at its tip. Each taxel has a broad, Gaussian-

shaped receptive field about 8 mm across with centers spaced

about every 4 mm (Fig. 9A). Individual taps typically take

∼0.1 sec to reach peak amplitude, followed by a rapid decay

to baseline (Figs 9B-E). Hence, contact features from the

stimulus are encoded both in the time-series response of each

taxel and in which taxels are activated.

The most obvious effect of varying horizontal contact

location of the fingertip against the object was a change in

taxel identity and peak response amplitude. For each contact,

the pattern of taxel pressures depends on the location of the

fingertip relative to the object, permitting classification of

where the rod is located relative to the fingertip. The geometry

of the overlapping receptive fields implies that multiple taxels

are activated simultaneously, so that the contacted stimuli are

coarse-coded over multiple sensor outputs. We will see that

these aspects of the data are important for the perceptual acuity

of localizing the object being sensed.

2) Passive Bayesian perception: The perceptual acuity of

the fingertip for locating the rod is assessed first with a passive

Bayesian method for robot perception. Bayesian perception

updates the posterior beliefs P (xl|z1:t) for Nloc distinct loca-

tion classes xl, using successive taps z1, · · · , zt against a test

object until at least one belief crosses a decision threshold

θdec. Results are generated with a Monte Carlo procedure

using the data as a virtual environment (Sec. III-C), such that

each contact tap passively remains at its initial location class

(example trajectories in Fig. 8A).

Passive perceptual decisions of object location are evaluated

for decision thresholds θdec from 0-0.999, over Nloc = 30

number of classes, Nloc 10 15 30 60 100 150 300

class width, xclass 3 mm 2 mm 1 mm 0.5 mm 0.3 mm 0.2 mm 0.1 mm
mean decision error, ēdec (passive perception) 4.5 mm 4.5 mm 4.5 mm 4.5 mm 4.5 mm 4.5 mm 4.5 mm
mean decision error, ēdec (active perception) 0 mm 0 mm 0.01 mm 0.04 mm 0.07 mm 0.08 mm 0.12 mm
acuity, max(xclass, ēdec) (active perception) 3 mm 2 mm 1 mm 0.5 mm 0.3 mm 0.2 mm 0.12 mm

TABLE II
ACTIVE PERCEPTUAL ACUITY DEPENDS ON LOCATION CLASS WIDTH. RESULTS ARE FOR MEAN DECISION TIMES OF 2 TAPS.
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Fig. 10. Acuity of passive Bayesian perception depends on relative fingertip-
rod location and belief threshold. (A) Mean location errors edec and (B)
mean decision times tdec plotted against sensor location x, with the gray-
scale denoting the belief threshold (10000 trials per threshold value, with
Nloc = 30 location classes). Perceptual performance is best in the central
region of the location range and for higher belief thresholds.

location classes spanning the 30 mm range across the fingertip

(Fig. 10). Perceptual error depends strongly on test location

class, with mean location decision error edec increasing sharply

at the extremes of the horizontal range from small errors in

the central region (Fig. 10A). The lowest errors edec . 0.2mm

are in the region nearby the mid-point x = 15mm of the

30 mm range. Decision times are modified from a U-shaped

function (Fig. 10B), by also having a central spike that

coincides with the maximum of the middle taxel’s receptive

field (similar spikes also occur for adjacent taxels at 10 mm

and 20 mm). Our interpretation of this effect is that the speed

of perception is aided by spatial gradients in the taxel receptive

fields; meanwhile, the overall U-shaped function of accuracy

is consistent with contacts at the extremities being weak or

non-existent with poor signal-to-noise ratio.

For passive perception, there is no control over the location

from where an object is sensed. Hence, we typify the location

accuracy for the fingertip and rod as a mean ēdec over all

possible sensing locations (Fig. 11A, red plot). Given ēdec∼
4.5 mm, this gives a poor location acuity dominated by the

poor perception on the extremities of the range. These results

emphasize that passive perception performs poorly because it

cannot control contact location.

3) Active Bayesian perception: Next, we assess the percep-

tual acuity of the fingertip locating a rod with an active method

for robot perception. Active Bayesian perception accumulates

location belief up to a decision threshold P (xl|z1:t) ≥ θdec,

as in passive perception; however, in addition, a control policy

attempts to relocate the sensor between taps according to these

location beliefs. Here we use a ‘fixation point’ policy, in which

a best estimate of current location is used to calculate a relative

move to a fixed location on the object (example trajectories

Fig. 11. Location-averaged performance for active and passive perception
with the fingertip. (A) Mean errors ēdec and (B) decision times t̄dec plotted
against belief threshold (10000 trials per threshold). Passive perception is
shown in red and active perception in green, shaded by location class number
Nloc. (C) Mean location error plotted against decision time (with threshold
an implicit parameter). Active performs better than passive perception, and
both improve with increasing belief threshold and decreasing class number.

in Fig. 7B). We take this fixation point in the center of the

fingertip’s location range (xfix = 15 mm), where the passive

perception had good acuity. The range of decision thresholds

θdec = 0-0.999 remains unchanged from the previous section,

to permit comparison of the active and passive approaches.

Active perceptual decisions of object location are again

started from random locations, so we measure performance by

the mean perceptual error ēdec over all initial contact locations

(Fig. 11; green plots). The best accuracies were for the higher

belief thresholds (Fig. 11A) corresponding to decision times

greater than two taps (Fig. 11C). Even for two taps, the active

perception reaches a mean error ēdec . 0.12mm, an order of

magnitude better than passive perception (∼ 4.5 mm) and the

(4 mm) spacing between taxels (Table II).

Perceptual performance also depends on the number of

location classes, considered over Nloc = 10-300 with location

class resolution 30/Nloc mm. Thus, both the mean location

error ēdec and decision time t̄dec depend on the class number

and decision threshold, with their variation with threshold

more rapid for larger class numbers Nloc (Figs 11A,B). This

variability partially cancels in the speed-accuracy curves of

mean location error against mean decision time (Fig. 11C) un-

til the error falls to an asymptote. The best location error then

depends on class number, with mean errors increasing from

ēdec = 0.00 mm (10 classes) to 0.12 mm (300 classes), while

class resolution decreases from 3 mm to 0.1 mm (Table II).

Thus, location acuity and class resolution become similar for

300 classes, giving a best perceptual acuity of 0.12 mm.

Considering the taxel spacing is 4 mm for the fingertip,

active perception gave a localization hyperacuity with greater

than thirty-fold improvement over sensor resolution.
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Fig. 12. Tactile data collected as some tactile skin taps against a test sphere (dia. 8 mm) at constant rate of 1 tap/second, with 0.01 mm displacement after
every tap to span a 50 mm range with 5000 taps. (B-E) Individual tap data taken from panel (A). Taxels are colored according to their layout on the skin.

B. Tactile skin

1) Inspection of raw data: Data for the tactile skin (Fig. 12)

were collected while the sensor tapped vertically onto and off

the test object (spherical ball, 8 mm diameter). Each tap was

then followed by a move over the sphere to sample across a

50 mm location range. At the beginning of the data collection

only the taxels on the center-left of the skin are in contact, then

the middle taxels and finally the taxels at the center-right. Each

taxel has a broad, Gaussian-shaped receptive field about 16 mm

across with centers spaced every 4 mm (Fig. 12A). Individual

taps typically took ∼0.1 sec to reach peak amplitude, followed

by rapid decay to baseline (Figs 12B-E). Notable differences

between the skin and fingertip data are the larger number of

taxels now traversed and their broader receptive fields.

The pattern of taxel pressures and their response amplitudes

depend on the location of skin relative to the test sphere

(similarly to the fingertip and rod), permitting classification

of where the sphere is located relative to the skin.

2) Passive Bayesian perception: The perceptual acuity of

the skin for locating the sphere is assessed first with the same

passive Bayesian method for robot perception that was applied

to the fingertip and rod. Results are again generated with a

Monte Carlo procedure (Sec. III-C), such that each contact

tap passively remains at its initial location class.

Passive perceptual decisions of object location are evaluated

for decision thresholds θdec from 0-0.999, over Nloc = 50
location classes spanning the 50 mm range across the skin

(Fig. 13). Perception is generally of sub-taxel accuracy across

this range, with mean location errors edec . 1mm (Fig. 13A),

other than a few regions where the location error increases

(e.g. the extremities, as with the fingertip). The decision errors

are highly variable, with some locations giving near perfect

accuracy edec ∼ 0mm and others poor accuracy edec ∼ 1mm,

as also for the mean decision times (Fig. 10B). We attribute

this variability to the choice of test object: the spherical

stimulus usually has a strong contact on just one taxel, unlike

the rod that has strong contacts over multiple taxels. Hence,

less information is available for localization with the sphere,

apart from at ‘sweet spots’ where it happens to hit multiple

taxels; for example, the region 35-38 mm activates several

taxels (Fig. 12) with small errors and decision times (Fig. 13).

A typical localization accuracy for passive perception with

the skin and sphere is a mean ēdec over all possible sens-

ing locations (Fig. 14A, red plot). This mean location error

ēdec ∼ 0.4 mm is consistent with the 0-1 mm location error

variability described above. In comparison with the rod and

fingertip (Sec. IV-A2), the location acuity is finer because the

poor acuity at the extremities is limited to a smaller proportion

of the overall range. That being said, we still expect that the

perceptual performance can be improved by utilizing regions

of relatively good acuity within the location range.

3) Active Bayesian perception: The acuity of the tactile

skin locating a sphere is now assessed with the same active

method for robot perception that was applied to the fingertip

and rod. Again we use a ‘fixation point’ policy, in which a best

estimate of current location is used to calculate a relative move

number of classes, Nloc 25 50 100 200 250 500

class width, xclass 2 mm 1 mm 0.5 mm 0.35 mm 0.2 mm 0.1 mm
mean decision error, ēdec (passive perception) 0.4 mm 0.4 mm 0.4 mm 0.4 mm 0.4 mm 0.4 mm
mean decision error, ēdec (active perception) 0.01 mm 0.05 mm 0.11 mm 0.20 mm 0.18 mm 0.24 mm
acuity, max(xclass, ēdec) (active perception) 2 mm 1 mm 0.5 mm 0.25 mm 0.20 mm 0.24 mm

TABLE III
ACTIVE PERCEPTUAL ACUITY DEPENDS ON LOCATION CLASS WIDTH. RESULTS ARE FOR MEAN DECISION TIMES OF 4 TAPS.
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Fig. 13. Acuity of passive Bayesian perception depends on relative skin-
sphere location and belief threshold. (A) Mean location error edec and (B)
mean decision time tdec plotted against sensor location, with the gray-scale
denoting belief threshold (10000 trials per threshold value, with Nloc = 50
location classes). Perceptual performance varies across the location range, with
only some regions having consistently good performance (e.g. 35-38 mm).

to a fixed location on the object. We take this fixation point

within the ‘sweet spot’ noted above (xfix = 37mm) where the

passive perception had the best acuity. The range of decision

thresholds θdec=0-0.999 remains unchanged from above, to

permit comparison of the active and passive approaches.

As in previous sections, we measure perceptual performance

by the mean error ēdec over all initial contact locations

(Fig. 14; green plots). The best accuracies were again for the

higher belief thresholds (Fig. 14A) corresponding to decision

times greater than 4-5 taps (Fig. 14C). Then active perception

reaches an accuracy ēdec . 0.25mm, finer than passive per-

ception (∼ 0.4 mm) and the (4 mm) taxel spacing (Table III).

Perceptual performance again depends on the number of

location classes, considered over Nloc = 25-500 with location

class width 50/Nloc mm, and the above-mentioned dependence

on decision threshold (Figs 14A,B). The best perceptual errors

increase with class number from ēdec = 0.00 mm (25 classes)

to 0.25 mm (500 classes), while class resolution improves

from 2 mm to 0.1 mm (Table III). Location accuracy and

class resolution become similar for 250 classes, giving a best

perceptual acuity of 0.20 mm.

Considering the taxel spacing is 4 mm for the skin, active

perception gives a localization hyperacuity with twenty-fold

improvement in acuity over sensor resolution.

V. DISCUSSION

In this study, we demonstrated hyperacuity with a tactile

fingertip and a region of tactile skin: for the fingertip localizing

a rod, the best acuity was 0.12 mm, a thirty-fold improvement

over the (4 mm) sensor resolution; for the skin localizing a

sphere, the best acuity was 0.20 mm, a twenty-fold improve-

ment over sensor resolution. This hyperacuity is comparable

Fig. 14. Location-averaged performance for active and passive perception
with the tactile skin. (A) Mean localization errors ēdec and (B) decision
times t̄dec plotted against belief threshold (10000 trials per threshold). Passive
perception is shown in red and active perception in green. (C) Mean perceptual
error against decision time. Active performs better than passive perception, and
both improve with increasing belief threshold and decreasing class number.

with that obtained in human vision and touch, of about 1-2

orders of magnitude better than the sensory receptor spacing.

A combination of factors are necessary to attain this degree of

hyperacuity, both in the design of the tactile sensors and the

methods for robot touch, which we now discuss.

A. Design of the tactile sensor

The construction of the tactile sensor is crucial for attaining

hyperacuity. Both the tactile fingertip and skin used here have

a taxel-based design with the following key properties (see

Figs 9,12): (i) the taxel receptive fields (areas sensitive to

contact) are broader than the taxel spacing; (ii) the taxel con-

tact sensitivity peaks in the center of the taxel and decreases

gradually away from that peak; (iii) the taxels have good

contact pressure resolution, as evident in the smooth change in

contact sensitivity across the receptive field. The importance of

these properties is that a contact against the tactile sensor will

be encoded across multiple taxels, with pressure readings that

change smoothly and gradually with small changes in contact

location. In consequence, location is represented within the

contact data at a finer precision than the taxel spacing, i.e. the

sensor resolution, which appropriate computational methods

can utilize to attain hyperacuity.

We are aware of other tactile sensors with similar response

properties, which may also have the potential for localization

hyperacuity. For example, the TakkTile is a strip of MEMS

barometer chips covered in rubber, having broad overlapping

receptive fields with sensitivity to contact location that de-

creases from a central peak [31, Fig. 8]; another MEMS-

based sensor designed for a robotic finger has similar response

characteristics [32] and is similarly likely to attain hyperacuity.
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A biomimetic fingertip with soft tissue, bone and embedded

force sensors also has broad, overlapping receptive fields [33,

Fig. 9]. Although we have not seen their response characteris-

tics, we expect various taxel-based tactile sensors should also

have appropriate receptive field properties for hyperacuity; for

example, the Biotac [34], DLR artificial skin [35] and the

capacitive tactile sensors on the Schunk and Barrett hands.

For touch-based applications in future robotics, our ex-

pectation is that sensor optimization will be a sophisticated

procedure, requiring modeling and empirical studies to cus-

tomize the design to suit a robot’s intended use. Multiple

design characteristics can impact on the sensor performance,

including taxel density, spatial layout, pressure sensitivity and

receptive field size or shape. These properties will depend

non-trivially on the morphology of the sensor and its material

construction; for example, a stiff coating would distribute force

over a large area, giving broad but insensitive receptive fields.

We expect sensor optimization will be a complicated procedure

(because of the large number of variables), although some

recent developments in robot touch could ease this process.

In particular, 3D-printed tactile sensors [36], [37] could accel-

erate the design-testing cycle for sensor customization, while

finite element modeling of tactile sensors has the potential to

enable a primarily simulation-based design process [38], [39].

B. Computational method for perception

The tactile perception method is also crucial for attaining

hyperacuity, because it must interpolate between multiple tax-

els to localize at a finer acuity than the taxel spacing. We used

a statistical method of Bayesian perception that is grounded

in optimal decision making and perceptual neuroscience [20]–

[22], [28]. Two aspects of Bayesian perception help it attain

hyperacuity. First, the method is based on sequential analy-

sis methods for optimal decision making under uncertainty,

leading to an optimal tradeoff between the costs of making

localization errors and gathering more data [29]. Second, our

implementation makes a simplifying assumption of statistical

independence between sensor readings to fuse measurements

in a simple yet statistically robust manner. Thus, evidence from

distinct taxels is fused to estimate contact location over many

taxels and evidence from distinct tactile contacts is fused to

further improve location acuity.

Algorithmic methods for hyperacuity have been confined

mainly to image processing (see background in Sec. II-B),

where it is known as geometrical superresolution [13], [16].

There are two main applications: deblurring, achieved with

signal processing methods such as inverse spatial filtering,

and sub-pixel localization, achieved with statistical methods

that estimate the centroid of a light distribution. The latter

techniques relate more closely to our approach; for example,

superresolution fluorescence microscopy combines evidence

for the location of fluorescent proteins over many photons (and

was the Nature 2008 ‘Method of the Year’ [18]).

Image processing methods are beginning to be adopted in

robot touch for sensors with large taxel arrays. Ho et al locate

the position and orientation of objects using image moments

over a 44×44 taxel array [40], and we would expect such

methods to achieve hyperacuity with suitable stimuli; indeed,

related methods for tactile servoing with a 16×16 array can

reach sub-taxel resolution [41, Fig. 2]. It is important to

contrast such image-based tactile sensing methods, which rely

on large numbers of activated taxels, with the perception-based

methods applied here, which also apply to sensors with few

taxels (e.g. 12 taxels for the tactile fingertip). The suitability

of these methods and their relation to sensor design is an open

research topic, but we expect a key consideration will be their

integration with active control during perception.

C. Active perception

The final factor necessary for robust tactile hyperacuity is to

use active control during perception. Our Bayesian perception

method extends naturally to active perception by moving the

sensor with a control strategy based on evidence received

during the localization decision. Benefits of active Bayesian

perception include: (i) an order-of magnitude improvement in

acuity over passive methods [8], [25], [27]; (ii) robust per-

ception in unstructured environments [25]; and (iii) relation to

a general framework for simultaneous object localization and

identification [8]. In consequence, a thirty-fold improvement

in perceptual acuity (from 4 mm to 0.12 mm) is obtained using

an active control policy that centers the tactile fingertip on the

rod, enabling robust hyperacuity.

To the best of our knowledge, the connection between

active perception and hyperacuity has not been emphasized

in the biology or engineering literatures. The main point is

that perceptual acuity depends on how a sensor interacts with

an object, which must thus be actively controlled to attain

the best acuity. For example, in robot touch, the perceptual

acuity is known to vary strongly with contact location [4],

[8], [25], and thus passive perception performs badly when

that contact location cannot be set a priori. This dependence

between acuity and control is a general aspect of biological and

artificial perception [42], from eye movements that perform

visual tasks such as smooth pursuit, to actively controlling our

fingers and hands for exploring and recognizing objects [43].

VI. CONCLUSION

In this paper, we proposed that hyperacuity should be

a central consideration for the design and application of

artificial tactile sensors, just as it a fundamental aspect of

biological perception. Tactile hyperacuity depends on three

key factors: sensor design, to have multiple, overlapping,

broad but sensitive receptive fields; perceptual inference that

interpolates between these overlapping receptors to perceive at

sub-taxel acuity; and active perception, to ensure robustness

of the perception in unstructured environments. We envisage

that these principles could become central to the construction

and deployment of cheap yet high-acuity tactile sensors, which

could be individually customized so that their design optimally

matches their intended application in robot touch.
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