
This is a repository copy of Fast depth-based subgraph kernels for unattributed graphs.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/92418/

Version: Accepted Version

Article:

Bai, Lu and Hancock, Edwin R orcid.org/0000-0003-4496-2028 (2016) Fast depth-based 
subgraph kernels for unattributed graphs. Pattern Recognition. pp. 233-245. ISSN 0031-
3203 

https://doi.org/10.1016/j.patcog.2015.08.006

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse 

Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless 
indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by 
national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of 
the full text version. This is indicated by the licence information on the White Rose Research Online record 
for the item. 

Takedown 

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by 
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request. 



                             Elsevier Editorial System(tm) for Pattern Recognition 
                                  Manuscript Draft 
 
 
Manuscript Number: PR-D-14-00925R1 
 
Title: Fast Depth-Based Subgraph Kernels for Unattributed Graphs  
 
Article Type: Full Length Article 
 
Keywords: Depth-based representations 
 
entropy 
 
graph kernels 
 
the Jensen-Shannon divergence 
 
graph isomorphism tests 
 
Corresponding Author: Mr. Lu Bai,  
 
Corresponding Author's Institution: University of York 
 
First Author: Lu Bai 
 
Order of Authors: Lu Bai; Edwin Hancock 
 
Abstract: In this paper, we investigate two fast subgraph kernels based on a depth-based 
representation of graph-structure. Both methods gauge 
depth information through a family of $K$-layer expansion subgraphs rooted at a vertex 
\cite{Escolano-PhyRev2012}. The first method commences by computing a 
centroid-based complexity trace for each graph, using a depth-based representation rooted at the 
centroid vertex that has  minimum  shortest path length variance to the remaining vertices 
\cite{BAI2014PatternRecognition}. 
This subgraph kernel is computed by measuring the Jensen-Shannon divergence 
between centroid-based complexity entropy  traces. The second method, on the other hand, computes 
a depth-based 
representation around each vertex in turn. The corresponding subgraph kernel is computed using 
isomorphisms tests to compare the depth-based representation rooted at each vertex in turn. For 
graphs with $n$ vertices, the time complexities for the two new kernels are $O(n^2)$ and $O(n^3)$ 
respectively, in contrast to $O(n^6)$ for the classic G\"{a}rtner graph kernel 
\cite{DBLP:conf/colt/GartnerFW03}. Key to achieving this efficiency is that we compute the required 
Shannon entropy of the random walk for our kernels with $O(n^2)$ operations. This computational 
strategy enables our subgraph kernels to easily scale up to graphs of reasonably large sizes and thus 
overcome the size limits arising in state-of-the-art graph kernels. Experiments on standard 
bioinformatics and computer vision graph datasets demonstrate the effectiveness and efficiency of our 
new subgraph kernels. 
 
 
 
 



Fast Depth-Based Subgraph Kernels for Unattributed Graphs 

 

Lu Bai (1), Edwin R. Hancock (2) 

 

(1) School of Information, Central University of Finance and Economics, Beijing, China. 

 

(2) Department of Computer Science, The University of York, York YO10 5DD, UK 

{lu,erh}@cs.york.ac.uk 

 

 

 

Edwin R. Hancock is supported by a Royal Society Wolfson Research Merit Award. 

Title Page



We investigate two fast subgraph kernels based on a depth-based representation. 

 

Our kernels gauge 

 depth information rooted at a vertex for a graph. 

 

The time complexities for the two kernels are O(n^2) and O(n^3) respectively. 

  

We evaluate the performance of our subgraph kernels on standard graph datasets. 

 

We demonstrate the effectiveness of the proposed subgraph kernels. 

 

*Highlights (for review)



Acknowledgement 
Dear reviewers 

 

Thank you very much for your constructive suggestions. These have helped us to 

improve the paper. Below we describe our responses to each of the suggestions. 

 

Best wishes 

 

Authors  

Revisions 
 

Reviewer # 3 

The reviewer would like to make sure that this paper will be a significant step forward 

comparing to the previous contributions and has some suggestions. 

 

Comment 1: More diverse data sets should be included in the evaluation. NC I1, NC I109 PPIs, 

PTC (MR) that were used in "Attributed Graph kernels using the Jensen-Tsallis q-Differences" 

should be added. Authors are also requested to include all sets that they used previously to 

validate methods in their past publications. 

 

Our revision: We have included some other datasets used in our previous paper in the revised 

manuscript, e.g., the NCI1, NCI109, PPIs, COIL5, Shock, CATH2, PTC(MR) and GatorBait 

dataset. See details in Section 5.1 and 5.2. 

 

Comment 2: Along with the expanded set of data for testing, more methods should be added for 

comparison. The reviewer is interested in the inclusion of JT1 and JT2 or even more methods that 

authors recently published. The reason is that the results for JT1 and JT2 that listed in Table 2 of 

the paper mentioned above yield accuracies of 85.1% and 85.5% for MUTAG data set, whereas 

the JSSK and ISK proposed in this manuscript yield lower, namely: 83.77% and 84.66% 

accuracies for the same data set. The accuracy for JT1 and JT2 are also above 85 for NC I1 and 

NC I109 data sets, but these data sets were not included in this manuscript. Since accuracy 

measures for JSSK and ISK are lower than 83% for the other data sets listed in Tab.2, the reviewer 

does not understand why JSSK and ISK are proposed as new and perhaps more accurate methods 

that those previously proposed by the authors. 

 

Our revision: We have used our previous Jensen-Tsallis kernel (ECML-PKDD, 2014) and the 

quantum Jensen-Shannon kernel (Pattern Recognition, 2015) for comparisons. The evaluation 

results can be found in Table 2 and Table 3. Moreover, discussion of the new evaluation can be 

found in Section 5.2-"Discussions and Analysis".  

 

Comment 3: After all methods are tested using an expanded dataset; a statistical analysis should 

be performed to single out the best method. Right now, the authors use the average accuracy as a 

*Response to Reviewers



performance measure. However, the average accuracy itself may not be sufficient since multiple 

methods are tested on multiple sets of data. In addition, the performance of each method has a 

spread. Since the average accuracy of JSSK is not always higher than the accuracy of ISK (Tab.2 

in the manuscript) a statistical analysis is necessary. 

 

Our revision: We not only provide the average classification accuracy (through 10-fold cross 

validation) but also provide the standard error of each kernel on each dataset. See details in Table 

2. Moreover, through Table 2, we observe that different kernels perform differently on different 

datasets. To demonstrate the best kernel over all datasets, for each kernel, we also compute the 

average classification accuracy (associated with standard error) from the accuracies over all 

datasets. Details can be found in Section 5.2-" Statistical Analysis". We demonstrate that our ISK 

kernel is the best kernel in terms of either the classification accuracy and the performance stability 

(based on the standard error) over all datasets. 

 

Reviewer # 4 

The paper is well-written and provides a strong contribution. However, several issues should be 

addressed in a revision: 

 

Comment 1: The kernel captures structural properties and is focused on unattributed graphs. A 

possible extension to attributed graphs is mentioned in the conclusions. To better embed the 

contribution into the literature, the attributed case should be discussed in the introduction together 

with available kernels / dissimilarity measures. 

 

Our revision: We add some new contents of R-convolution kernels on attributed graphs, see 

details in the second paragraph of Section 1.1. 

 

Comment 2: Citations are missing for the bioinformatics graph databases (MUTAG, D&D, 

ENZYMES). Furthermore, stateof-the-art classification results should be indicated for the 

bioinformatics as well as the computer vision databases in order to better evaluate the impact of 

the proposed kernels. 

 

Our revision: We have fixed the citation problem for the bioinformatics graph datasets. 

 

Comment 3: In Section 4.4 it is stated that the ISK is equivalent to the all subgraph kernel. 

However, ISK considers special types of subgraphs (centred around a vertex) and it seems 

possible that the same subgraph is counted several times in equation 22 (centred around different 

vertices). On the other hand, the all subgraph kernel considers arbitrary subgraphs and counts each 

subgraph pair only once. Please clarify. 

 

Our revision: We have improve the description of the relationship between the two kernels more 

precise. For an instance, we replace the sentence "The entropic isomorphism kernel is equivalent 

to the all subgraph kernel" as " We show the equivalence between the entropic isomorphism 

kernel and the all subgraph kernel. " (see details in the second paragraph of Section 4.4). 

Moreover, in the last paragraph, we also emphasize the difference between the two kernels. 



 

Comment 4: Minor issues: 

- page 3: "alternative graph kernels that Specifically from the R-convolution framework" 

(specifically) 

- equation 3: "P_G(V)" => "P_G(v)" 

- equations 7 and 9: "(u,v) subset N^K" => "(u,v) subset N^K times N^K" 

- below equation 13: "P=(p_1,…,p_M)" and "Q=(q_1,…,q_M)" seem to have a wrong cardinality 
M 

- page 21: "the average of the geodesic distances to the all other points" (to all other) 

- page 24: "Moreover, the efficiency of the JSSK kernel is also slower" => ISK kernel 

 

Our revision: We have fixed the mentioned typos in the manuscript. 



Fast Depth-Based Subgraph Kernels for Unattributed Graphs

Lu Bai1∗, Edwin R. Hancock2∗∗

1 School of Information, Central University of Finance and Economics, Beijing, China.
2 the Department of Computer Science, University of York, York, UK.

Abstract

In this paper, we investigate two fast subgraph kernels based on a depth-based representation of

graph-structure. Both methods gauge depth information through a family of K-layer expansion

subgraphs rooted at a vertex [1]. The first method commences by computing a centroid-based

complexity trace for each graph, using a depth-based representation rooted at the centroid vertex

that has minimum shortest path length variance to the remaining vertices [2]. This subgraph kernel

is computed by measuring the Jensen-Shannon divergence between centroid-based complexity en-

tropy traces. The second method, on the other hand, computes a depth-based representation around

each vertex in turn. The corresponding subgraph kernel is computed using isomorphisms tests to

compare the depth-based representation rooted at each vertex in turn. For graphs with n vertices,

the time complexities for the two new kernels are O(n2) and O(n3) respectively, in contrast to
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1. Introduction

There has recently been an increasing interest in learning and mining data using graph struc-

tures. Application include a) view-based object recognition [4], b) bioinformatics [5, 6] (e.g., clas-

sifying proteins into different families, classifying tissue samples), and c) social networks (e.g.,

classifying users based on their feeds on Twitter, Facebook, etc.). One challenge arising in clas-

sifying graphs is how to convert the discrete graph structures into numeric features or efficiently

compute similarities between graphs for classification. One way to address this problem is to use

graph kernels.

1.1. Graph Kernels

Graph kernels can characterize graph features in an explicit high dimensional space and thus

have the capability of preserving graph structures. A number of graph kernels have been defined

in the literature. Generally speaking, most existing graph kernels are usually formulated in terms

of instances of the R-convolution kernel family developed by Haussler [5]. R-convolution is a

generic way for defining graph kernels based on comparing all pairs of decomposed subgraphs.

Specifically, all available graph decompositions can be used to define a kernel, e.g., the graph

kernel based on comparing all pairs of decomposed a) walks, b) paths and c) restricted subgraph

or subtree structures. With this scenario, Kashima et al. [7] have proposed a random walk kernel

by comparing pairs of isomorphic random walks in a pair of graphs. The main drawback of

the random walk kernel is the notorious tottering problem. This occurs when a random walk

on a graph moves in one direction and then immediately returns to the starting position through

the same vertices and edges possibly multiple times. To overcome this shortcoming, Borgwardt

et al. [8] have proposed a shortest path kernel by counting the numbers of pairwise shortest

paths having the same length in a pair of graphs. Aziz et al. [9] have defined a backtrackless

kernel using the cycles identified by the Ihara zeta function [10] in a pair of graphs. The method

overcomes the tottering problem using backtrackless substructures, i.e., the shortest paths or cycles

in graphs. Unfortunately, shortest paths and cycles are structurally simple, and reflect limited

topology information. Moreover, the computational efficiency of the two kernels also tends to be

burdensome for graphs of large sizes, e.g., a graph having more than one thousand vertices.
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To address the problem of inefficiency, Shervashidze et al. [5] have developed a fast subtree

kernel by comparing pairs of subtrees identified by the Weisfeiler-Lehman (WL) algorithm. Unfor-

tunately, like the random walk kernel, the WL isomorphism based subtree kernel also suffers from

tottering. This is because the subtrees identified by the WL algorithm may also include several

copies of the same pairwise vertices connected by the same edge. Furthermore, Costa and Grave

[11] have defined a neighborhood subgraph pairwise distance kernel by counting the number of

pairwise isomorphic neighborhood subgraphs. Both the WL subtree and neighborhood subgraph

kernels can be computed in polynomial time. Some alternative graph kernels that specifically from

the R-convolution framework include a) the segmentation graph kernel developed by Harchaoui

and Bach [12], b) the point cloud kernel developed by Bach [13], c) the subgraph matching kernel

developed by Kriege and Mutzel [14], and d) the (hyper)graph kernel based on directed subtree

isomorphism tests developed and described in our previous work [15]. Moreover, it is impor-

tant to note that, some of the aforementioned R-convolution kernels can accommodate attributed

graphs too (i.e., these kernels can accommodate the attributed information residing on the vertices

or edges). They can thus capture more characteristics that encapsulate label information on the

vertices and edges [14]. Examples include the WL subtree kernel [5], the shortest path kernel [8],

the random walk kernel [7], the subgraph matching kernel [14], and the (hyper)graph kernel [15].

One significant drawback of R-convolution kernels is that they compromise to use substruc-

tures of limited size, which only roughly capture topological arrangements of a graph. Though

this strategy avoids the notorious inefficiency of R-convolution kernels when using large substruc-

tures, the limited size can only reflect restricted topological characteristics of a graph. Moreover,

some R-convolution kernels still require significant computational overheads for large graphs (e.g.,

graphs having thousands of vertices).

An alternative way to construct a kernel is to measure the mutual information between pairs of

graphs using the classical Jensen-Shannon divergence. In probability theory, the Jensen-Shannon

divergence is a dissimilarity measure between probability distributions in terms of the nonex-

tensive entropy difference associated with the probability distributions [16]. It is not only sym-

metric but also always well defined and bounded. In our previous work [4], we have used the

classical Jensen-Shannon divergence to define a Jensen-Shannon kernel for graphs. Here, the
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Jensen-Shannon divergence between a pair of graphs is defined in terms of the entropy difference

between the entropy of a composite graph structure and that of the individual graphs. Unlike the

R-convolution kernels, the entropy associated with a probability distribution of an individual graph

can be computed without decomposing the graph into substructures. Therefore, the computation

of the Jensen-Shannon graph kernel between a pair of graphs avoids burdensome (dis)similarity

measurements involved in comparing all substructure pairs. Unfortunately, the existing Jensen-

Shannon graph kernel can only capture the global similarity between a pair of graphs, and cannot

distinguish the basis of the interior topological information. Furthermore, the required entropy

that must be calculated for the composition of a pair of graphs is obtained from the product graph.

The vertex number of the product graph is the multiple of the vertex numbers of the pair of graphs

being compared. As a result, the entropy difference is dominated by that of the product graph

when the graphs being compared are large.

To overcome the shortcomings of existing graph kernels, in this paper we aim to develop novel

and fast subgraph kernels. Our new kernels are based on a rapidly computed depth-based graph

representation.

1.2. Depth-Based Representations

Depth-based representations have been widely used for characterizing undirected graphs [17].

One approach to computing a depth-based representation for a graph is based on an information

content flow through a family of K-layer expansion subgraphs [1]. These subgraphs can be located

from a vertex and have a maximum topology distance K from the vertex to the remaining vertices.

Following this approach, Escolano et al. [1] have shown how to compute the thermodynamic based

depth complexity for a graph. This is done by measuring the heat flow complexities of expansion

subgraphs around the vertices of the graph. Unfortunately, the heat flow complexity measure for

a (sub)graph having n vertices requires time complexity O(n5). As a result, the thermodynamic

depth complexity measure cannot be efficiently computed. To overcome this shortcoming, Bai and

Hancock [2, 18, 19] have developed a centroid-based complexity trace from a centroid vertex that

has the minimum variance of shortest path lengths to the remaining vertices. This depth-based

representation is computed around the centroid vertex, and decomposes a graph into a family of
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K-layer centroid expansion subgraphs that has a greatest shortest path length K rooted from the

centroid vertex. The resulting complexity trace vector is computed by measuring the entropies

of the expansion subgraphs. The centroid based method can be computed efficiently. The reason

for this is that the entropy based complexity measures are computed on a small set of expansion

subgraphs rooted at the centroid vertex, and can be computed in polynomial time.

Unfortunately, the centroid-based complexity trace may generate information loss for a graph

structure. This is because the complexity trace vector of a graph can be viewed as an embedding

vector, embedding a graph into a vector tends to approximate the structural correlations into a low

dimensional space. One way to overcome the problem is to kernelize the embedding vectors (i.e.,

the complexity trace vectors) of graphs as a kernel function that represents graph structure in a

high dimensional space and thus better preserves graph structure. Furthermore, since the centroid

vertex is identified through a global analysis of the shortest path length distribution, the centroid

expansion subgraphs provide a fine representation of graph structure. As a result, the centroid-

based complexity trace and its required centroid expansion subgraphs offer us a potential way of

defining a subgraph kernel. Unfortunately, the subgraphs of increasing layer size K tend to be the

global graph (i.e., the largest layer subgraph is the graph itself), and straightforwardly measuring

the (dis)similarity between wholes graphs usually requires burdensome computations.

1.3. Contributions

The aim of this paper is to develop fast subgraph kernels, that can not only be efficiently

computed for large graphs but can also capture rich topological arrangement information contained

within graphs. To this end, we investigate how to kernelize a depth-based representation of graphs.

The contributions of this paper are twofold.

First, we develop a new depth-based subgraph kernel, namely the Jensen-Shannon subgraph

kernel. This is done by measuring the Jensen-Shannon divergence between depth-based represen-

tations rooted at the centroid vertices [2]. To this end, we commence by computing the centroid-

based complexity trace developed in our previous work and described in [2, 18, 19]. The advantage

of using the complexity trace to characterize graphs is that it not only reflects dominant depth com-

plexity information around the centroid vertex for a graph but also represents the graph in a high
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dimensional space. This is because the centroid-based complexity trace for a graph encapsulates

information flow from the centroid vertex to the global graph using entropy measures. By contrast,

existing entropy measures [21, 22, 23] or the depth complexity measures [17, 1] only provide us

with an uni-valued complexity measure for a graph. They thus reflect limited graph characteristics.

With a pair of graphs and their centroid-based complexity traces to hand, the Jensen-Shannon sub-

graph kernel can be computed by measuring the Jensen-Shannon divergence measure developed

in [4, 20] between the complexity traces, i.e., we compute the divergence between the entropies

for each pair of K-layer centroid expansion subgraphs derived from the centroid vertices. Further-

more, to overcome the afore mentioned problem arising in our previous Jensen-Shannon diver-

gence measure (i.e., the product graph of large size may dominant the kernel value), we propose

to compute the divergence for a pair of (sub)graphs based on the entropy difference between the

original (sub)graphs and a disjoint union formed by the (sub)graphs (i.e., a composite structure of

(sub)graphs). In other word, we use the disjoint union as the composite structure, instead of the

product graph. For a pair of (sub)graphs, the size of their disjoint union is only the sum of their

sizes. We thus overcome the shortcoming of dominating kernel value using the product graph of

large size. Compared to our previous centroid-based complexity traces [2, 18, 19] and the Jensen-

Shannon kernel [4, 20] for graphs, our new subgraph kernel has the following advantages. a)

Compared to the original centroid-based complexity traces that embed graphs into a vector space,

the new kernel is computed by kernelising the complexity trace vectors using the Jensen-Shannon

divergence. The new kernel can characterize graphs in a higher dimensional space and thus better

preserves graph structures. b) Compared to the Jensen-Shannon graph kernel, the new kernel com-

putes the Jensen-Shannon divergence between each pair of K-layer centroid expansion subgraphs

including the global graphs, i.e., the largest layer subgraphs are the global graphs themselves. By

contrast, the Jensen-Shannon graph kernel only computes the divergence measure between the

whole graphs. As a result, the new kernel overcomes the restriction of only capturing similarity

on whole graphs that arises in the Jensen-Shannon graph kernel [4].

Second, we develop another new depth-based subgraph kernel, namely the entropic isomor-

phism kernel, by entropically measuring the isomorphisms between the depth-based representa-

tions for all vertices. Specifically, we compute a depth-based representation around each vertex, by
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computing the entropies on the expansion subgraphs that are derived from that vertex. We compute

the resulting kernel by performing entropy-based isomorphism tests between pairwise expansion

subgraphs for a pair of graphs. Unlike our Jensen-Shannon subgraph kernel, the entropic isomor-

phism kernel computed from the depth-based representations reflects the depth information from

any vertex. By contrast, the Jensen-Shannon subgraph kernel only reflects the depth information

from the centroid vertex.

Both our Jensen-Shannon subgraph kernel and the entropic isomorphism kernel can be ef-

ficiently computed. One key reason for the efficiency is that the required Shannon entropy for

the depth-based representation only requires computational complexity that is quadratic in vertex

number (see details in Section 2.1). Furthermore, unlike the existing R-convolution kernels that

only reflect restricted topological characteristics, our new kernels also capture rich depth-based

topological arrangement information. We also demonstrate the relationship between the new en-

tropic isomorphism kernel and the all subgraph kernel. Thus, we give a theoretical reason for

the effectiveness of the new kernel. Finally, we empirically demonstrate the effectiveness and

efficiency for both the Jensen-Shannon subgraph kernel and the entropic isomorphism kernel on

standard graph datasets abstracted from computer vision and bioinformatics databases.

The remainder of this paper is organized as follows. Section 2 describes two depth-based

representations, namely the centroid depth-based complexity trace and the h-layer depth-based

representation. Section 3 defines the Jensen-Shannon subgraph kernel. Section 4 shows how the

all depth-based subgraph kernel is constructed. Section 5 provides our experimental evaluation.

Finally, Section 6 concludes our work.

2. Depth-Based Representations of Graphs

In this section, we introduce some preliminary concepts that will be used for developing the

work presented in this paper. To this end, we commence by introducing a fast Shannon entropy

measure for a graph associated with the steady state random walk. Second, we review how to

compute a depth-based representation for a graph from the centroid vertex, i.e., the centroid-based

complexity trace developed in [2], by measuring the Shannon entropy on a family of centroid ex-

pansion subgraphs derived from the centroid vertex. Compared to existing depth-based complexity
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measures [1, 17], the centroid-based complexity trace reflects richer complexity information in a

high dimensional space. However, it only reflects the depth complexity information from the cen-

troid vertex. To address this problem, we finally develop an alternative depth-based representation

for a graph from each vertex, namely the h-layer depth-based representation.

2.1. The Random Walk Shannon Graph Entropy

We commence by reviewing the fast Shannon entropy of a (sub)graph that has been developed

in [2], using the steady state random walk. The entropy will be used to compute the depth-based

representation. Assume an undirected graph G(V,E), where V is the set of vertices and E ⊆
V × V is the set of undirected edges. The neighbourhood N (v) of a vertex v ∈ V is the set of

vertices to which v is connected by an edge, and is defined as

N (v) = {u|(v, u) ∈ E}. (1)

The degree matrix of G(V,E) is a diagonal matrix D with elements

D(v, v) = d(v) = |N (v)|, (2)

where d(v) is the degree of vertex v. The probability of a steady state random walk visiting the

vertex v in G(V,E) is

PG(v) =
D(v, v)

∑

u∈V D(u, u)
(3)

The Shannon entropy of G(V,E) associated with the steady state random walk is

HS(G) = −
∑

v∈V

PG(v) logPG(v). (4)

Time Complexity: For a graph G(V,E) having n vertices, the Shannon entropy HS(G) requires

time complexity O(n2). This is because the degree matrix D of G(V,E) can be computed by

visiting all pairs of vertices. Thus the entropy HS(G) can be directly computed by visiting all the

n2 pairs of vertices.

The Shannon entropy associated with the steady state random walk allows us to efficiently cap-

ture characteristics of graphs, and can hence be used to develop a new fast entropy based similarity
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measure for graphs. By contrast, both the Shannon entropy associated with information function-

als developed by Dehmer in [21] and the von Neumann entropy developed by Anand et al. in [22]

and Passerini and Severini in [23] require time complexity O(n3), since they require the spectrum

decomposition of G(V,E). Furthermore, from Eq.(4), we observe that for the Shannon entropy

HS, vertices with large degree will dominate the entropy value. Thus, the proposed Shannon en-

tropy HS is suited to characterizing graphs possessing a group of highly interconnected vertices,

i.e., a dominant cluster.

2.2. The Centroid-Based Complexity Trace of A Graph

In this subsection, we review how to compute a centroid-based complexity trace for a graph

developed in [2]. We commence by identifying the centroid vertex of a graph. Given an undirected

graph G(V,E), the shortest path matrix SG can be computed by using Dijkstra’s algorithm [24].

Each element SG(v, u) of SG represents the shortest path length between vertices v and u. The

average-shortest-path vector SV for G(V,E) is a vector with the same vertex order as SG and has

element

SV (v) =
1

|V |
∑

u∈V

SG(v, u), (5)

which represents the average shortest path length from vertex v to the remaining vertices. The

centroid vertex v̂C for G(V,E) is the vertex that has the minimum variance of shortest path lengths

to the remaining vertices, and its vertex-index is

v̂C = argmin
v

∑

u∈V

[SG(v, u)− SV (v)]
2. (6)

Let NK
v̂C

be a subset of V satisfying NK
v̂C

= {u ∈ V | SG(v̂C , u) ≤ K}. For G(V,E) with the

centroid vertex v̂C , the K-layer centroid expansion subgraph GK(VK ; EK) is







VK = {u ∈ NK
v̂C
};

EK = {(u, v) ⊂ NK
v̂C

×NK
v̂C

| (u, v) ∈ E}.
(7)

The number of centroid expansion subgraphs is equal to the greatest length L of the shortest paths

from the centroid vertex to the remaining vertices of the graph G(V,E). The L-layer expansion
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Figure 1: The left-most figure shows the determination of K-layer centroid expansion subgraphs for a graph G(V,E)

which hold |N1

v̂C
| = 6 and |N2

v̂C
| = 10 vertices. While the middle and the right-most figure show the corresponding 1-

layer and 2-layer subgraphs regarding the centroid vertex v̂C , and are depicted by red-colored edges. In this example,

the vertices of different K-layer subgraphs regarding the centroid vertex v̂C are calculated by Eq.(6), and pairwise

vertices possess the same connection information in the original graph G(V,E).

subgraph is the graph G(V,E) itself. An example of the generation of a K-layer subgraph for a

graph G(V,E) is shown in Fig.1.

Definition 2.1 (Centroid-based complexity trace): Let the family of centroid expansion sub-

graphs for G(V,E) be {G1, · · · ,GK , · · · ,GL}. We measure the entropies of the subgraphs and

establish the centroid-based complexity trace DC for G(V,E) as

DBC(G) = {HS(G1), · · · , HS(GK), · · · , HS(GL)}, (8)

where · · · , HS(GK) is the Shannon entropy associated with the steady state random walk on the

K-layer centroid expansion subgraph GK . ✷

For a graph G(V,E) having n vertices, computing the centroid depth-based complexity trace

DC(G) of G(V,E) requires time complexity O(Ln2). This follows the definition in Eq.(7). For

a graph G(V,E), the Dijkstra’s algorithm requires time complexity O(n2). Computing the Shan-

non entropies of the L K-layer centroid expansion subgraphs requires time complexity O(Ln2).

Hence, the overall time complexity is O(Ln2).
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2.3. The h-Layer Depth-Based Representation of A Graph

In this subsection, we develop the centroid-based complexity trace further by defining a h-

layer depth-based representation around each vertex for a graph (i.e., a depth-based complexity

trace around each vertex). Unlike the centroid-based complexity trace that only reflects the depth

complexity information from the centroid vertex, for all vertices the h-layer depth-based represen-

tations reflect the depth complexity information from any vertex.

For an undirected graph G(V,E) and its shortest path matrix SG, let NK
v be a subset of V

satisfying NK
v = {u ∈ V | SG(v, u) ≤ K}. For G(V,E), the K-layer expansion subgraph

GK
v (VK

v ; EK
v ) around the vertex v is







VK
v = {u ∈ NK

v };
EK
v = {(u, v) ⊂ NK

v ×NK
v | (u, v) ∈ E}.

(9)

Let Lmax be the greatest length of the shortest paths from v to the remaining vertices of G(V,E).

If Lv ≥ Lmax, the Lv-layer expansion subgraph is G(V,E) itself.

Definition 2.2 (h-layer depth-based representation): For a graph G(V,E) and a vertex v ∈ V ,

the h-layer depth-based representation around the vertex v of G(V,E) is a h dimensional vector

DBh
G(v) = [HS(G1

v ), · · · , HS(GK
v ), · · · , HS(Gh

v )]
T (10)

where h (h ≤ Lv) is the length of the shortest paths from the vertex v to the remaining vertices in

G(V,E), GK
v (VK

v ; EK
v ) (K ≤ h) is the K-layer expansion subgraph of G(V,E) around the vertex

v, and HS(GK
v ) is the Shannon entropy of GK

v defined in Eq.(4). ✷

For a graph G(V,E) having n vertices, computing the h-layer depth-based representation

Dh
G(v) of G(V,E) around all vertices v ∈ V requires time complexity O(hn3). This follows

the definition in Eq.(9). For a graph G(V,E), the Dijkstra algorithm requires time complexity

O(n2). Computing the Shannon entropies of the h K-layer expansion subgraphs, which are de-

rived from v, requires time complexity O(hn2). Hence, the overall time complexity of computing

the h-layer depth-based representations for n vertices is O(hn3).
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3. A Jensen-Shannon Subgraph Kernel

In this section, we develop a fast subgraph kernel using the Jensen-Shannon divergence. We

commence by showing how to compute the Jensen-Shannon divergence for (sub)graphs. For a

pair of graphs, we develop the new subgraph kernel by measuring the Jensen-Shannon divergence

between the subgraph entropies from their centroid-based complexity traces.

3.1. A Composite Entropy of Graphs Through The Disjoint Union Graph

To compute the Jensen-Shannon divergence between a pair of graphs, we require a composite

structure for the graphs. In our previous work [4], we have used the product union to construct

the composite graph. Unfortunately, constructing a product graph is computationally burdensome.

Furthermore, the number of vertices for a product graph can be large. Thus, the product graph

will dominate the computation of the Jensen-Shannon divergence. To overcome this problem, we

propose to use a different strategy for constructing a composite structure Gp ⊕ Gq for a pair of

graphs Gp(Vp, Ep) and Gq(Vq, Eq). We turn to the disjoint union for constructing our composite

structure. According to [25], the disjoint union graph of Gp(Vp, Ep) and Gq(Vq, Eq) is

GDU = Gp ∪Gq = {Vp ∪ Vq, Ep ∪ Eq}. (11)

Through Eq.(11), we observe that the size of the disjoint union graph GDU for Gp(Vp, Ep) and

Gq(Vq, Eq) is |Vp|+ |Vq|. By contrast, the size of the product graph for Gp(Vp, Ep) and Gq(Vq, Eq)

is |Vp||Vq|. In other word, the size of the disjoint union graph for a pair of graphs is much smaller

than their product graph.

Let graphs Gp(Vp, Ep) and Gq(Vq, Eq) be the connected components of the disjoint union graph

GDU(VDU , EDU), then we compute the relative sizes of the connected components as

ρp =
|V (Gp)|
|V (GDU)|

=
|V (Gp)|

(|V (Gp)|+ |V (Gq)|)
.

and

ρq =
|V (Gq)|
|V (GDU)|

=
|V (Gq)|

(|V (Gp)|+ |V (Gq)|)
.

The entropy (i.e., the composite entropy) [26] of GDU is then

HS(GDU) = ρpHS(Gp) + ρqHS(Gq). (12)
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Here the entropy function HS is the Shannon entropy HS(·) defined in Eq.(4).

3.2. A Jensen-Shannon Divergence on Graphs

The classical Jensen-Shannon divergence is a nonextensive mutual information dissimilarity

measure defined on probability distributions. Assume M1
+(χ) is a set of probability distributions

where χ is a set provided with some σ − algebra of measurable subsets, the Jensen-Shannon

divergence DJS : M1
+(χ) × M1

+(χ) → R between the probability distributions P and Q, is

negative definite (nd) with the following function [23]:

DJS(P,Q) =
1

2
DKL(P ||M) +

1

2
DKL(Q||M)

=
1

2

∫

χ

ln(
dP

dM
)dP +

1

2

∫

χ

ln(
dQ

dM
)dQ, (13)

where M = P+Q

2
and DKL(P ||M) =

∫

χ
ln( dP

dM
)dP is the Kullback-Leibler divergence between

P and M . If χ is countable, i.e., P = (p1, p2, . . . , pN) and Q = (q1, q2, . . . , qN ) are two discrete

probability distributions, a more general definition is

DJS(P,Q) = HS(
P +Q

2
)− HS(P ) +HS(Q)

2
, (14)

where HS(P ) =
∑M

m=1 pm log pm is a Shannon entropy of the probability distribution P . We de-

fined a Jensen-Shannon divergence measure for a pair of graphs. Given a pair of graphs Gp(Vp, Eq)

and Gq(Vq, Eq), the Jensen-Shannon divergence for them is

DJS(Gp, Gq) = HS(Gp ⊕Gq)−
HS(Gp) +HS(Gq)

2
. (15)

where Gp ⊕Gq is the composite structure formed by the graphs Gp(Vp, Eq) and Gq(Vq, Eq). Here

we use the disjoint union defined in Sec.3.1 as the composite structure, and the entropy function

HS(·) is the Shannon entropy associated with the steady state random walk defined in Eq.(4).

With the Jesnen-Shannon divergence for graphs defined in Eq.(14) to hand, we define a Jensen-

Shannon diffusion graph kernel kJS: Gp ×Gq → R with the kernel value

kJS(Gp, Gq) = exp(−λDJS(Gp, Gq)). (16)
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where λ is a decay factor and satisfies 0 < λ ≤ 1. Note that, unlike the Jensen-Shannon divergence

which is a dissimilarity measure, the Jensen-Shannon diffusion kernel is an information theoretic

similarity measure of a pair of graphs.

Lemma 3.1. The Jensen-Shannon diffusion kernel defined in Eq.(16) is positive definite (pd).

Proof. This follows the definition in [27]. If a similarity or dissimilarity measure sG(Gp, Gq)

between a pair of graphs Gp andGq is symmetrical, then a diffusion kernel ks = exp(λsG(Gp, Gq))

or ks = exp(−λsG(Gp, Gq)) associated with the (dis)similarity measure sG(Gp, Gq) is pd. �

Note that, a positive definite graph kernel is often called a valid kernel. Clearly, imposing a

graph kernel to be positive definite restricts the broad class of similarity-based graph kernels into

a small group of valid kernels. However, it has been observed that the property of positive defi-

niteness is crucial for the definition of kernel machines and turns out to implicate a considerable

number of theoretical merits associated with graph kernels [28].

For a pair of graphs Gp(Vp, Ep) and Gq(Vq, Eq) each of which has n vertices, computing the

Jensen-Shannon diffusion kernel kJS(Gp, Gq) in Eq.(16) requires O(n2) operations. This is be-

cause both HS(Gp) and HS(Gp) require time complexity O(n2). The disjoint union graph entropy

HS(GDU) can be directly computed based on HS(Gp) and HS(Gp) according to Eq.(12). As a

result, the Jensen-Shannon diffusion kernel kJS(Gp, Gq) requires time complexity O(n2).

3.3. The Jensen-Shannon Subgraph Kernel

In this subsection, we develop a fast Jensen-Shannon subgraph kernel (kJS) as an infor-

mation theoretic decomposition kernel. The proposed kernel kJS is defined by kernelizing the

centroid-based graph complexity traces. This is done by measuring the information content sim-

ilarities for the K-layer subgraphs using the Jensen-Shannon divergence. For a graph G(V,E),

we commence by identifying the centroid vertex v̂C using Eq.(6). Based on v̂C we construct the

K-layer centroid expansion subgraph GK of G(V,E) using Eq.(7). As we increase K from 1

to the greatest shortest path length L with respect to the centroid vertex v̂C , we obtain a fam-

ily of centroid expansion subgraphs {G1, · · · ,GK , · · · ,GL}. We then measure the entropies of

the subgraphs and establish the depth-based representation DBC(G) of G(V,E) as DBC(G) =

{HS(G1), · · · , HS(GK), · · · , HS(GL)}. For a pair of graphs Gp(Vp, Ep) and Gq(Vq, Eq), we com-
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pute a similarity measure between their depth-based representations DBC(Gp) and DBC(Gq) as

follows

s(DBC(Gp), DBC(Gq)) =

L
∑

K=1

sH(H(Gp;K), H(Gq;K)). (17)

where sH (H(Gp;K), H(Gq;K)) is an entropy-based similarity measure for the K-layer subgraphs

Gp;K and Gq;K of Gp(Vp, Ep) and Gq(Vq, Eq). By using the Jensen-Shannon diffusion kernel

kJS(·, ·) in Eq.(16) as the entropy-based similarity measure sH(·, ·) in Eq.(17), the similarity be-

tween the depth-based representations DBC(Gp) and DBC(Gq) is formulated as the sum of the

diffusion kernel measures for all the pairs of K-layer subgraphs of Gp(Vp, Ep) and Gq(Vq, Eq).

Definition 3.1 (Jensen-Shannon subgraph kernel): Consider a pair of graphs Gp(Vp, Ep) and

Gq(Vq, Eq). The Jensen-Shannon subgraph kernel kJS(Gp, Gq) is defined as

kJS(Gp, Gq) = s(DBC(Gp), DBC(Gq)) =

L
∑

K=1

kJS(Gp;K ,Gq;K). (18)

where Gp;K(Vp;K , Ep;K) and Gq;K(Vq;K, Eq;K) are the K-layer centroid expansion subgraphs of

Gp(Vp, Ep) and Gq(Vq, Eq) rooted at their corresponding centroid vertices v̂p;C and v̂q;C , respec-

tively, and kJS(Gp;K ,Gq;K) is the Jensen-Shannon diffusion kernel between Gp;K(Vp;K, Ep;K) and

Gq;K(Vq;K , Eq;K). According to Eq.(12), Eq.(15) and Eq.(16), kJS(Gp;K,Gq;K) is

kJS(Gp;K ,Gq;K) = exp{ 2|Vp;K| − |Vq;K|
2|Vp;K|+ 2|Vq;K |

λH(Gp;K) +
2|Vq;K | − |Vp;K|
2|Vp;K|+ 2|Vq;K |

λH(Gq;K)}. (19)

Lemma 3.2. The Jensen-Shannon subgraph kernel kJS is pd.

Proof. For all {c1, · · · , cN} ⊆ R and any N graphs {G1, · · · , GN} we have the following expres-

sion

N
∑

i,j=1

cicjkJS(Gi, Gj) =
N
∑

i,j=1

cicj{
L
∑

K=1

kJS(Gi;K ,Gj;K)}

=

N
∑

i,j=1

cicjkJS(Gi;1,Gj;1)+, ...,+

N
∑

i,j=1

cicjkJS(Gi;L,Gj;L).

Here for all {c1, ..., cN} ⊆ R and any choice of the N subgraphs {G1;K , · · · ,GN ;K} which are the

K-layer centroid expansion subgraphs of the N graphs {G1, · · · , GN}, we have

N
∑

i,j=1

cicjkJS(Gi;K ,Gj;K) ≥ 0,
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since kJS is pd (Lemma 3.1). Therefore, we have

N
∑

i,j=1

cicjkJS(Gi, Gj) ≥ 0,

and the proposed Jensen-Shannon subgraph kernel is also pd. �

Note that, for a pair of graphs Gp(Vp, Ep) and Gq(Vq, Eq) with different sizes, the longest lay-

ers of their expansion subgraphs could be different. Suppose that v̂C;p and v̂C;q are the centroid

vertices of Gp(Vp, Ep) and Gq(Vq, Eq), and the lengths of the greatest shortest paths from the cen-

troid vertices v̂C;p and v̂C;q are Lp and Lq , respectively, where Lp > Lq. In practical computations,

to balance the layer difference between the largest centroid expansion subgraphs of the two graphs,

we use the graph Gq(Vq, Eq) as the (Lq +1)-layer to Lp-layer expansion subgraphs of Gq(Vq, Eq).

As a result, for a set of graphs {G1, . . . , Gs, . . . , Gl, . . . , GN} in which Gl has the greatest short-

est path from the centroid vertex, we use each graph Gs itself as the (Ls + 1)-layer to Ll-layer

expansion subgraphs.

3.4. Analysis of Computational Complexity

For a pair of graphs each of which has n vertices and L layer expansion subgraphs, the pro-

posed Jensen-Shannon subgraph kernel requires time complexity O(n2). This is because comput-

ing the centroid-based representations requires time complexity O(Ln2). Computing the Jensen-

Shannon diffusion kernel between the centroid depth-based representations requires time com-

plexity O(L). L usually tends to be 3
√
n. As a result, the overall time complexity is O(n2). This

indicates that for a pair of graphs the time complexity of the Jensen-Shannon subgraph kernel

tends to be quadratic in the vertex number of the larger graph. Thus, the new subgraph kernel can

be computed in a polynomial time.

3.5. Discussion

We make three observations regarding the Jensen-Shannon subgraph kernel. First our Jensen-

Shannon subgraph kernel is equivalent to the similarity measure between depth-based represen-

tations of graphs. Since a depth-based representation of a graph G(V,E) exhibits high dimensional

depth-based entropy complexity characteristics via the centroid expansion subgraphs {G1, · · · ,GK , · · · ,GL}.
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Our subgraph kernel kJS captures richer complexity based information than that obtained from

straightforwardly applying the Jensen-Shannon diffusion kernel to the original graphs. Second, the

Jensen-Shannon subgraph kernel only compares pairs of subgraphs with the same layer size K.

This avoids enumerating all pairs of subgraphs and renders the computation efficient. Third, for a

pair of graphs, the Jensen-Shannon subgraph kernel can also efficiently measure the similarity of

their L-layer subgraphs (i.e., the two graphs themselves). Hence, our Jensen-Shannon subgraph

kernel overcomes the subgraph size restriction which commonly arises in existing R-convolution

graph kernels.

4. An Entropic Isomorphism Kernel

In this section, we develop an entropic graph isomorphism kernel. We commence by defining

an entropy-based isomorphism test for a pair of K-layer expansion subgraphs. Then we develop

the new subgraph kernel by measuring the similarity measure between h-layer depth-based repre-

sentations for a pair of graphs using the new isomorphism test.

4.1. An Entropy-Based Isomorphism Test

For a graph G(V,E) and its vertices v and u, GK
v (VK

v ; EK
v ) and GK

u (VK
u ; EK

u ) are the cor-

responding K-layer expansion subgraphs around v and u defined by Eq.(9). We perform the

following isomorphism test on GK
v (VK

v ; EK
v ) and GK

u (VK
u ; EK

u ) as

I(GK
v ,GK

u ) =































1 if HS(GK
v ) = HS(GK

u ),

|VK
v | = |VK

u |, |EK
v | = |EK

u |,
and lv = lu = K,

0 otherwise.

(20)

where if I(GK
v ,GK

u ) = 1, then GK
v ≃ GK

u (i.e., GK
v and GK

u are isomorphic). Here, lv and lu are

respectively the longest shortest path lengths of GK
v and GK

u from the vertices v and u.

For a pair of graphs each of which has n vertices, the proposed entropy-based isomorphism

test requests time complexity O(n2). Because the test relies on computing the Shannon entropy

associated with the steady state random walk, it has time complexity O(n2). This indicates that

our entropy-based isomorphism test for a pair of graphs can be performed in a polynomial time.
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4.2. The Entropic Isomorphism Kernel

In this subsection, we develop an entropic isomorphism kernel (kh
ISK) using the entropy-

based isomorphism test between the K-layer expansion subgraphs. We commence by develop-

ing a similarity measure between a pair of h-layer depth-based representations. For a vertex vp

of a graph Gp(Vp, Ep) and a vertex vq of a graph Gq(Vq, Eq), we compute their h-layer depth-

based representations DBh
Gp
(vp) = {HS(G1

v;p), · · · , HS(GK
v;p), · · · , HS(Gh

v;p)} and DBh
Gq
(vq) =

{HS(G1
v;q), · · · , HS(GK

v;q), · · · , HS(Gh
v;q)} respectively. We compute the similarity measure be-

tween the h-layer depth-based representations DBh
Gp
(vp) and DBh

Gq
(vq) as

sI(DBh
Gp
(vp), DBh

Gq
(vq)) =

h
∑

K=1

I(GK
v;p,GK

v;q), (21)

where I(GK
v;p,GK

v;q) is the entropy-based isomorphism test defined in Eq.(20).

Definition 4.1 (Entropic Isomorphism kernel): Consider Gp(Vp, Ep) and Gq(Vq, Eq) as a pair of

sample graphs. The entropic isomorphism kernel kh
ISK using the h-layer depth-based representa-

tions of graphs is defined as

kh
ISK(Gp, Gq) =

∑

vp∈Vp

∑

vq∈Vq

sI(Dh
Gp
(vp), D

h
Gq
(vq))

=
∑

vp∈Vp

∑

vq∈Vq

h
∑

K=1

I(GK
v;p,GK

v;q). (22)

Intuitively, the entropic isomorphism kernel k
(h)
ISK is pd, because it counts the number of iso-

morphic expansion subgraphs between each pair of h-layer depth-based representations. In other

words, k
(h)
ISK can be seen as an example of the classical R-convolution graph kernels by counting

the number of isomorphic expansion subgraph pairs.

4.3. Analysis of Computational Complexity

For a pair of graphs each of which has n vertices, the entropic isomorphism kernel requires

time complexity O(n3). This is because computing the h-layer depth-based representations for

the graphs over all vertices requires time complexity O(hn3). Measuring the isomorphism based

similarity between their h-layer depth-based representations requires time complexity O(hn2).
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The layer h usually tends to be much smaller than n. As a result, the time complexity is O(n3).

This indicates that the entropic isomorphism kernel can also be computed in a polynomial time,

though this kernel may require more time complexity than the Jensen-Shannon subgraph kernel.

4.4. Relationship with the All Subgraph Kernel

In this subsection, we explore the relationship between our entropic isomorphism kernel and

the classical all subgraph kernel. Let Gp(Vp, Ep) and Gq(Vq, Eq) be two graphs, the all subgraph

kernel [3] is defined as

ksubgraph(Gp, Gq) =
∑

Sp⊑Gp

∑

Sq⊑Gq

δ(Sp, Sq), (23)

where

δ(Sp, Sq) =







1 if Sp ≃ Sq,

0 otherwise.
(24)

Here, δ is the Dirac kernel, that is, it is 1 if the arguments are equal and 0 otherwise (i.e., it is 1 if

a pair of subgraphs are isomorphic and 0 otherwise).

We show the equivalence between the entropic isomorphism kernel kh
ISK and the all subgraph

kernel ksubgraph. To this end, we consider a pair of graphs as Gp(Vp, Ep) and Gq(Vq, Eq). Let GK
vp

and GK
vq

be the expansion subgraph sets which contain all the K-layer (1 ≤ K ≤ h) expansion

subgraphs around the vertices vp ∈ Vp and vp ∈ Vq respectively. Based on the definition in Eq.(20),

for any pair of subgraphs Sp(Vp; Ep) and Sq(Vq; Eq) we rewrite Eq.(24) as

δK(v,u)(Sp, Sq) =











































1 if HS(Sp) = HS(Sq),

Sp ∈ GK
vp
, Sq ∈ GK

vq
,

|Vp| = |Vq|, |Ep| = |Eq|,
and lvp = lvq = K,

0 otherwise.

(25)

where lvp and lvq are the longest shortest path lengths of Sp and Sq from the vertices vp and vq

respectively, and HS(Sp) and HS(Sq) are the Shannon entropies associated with the steady state
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random walks on Sp and Sq respectively. Associated with Eq.(25), the kernel kh
ISK can be re-

defined by re-writing Eq.(23) as

kh
ISK(Gp, Gq) = ksubgraph(Gp, Gq)

=
h

∑

K=1

∑

vp∈Vp

∑

vq∈Vq

∑

Sp∈GK
vp

∑

Sq∈GK
vq

δK(vp,vq)(Sp, Sq). (26)

Through Eq.(23) and Eq.(26), we observe that both the kernels ksubgraph and kh
ISK need to

identify all pairs of isomorphic subgraphs. Moreover, for the kernels ksubgraph and kh
ISK each iso-

morphic subgraph pair adds an unit value to the kernel value. Thus, both the entropic isomorphism

kernel and the all subgraph kernel count the number of isomorphic subgraph pairs and thus have

equivalence.

Furthermore, comparing the entropic isomorphism kernel and the all subgraph kernel, we also

observe three differences that conclude the advantage of the entropic isomorphism kernel. a) First,

for the entropic isomorphism kernel we can efficiently measure the isomorphism for a pair of

subgraphs of large size. The reason for this is that the computational complexity of the Shannon

entropy associated with the steady state random walk is quadratic in the (sub)graph size. While for

the all subgraph kernel, measuring the isomorphism between a pair of subgraphs usually requires

burdensome computation. b) Second, the entropic isomorphism kernel overcomes the NP-hard

problem of measuring all pairs of subgraphs that arise in the all subgraph kernel. c) Third, for the

entropic isomorphism kernel, only the pair of expansion subgraphs having the same shortest paths

of greatest lengths around their rooted vertices are evaluated for measuring isomorphism. In other

words, only a pair of expansion subgraphs having the same layers around the rooted vertices can

be evaluated. On the other hand, the all subgraph kernel roughly or arbitrarily evaluates a pair

of subgraphs and counts the isomorphic subgraph pairs. Hence, the entropic isomorphism kernel

also encapsulates location information between pairs of subgraphs, and this is ignored by the all

subgraph kernel.
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5. Experimental Results

In this section, we empirically evaluate the performance of our new subgraph kernels. Our

experimental evaluation consists of two parts. First, we test our subgraph kernels on the graph

classification problem using standard graph datasets. These graphs are abstracted from bioinfor-

matics and computer vision databases. Moreover, we also compare our new subgraph kernels with

several state-of-the-art methods. Second, we evaluate the computational efficiency of our new

subgraph kernels.

5.1. Graph Datasets

We demonstrate the performance of our new subgraph kernels on six standard graph based

datasets abstracted from problems formulated by bioinformatics and computer vision. These

datasets include: MUTAG, D&D, ENZYMES, BAR31, BSPHERE31, GEOD31, CATH2, NCI1,

NCI109, COIL5, Shock, PPIs, GATORBait and PTC(MR). More details concerning the datasets

are shown in Table.1.

MUTAG: The MUTAG dataset consists of graphs representing 188 chemical compounds, and here

the goal is to predict whether each compound possesses mutagenicity [33]. The maximum, mini-

mum and average number of vertices are 28, 10 and 17.93 respectively. As the vertices and edges

of each compound are labeled with a real number, we transform these graphs into unweighted

graphs.

D&D: The D&D dataset contains 1178 protein structures [34]. Each protein is represented by a

graph, in which the vertices are amino acids and two vertices are connected by an edge if they are

less than 6 Angstroms apart. The prediction task is to classify the protein structures into enzymes

and non-enzymes. The maximum, minimum and average number of vertices are 5748, 30 and

284.32 respectively.

ENZYMES: The ENZYMES dataset consists of graphs representing protein tertiary structures,

and contains 600 enzymes from the BRENDA enzyme database [37]. In this case, the task is to

correctly assign each enzyme to one of the 6 EC top-level classes. The maximum, minimum and

average number of vertices are 126, 2 and 32.63 respectively.
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BAR31, BSPHERE31 and GEOD31: The SHREC 3D Shape database consists of 15 classes and

20 individuals per class, that is 300 shapes [29]. This is a standard benchmark in 3D shape recog-

nition. From the SHREC 3D Shape database, we establish three graph datasets named BAR31,

BSPHERE31 and GEOD31 datasets through three mapping functions. These functions are a)

ERG barycenter: distance from the center of mass/barycenter, b) ERG bsphere: distance from the

center of the sphere that circumscribes the object, and c) ERG integral geodesic: the average of

the geodesic distances to all other points. Details of the three mapping function can be found in

[29]. The number of maximum, minimum and average vertices for the three datasets are a) 220,

41 and 95.42 (for BAR31), b) 227, 43 and 99.83 (for BSPHERE31), and c) 380, 29 and 57.42 (for

GEOD31), respectively.

CATH2: The CATH2 dataset has proteins in the same class (i.e., Mixed Alpha-Beta), architecture

(i.e., Alpha-Beta Barrel), and topology (i.e., TIM Barrel), but in different homology classes (i.e.,

Aldolase vs. Glycosidases) [2]. The CATH2 dataset is harder to classify, since the proteins in the

same topology class are structurally similar. The protein graphs are 10 times larger in size than

chemical compounds, with 200− 300 vertices. There is 190 testing graphs in the CATH2 dataset.

NCI1 and NCI109: The NCI1 and NCI109 datasets consist of graphs representing two balanced

subsets of datasets of chemical compounds screened for activity against non-small cell lung cancer

and ovarian cancer cell lines respectively [35, 36]. There are 4110 and 4127 graphs in NCI1 and

NCI109 respectively.

COIL5: We establish a COIL5 dataset from the COIL database. The COIL image database con-

sists of images of 100 3D objects. We use the images for the first five objects. For each object

we employ 72 images captured from different viewpoints. For each image we first extract corner

points using the Harris detector, and then establish Delaunay graphs based on the corner points

as vertices. As a result, in the dataset there are 5 classes of graphs, and each class has 72 testing

graphs. The number of maximum, minimum and average vertices for the dataset are 241, 72 and

144.90 respectively.

Shock: The Shock dataset consists of graphs from the Shock 2D shape database. Each graph is a

skeletal-based representation of the differential structure of the boundary of a 2D shape. There are

150 graphs divided into 10 classes. Each class contains 15 graphs.
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PPIs: The PPIs dataset consists of protein-protein interaction networks (PPIs). The graphs de-

scribe the interaction relationships between histidine kinase in different species of bacteria. His-

tidine kinase is a key protein in the development of signal transduction. If two proteins have

direct (physical) or indirect (functional) association, they are connected by an edge. There are 219

PPIs in this dataset and they are collected from 5 different kinds of bacteria (i.e., a) Aquifex4 and

thermotoga4 PPIs from Aquifex aelicus and Thermotoga maritima, b) Gram-Positive52 PPIs from

Staphylococcus aureus, c) Cyanobacteria73 PPIs from Anabaena variabilis, d) Proteobacteria40

PPIs from Acidovorax avenae, and e) Acidobacteria46 PPIs). Note that, unlike the experiment

in [38] that only uses the Proteobacteria40 and the Acidobacteria46 PPIs as the testing graphs, we

use all the PPIs as the testing graphs in this paper. As a result, the experimental results for some

kernels are different on the PPIs dataset.

GatorBait: GatorBait has 100 shapes representing fishes from 30 different classes [29]. We have

extracted Delaunay graphs from their shape quantization (Canny algorithm followed by contour

decimation). Since the classes are associated to fish genus and not to species, we find high intra-

class variability in many cases. Therefore, the database, though having only 100 samples, plays a

challenging role in testing graph classification. The number of maximum, minimum and average

vertices for the dataset are 545, 239 and 348.70.

PTC: The PTC (The Predictive Toxicology Challenge) dataset records the carcinogenicity of sev-

eral hundred chemical compounds for male rats (MR), female rats (FR), male mice (MM) and

female mice (FM) [11]. These graphs are very small (i.e., 20 − 30 vertices), and sparse (i.e.,

25 − 40 edges. We select the graphs of male rats (MR) for evaluation. There are 344 test graphs

in the MR class.

5.2. Experiments on Graph Datasets

We evaluate the performance of our proposed Jensen-Shannon subgraph kernel (JSSK) and

the entropic isomorphism kernel (ISK) on several standard graph datasets, and then compare them

with several alternative state of the art graph kernels. The graph kernels used for comparison in-

clude: 1) the backtraceless random walk kernel using the Ihara zeta function based cycles (BRWK)

[9], 2) the Weisfeiler-Lehman subtree kernel (WL) [5], 3) the shortest path graph kernel (SPGK)
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Table 1: Information of the Graph-based Datasets

Datasets MUTAG D&D ENZYMES BAR31 BSPHERE31 GEOD31 CATH2

Max # vertices 28 5748 126 220 227 380 568

Min # vertices 10 30 2 41 43 29 143

Mean # vertices 17.93 284.3 32.63 95.42 99.83 57.42 308.03

# graphs 188 1178 600 300 300 300 190

# classes 2 2 6 15 15 15 2

Datasets NCI1 NCI109 COIL5 Shock PPIs GatorBait PTC

Max # vertices 111 111 241 33 218 545 109

Min # vertices 3 4 72 4 3 239 2

Mean # vertices 29.87 29.68 144.90 13.16 109.63 348.70 25.60

# graphs 4110 4127 360 150 219 100 344

# classes 2 2 5 10 5 30 2

[8], 4) the graphlet count graph kernels with graphlet of size 3 (GCGK) [30], 5) the unaligned

quantum Jensen-Shannon kernel (UQJS) [38], and 6) the attributed graph kernel from the Jensen-

Tsallis q-differences associated with q = 2 (JTQK) [39]. For our ISK kernel, we set the largest

value of h as 10, i.e., at most 10 expansion subgraphs around a vertex are considered. For the

WL kernel and JTQK kernel, we set the largest iteration of the required vertex label strengthen-

ing methods (i.e., the WL algorithm for the WL subtree kernel and the tree-index method for the

JTQK kernel) as 10.

For each kernel, we compute the kernel matrix on each graph dataset. We perform 10-fold

cross-validation using the C-Support Vector Machine (C-SVM) Classification, and compute the

classification accuracies, using LIBSVM. We use nine samples for training and one for testing.

The C-SVMs classification was performed with its parameters optimized on each dataset. We

report the average classification accuracies and standard errors from the 10-fold cross-validation

for each kernel in Table.2. Furthermore, we also report the runtime of computing the kernel

matrices for each kernel in Table.3. Here, the runtime was measured under Matlab R2011a running

on a 2.5GHz Intel 2-Core processor (i.e., i5-3210m). Finally, note that, the JTQK, WL and SPGK

kernels are able to accommodate attributed graphs. In our experiments, we use the vertex degree

(not the original vertex labels) as the vertex label for the JTQK, WL and SPGK kernels. Thus,

the experimental results for these kernels on some datasets (i.e., the MUTAG, NCI1, NCI109,
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Table 2: Classification Accuracy (In % ± Standard Error) Comparisons

Datasets MUTAG D&D ENZYMES BAR31 BSPHERE31 GEOD31 CATH2

JSSK 83.77 ± .74 76.32 ± .46 24.38 ± .55 52.76 ± .47 43.33± .40 32.03± 1.02 75.42± .76

ISK 84.66 ± .56 75.32± .35 41.80 ± .43 62.80 ± .47 52.50 ± 47 39.76 ± .43 67.55 ± .67

JTQK 83.22 ± .87 74.35± .23 39.38 ± .76 60.56 ± .35 46.93± .61 40.10 ± .46 68.70± .69

UQJS 82.72 ± .44 −− 36.58 ± .46 30.80± .61 24.80± .61 23.73 ± .66 71.11± .88

BRWK 77.50 ± .75 −− 20.56 ± .35 −− −− −− −−

WL 82.05 ± .57 73.52± .20 38.41 ± .45 58.53 ± .53 42.10± .68 38.20 ± .68 67.36± .63

SPGK 83.38 ± .81 −− 28.55 ± .42 55.73 ± .44 48.20± .76 38.40 ± .65 81.89 ± .63

GCGK 82.04 ± .39 74.70± .30 24.87 ± .22 22.96 ± .65 17.10± .60 15.30 ± .68 73.68 ± 1.09

Datasets NCI1 NI109 COIL5 Shock PPIs GatorBait PTC

JSSK 64.86 ± .24 65.72± .26 67.75± .67 37.66± .80 45.04 ± .80 9.20± .65 56.94± .43

ISK 76.21 ± .25 76.42± .24 38.30± .56 39.86± .68 79.47 ± .32 11.40 ± .52 60.26 ± .42

JTQK 81.23 ± .25 81.40 ± .26 30.86 ± .66 37.73± .72 88.47 ± .47 9.60± .87 57.47± .41

UQJS 69.09 ± .20 70.17 ± .23 70.11 ± .61 40.60 ± .92 65.61 ± .77 9.00± .89 56.70± .49

BRWK 60.34 ± .17 59.89± .15 14.63 ± .21 0.33± .37 −− −− 53.97± .31

WL 80.68 ± .27 80.72 ± .29 33.16± 1.01 36.40 ± 1.00 88.09 ± .41 10.10± .61 56.85± .52

SPGK 74.21 ± .30 73.89± .28 69.66 ± .52 37.88± .93 59.04 ± .44 9.00± .75 55.52± .46

GCGK 63.72 ± .12 62.33± .13 66.41 ± .63 26.93± .63 46.61 ± .47 8.40± .83 55.41± .59

D&D, ENZYMES, PTC datasets that have original label information residing on vertices) may be

different from those reported in [5, 8, 39].

Experimental Results: a) On the MUTAG dataset, the accuracy of our ISK kernel exceeds the

alternative kernels. The accuracy of our JSSK kernel is competitive to that of the ISK kernel,

but exceeds other kernels. b) On the D&D dataset, the accuracy of our JSSK kernel exceeds the

alternative kernels. The accuracy of our ISK kernel is competitive to that of the JSSK and WL

kernels, and exceeds other kernels. The SPGK and BRWK kernels cannot complete the required

computations on the D&D dataset, because the graphs in the dataset are very large (e.g., some

graphs have more than thousands vertices). c) On the ENZYMES, BAR31, BSPHERE31 and

GEOD31 datasets, the accuracies of our ISK kernel obviously exceed those of the remaining

kernels. The classification accuracies of our JSSK kernel are lower than those of the ISK, SPGK

and WL kernels, and exceed other kernels. The BRWK cannot finish the computation on the

BAR31, BSPHERE31 and GEOD31 datasets. This is because the BRWK kernel relies on the

cycle structures of the graphs. The graphs in these datasets are very sparse. As a result, the
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Table 3: CPU Runtime Comparisons

Datasets MUTAG D&D ENZYMES BAR31 BSPHERE31 GEOD31 CATH2

JSSK 1” 45” 1” 1” 1” 1” 4”

ISK 15” 3h28” 3′30” 3′50” 3′10” 2′40” 9′51”

JTQK 3” 23h39′ 30” 1′22” 1′35” 1′17” 39′14”

UQJS 20” > 1day 4′23” 10′30” 13′48” 8′49” 1h14′

BRWK 1” > 1day 13” −− −− −− > 1day

WL 3” 7′43” 21” 30” 25” 15” 53”

SPGK 1” > 1day 2” 11” 14” 11” 4′13”

GCGK 1” 1′17” 2” 2” 2” 2” 8”

Datasets NCI1 NCI109 COIL5 Shock PPIs GatorBait PTC

JSSK 52” 53” 3” 1” 2” 3” 4”

ISK 2h19′ 2h20” 9′55” 6” 1′40” 7” 59”

JTQK 10′50” 10′55” 7′19” 3” 1′43” 29′31” 8”

UQJS 2h55′ 2h55′ 18′20” 14” 3′24” 20′53” 1′46”

BRWK 6′49” 6′49” 16′46” 8” > 1day > 1day 29”

WL 2′31” 2′37” 1′5” 3” 20” 33” 9”

SPGK 16” 16” 31” 1” 22” 2′25” 1”

GCGK 5” 5” 4” 1” 4” 3” 1”

BRWK cannot capture any cycle in these datasets. d) On the CATH2 dataset, the accuracy of the

SPGK kernel exceeds that of the remaining kernels. The accuracy of our JSSK kernel exceeds that

of any kernel, excluding the SPGK kernel. Moreover, the accuracy of the ISK kernel exceeds that

of all the remaining kernels with the exception of the JSSK, JTQK, UQJS and SPGK kernels. e)

Overall, on the NCI1, NCI109, and PPIs datasets, the accuracies of the ISK kernel are only lower

than those of the JTQK and WL kernels, but outperform the remaining kernels. On the other hand,

the JSSK kernel only outperforms the GCGK and BRWK kernels. f) On the GatorBait and PTC

datasets, the accuracies of our ISK kernel exceed those of all the alternative kernels. On the other

hand, the accuracies of our JSSK kernel exceed or are competitive to those of all the alternative

kernels. g) On the Shock dataset, the accuracy of our ISK kernel is only a little lower than that of

the UQJS kernel, and exceeds that of all the remaining kernels. The accuracy of our JSSK kernel

exceeds or is competitive to that of all alternative kernels. h) Finally, on the COIL5 dataset, the

accuracy of our JSSK kernel exceeds or is competitive to that of all the alternative kernels, while

the accuracy of our ISK kernel only exceeds that of the JTQK, WL and BRWK kernels, and is
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lower than that of all the remaining kernels.

Discussion and Analysis: In terms of the runtime, it is clear that our JSSK kernel is the fastest

kernel. It can efficiently finish the computation on all datasets. The reasons for this efficiency

are twofold. First, for the JSSK kernel the required centroid depth-based representation (i.e.,

the centroid-based complexity trace) of a graph only encapsulates a small number of centroid

expansion subgraphs. In other words, the JSSK kernel only measures limited number of subgraphs.

Second, the associated Jensen-Shannon divergence measure between a pair of centroid expansion

subgraphs only requires computation of quadratic vertex number, even a pair of large global graphs

being compared. On the other hand, for our ISK kernel the efficiency is slower than that of the

JSSK kernel. The reason for this is that the ISK kernel considers the depth-based representations

(i.e., the h-layer depth-based representation around each vertex) rooted from all the vertices. By

contrast, the JSSK kernel only considers the depth-based representation derived from the centroid

vertex. As a result, the ISK kernel needs to measure more expansion subgraphs. Moreover, the

efficiency of the ISK kernel is also slower than the JTQK, UQJS, SPGK, WL and GCGK kernels

on some datasets, but it can still finish the computation in polynomial time. Unlike some kernels

(i.e., the SPGK and BRWK kernels) which can only finish the computation on datasets having

small graphs, our ISK kernel can also finish the computation on datasets having large graphs in

polynomial time. The reason for this is that the required Shannon entropy associated with the

steady state random walk for the ISK kernel can be efficiently computed (i.e., the computation is

quadratic vertex number). As a result, the required h-layer depth-based representations and the

entropy-based isomorphism test can be efficiently computed and measured, respectively.

In terms of the classification accuracies, our ISK kernel outperforms all the alternative kernels

on the MUTAG, ENZYMES, BAR31, BSPHERE31, GatorBait and PTC datasets. On the other

hand, on the PPIs, NCI1 and NCI109 datasets, the accuracies of our ISK kernel are only lower

than those of the JTQK and WL kernels, but are higher than those of other kernels. On the Shock

dataset, the accuracy of our ISK kernel is only a little lower than that of the UQJS kernel, but is

higher than that of other kernels. On the D&D dataset, the accuracy of our ISK kernel is only a

little lower than that of our JSSK kernel, but is higher than that of other kernels. The reason for this

effectiveness are fourfold. First, comparing to the JSSK kernel our ISK considers the depth-based
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representations around all the vertices, while our JSSK kernel only considers the depth-based

representation around the centroid vertex. As a result, the ISK kernel can capture more depth-based

features of a graph than the JSSK kernel. Second, comparing to the JTQK and WL kernels, our

ISK kernel overcomes the notorious tottering problem that arises in the JTQK and WL kernels that

require vertex label strengthening methods. This is because a subtree identified by the Weisfeiler-

Lehman algorithm for the WL kernel and the tree-index method for JTQK kernels may encapsulate

several same pairs of vertices connected by the same edges. By contrast, any expansion subgraph

used for the ISK kernel does not contain any repeated topology structure. Third, comparing to the

GCGK, SPGK and BRWK kernels our ISK kernel overcomes the simple substructure problem that

arises in the GCGK, SPGK and BRWK kernels. The sizes of the substructures used in the GCGK,

SPGK and BRWK kernels (i.e., the graphlet structures, shortest paths and cycles) are very small

(i.e., these substructures are structurally simple) and only reflect restrict topology information of

graphs. By contrast, the h-layer depth-based representation used in the ISK kernel tends to lead a

vertex to the global graph. As a result, the ISK kernel can reflect richer topology information of

graphs. Fourth, compared with the UQJS kernel, which only reflects global similarity information

between a pair of graphs, our ISK kernel can reflect richer interior topological information relying

on the h-layer depth-based representation. Overall, the performance of the JTQK and WL kernels

is competitive to that our ISK kernel. However, we also observe that all the three kernels do not

perform well on the COIL and CATH2 datasets. We observe that the vertex degrees in the graphs

used for testing are quite similar, when compared to the degree distributions for graphs from the

alternative datasets. This indicates that our ISK kernel, together with the JTQK and WL kernels

are not suitable for graphs having similar vertex degrees.

Comparisons with the Jensen-Shannon Diffusion Kernel: To take our study one step further,

we evaluate the performance of the Jensen-Shannon diffusion kernel (JSDK), that are integrated

in our JSSK kernel, on the graph datasets. The classification accuracies (including the standard

errors) and the CPU runtime are reported in Table.4 and Table.5 respectively. Through Table.5, we

observe that the runtime of the diffusion kernel is more efficient than that of the proposed subgraph

kernels, since it just compares a pair of graphs without establishing (centroid) expansion subgraphs

or comparing pairs of the subgraphs. On the challenge D&D dataset containing large graphs, the
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Table 4: Classification Accuracies (In % ± Standard Error) for JSDK

Datasets MUTAG D&D ENZYMES BAR31 BSPHERE31 GEOD31 CATH2

JSDK 83.11 ± .80 75.13± .31 20.81± .29 22.10 ± .37 19.00 ± .33 16.53 ± .34 72.26± .76

Datasets NCI1 NCI109 COIL5 Shock PPIs GatorBait PTC

JSDK 62.50± .33 63.00 ± .35 69.13± .79 21.73± .76 34.57 ± .59 7.8± .70 57.29± .41

Table 5: CPU Runtime for JSDK

Datasets MUTAG D&D ENZYMES BAR31 BSPHERE31 GEOD31 CATH2

JSDK 1” 1” 1” 1” 1” 1” 1”

Datasets NCI1 NCI109 COIL5 Shock PPIs GatorBait PTC

JSDK 1” 1” 1” 1” 1” 1” 1”

runtime of the diffusion kernel is only 1”. Unfortunately, the classification accuracies on all the

datasets tend to be lower than those of the JSSK and ISK kernels. The reason for this is that the

Jensen-Shannon diffusion kernel only measures the kernel between a pair of graphs. Compared to

the proposed JSSK kernel, the diffusion kernel is just a similarity measure of their L-layer centroid

expansion subgraphs, and is a restricted version of depth-based characterizations of a graph. As a

result, the diffusion kernel only captures limited topological arrangement information for graphs.

Statistical Analysis: Table 2 indicates that our ISK and JSSK kernels outperform or are competi-

tive to the alternative kernels. Moreover, we observe that there is no kernel that performs best on

any dataset. To establish which kernel is the best one over all different datasets, for each kernel

we also compute the average classification accuracy associated with its standard errors from the

accuracies for all the datasets. The results are shown in Table 6. Note that, some kernels cannot

complete the kernel matrix computation on some of the datasets. For these kernels, we perform the

statistical analysis on those datasets on which the computation can be completed. In terms of the

average classification accuracies, it is clear that our ISK kernel outperforms each of the alternative

kernel. Only the JTQK and WL kernels are competitive to our ISK kernel. Moreover, the standard

error for our ISK kernel is also lower than that of the JTQK and WL kernels. This indicates that

the performance of our ISK kernel is more stable than that of the JTQK and WL kernels over all

the datasets. On the other hand, the standard error of our ISK kernel is lower than most alternative

kernels excluding the GCGK and JSDK kernels, i.e., the performance stability of our ISK kernel
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Table 6: Statistical Analysis of All Kernels over All Datasets

Datasets JSSK ISK JTQK UQJS BRWK WL SPGK GCGK JSDK

Average Accuracy 52.51 57.59 57.14 50.07 41.03 56.15 55.02 45.74 44.64

Standard Error ±.82 ±.73 ±.85 ±.90 ±1.54 ±.82 ±.1.22 ±.71 ±.57

is lower than that of the GCGK and JSDK kernels. However, the classification accuracy of our

ISK kernel is obviously higher than that of the GCGK and JSDK kernels. Moreover, through our

ISK kernel is not the fast kernel, the runtime of our ISK kernel is still reasonable and applicable.

As a summary of the statistical analysis, our ISK kernel is the best kernel in terms of either the

classification accuracy and the stability of performance.

5.3. Computational Evaluation

Finally, we evaluate the computational efficiency (i.e., the CPU runtime) of our new depth-

based subgraph kernels, and explore the relationship between the computational overheads and

the structural complexity or number of the associated graphs.

Experimental setup: For both of our JSSK and ISK kernels, we evaluate the computational

efficiency on randomly generated graphs with respect three parameters: a) the graph size n, b) the

largest layer l of the centroid-based complexity traces (for the JSSK kernel), and c) the h-layer

(h = l) depth-based representations (for the ISK kernel) of graphs, and the graph dataset size

N . We vary n over the set of values {100, 200, . . . , 2000}, l over the set of values {1, 2, . . . , 50}
and N over the set of values {5, 10, . . . , 500}, separately. a) For the experiments with graph size

n, we generate 20 pairs of graphs with increasing number of vertices. We report the runtime for

computing the kernel values between pairwise graphs (for the ISK kernel, h = 10). b) For the

experiments with the largest layer l, we generate a pair of graphs each of which has 200 vertices.

We report the runtime for computing the kernel values of the pair of graphs as a function of l.

c) For the graph dataset sized N , we generate 500 graph datasets with an increasing number of

test graphs. In each dataset, one graph has 200 vertices. We report the runtime for computing the

kernel matrices for each graph dataset (for the ISK kernel, h = 10). The CPU runtime is reported

in Fig.2 and Fig.3 respectively, as operated in Matlab R2011b on a 2.5GHz Intel 2-Core processor

(i.e., i5-3210m).
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Figure 2: Runtime Evaluations for JSSK Kernel.
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Figure 3: Runtime Evaluations for ISK Kernel.
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Experimental results: Figs.2 (a), (b) and (c) show the results for the JSSK kernel when varying

the parameters n, l and N , respectively. Figs.3 (a), (b) and (c) show the results for the JSSK kernel

when varying the parameters n, l and N , respectively.

From Figs.2, we observe that the runtime of the JSSK kernel scales quadratically with n,

and linearly with l and N . From Figs.3, we observe that the runtime of the ISK kernel scales

quadratically with n, linearly with l, and quadratically with N . These results verify that our JSSK

and ISK subgraph kernels can be computed in polynomial time. The JSSK kernel is much more

efficient than the ISK kernel.

6. Conclusion and Further Work

In this paper, we have shown how to construct fast subgraph kernels using depth-based rep-

resentations of graphs. We have proposed two new depth-based subgraph kernels, namely a) the

Jensen-Shannon subgraph kernel and b) the entropic isomorphism kernel. The Jensen-Shannon

subgraph kernel is based on a fast Jensen-Shannon diffusion kernel measure defined in terms of

the Jensen-Shannon divergence on (sub)graphs and a graph decomposition through a centroid-

based representation. On the other hand, the entropic isomorphism kernel is based on an entropy-

based isomorphism test between the subgraphs of pairwise h-layer depth-based representations.

Both of the new depth-based subgraph kernels can be computed in polynomial time. In particular,

the Jensen-Shannon subgraph kernel overcomes the subgraph size restrictions arising in state-of-

the-art graph kernels, and also renders an efficient computation. The experimental results have

demonstrated both the effectiveness and efficiency of the new depth-based subgraph kernels.

Our future work is to extend the depth-based subgraph kernels to attributed graphs. Moreover,

we would also like to extend the Jensen-Shannon subgraph kernel from classical random walks to

quantum walks, and develop a quantum subgraph kernel. While in this paper, we have applied the

classical Jensen-Shannon divergence to classical walks to compute the Jensen-Shannon diffusion

kernel between (sub)graphs, in recent work Emms et al. [31] and Ren et al. [32] have explored

both continuous-time and discrete-time quantum walks on graphs. It would be interesting to extend

this work, using the quantum Jensen-Shannon divergence [16] to compare quantum walks between

(sub)graphs.
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[3] T. Gärtner, P.A. Flach, S. Wrobel, On graph kernels: Hardness results and efficient alternatives, in: Proceedings

of Conference on Learning Theory, 2003, pp. 129-143.

[4] L. Bai, E.R. Hancock, Graph kernels from the Jensen-Shannon divergence, Journal of Mathematical Imaging and

Vision 47 (2013) 60-69.

[5] N. Shervashidze, P. Schweitzer, E.J. Leeuwen, K, Mehlhorn, K.M. Borgwardt, Weisfeiler-Lehman graph kernels,

Journal of Machine Learning Research 1 (2010) 1-48.

[6] G. Li, M. Semerci, B. Yener, M.J. Zaki, Effective graph classification based on topological and label attributes,

Statistical Analysis and Data Mining 5 (2012) 265-283.

[7] H. Kashima, K. Tsuda, A. Inokuchi, Marginalized kernels between labeled graphs, in: Proceedings of Interna-

tional Conference on Machine Learing, 2003, pp. 321-328.

[8] K.M. Borgwardt, H. Kriegel, Shortest-Path kernels on graphs, in: Proceedings of the IEEE International Confer-

ence on Data Mining, 2005, pp. 74-81.

[9] F. Aziz, R.C. Wilson, E.R. Hancock, Backtrackless walks on a graph, IEEE Trans. Neural Netw. Learning Syst.

24 (2013) 977-989.

[10] P. Ren, R.C. Wilson, E.R. Hancock, Graph Characterization via Ihara Coefficients, IEEE Transactions on Neural

Networks 22 (2011) 233-245.

[11] F. Costa, K.D. Grave, Fast neighborhood subgraph pairwise distance kernel, in Proceedings of International

Conference on Machine Learing, 2010, 255-262.

[12] Z. Harchaoui, F. Bach, Image classification with segmentation graph kernels, in Proceedings of IEEE Conference

on Computer Vision and Pattern Recognition, 2007.

[13] F.R. Bach, Graph kernels between point clouds, in: Proceedings of International Conference on Machine Lear-

ing, 2008, 25-32.

[14] N. Kriege, P. Mutzel, Subgraph matching kernels for attributed graphs, in: Proceedings of International Confer-

ence on Machine Learing, 2012.

33



[15] L. Bai, P. Ren, Edwin R. Hancock, A hypergraph kernel from the isomorphism tests, to appear in: Proceedings

of International Conference on Pattern Recognition, 2014.

[16] P.W. Lamberti, A.P. Majtey, A. Borras, M. Casas, A. Plastino, Metric character of the quantum Jensen-Shannon

divergence, Physical Review A 77 (2008) 052311.

[17] J.P. Crutchfield, C.R. Shalizi, Thermodynamic depth of causal states: Objective complexity via minimal repre-

sentations, Physical Review E 59 (1999) 275283.

[18] L. Bai, E.R. Hancock. L. Han, P. Ren, Graph clustering using graph entropy complexity traces, in: Proceedings

of International Conference on Pattern Recognition, 2012, pp. 2881-2884.

[19] L. Bai, E.R. Hancock, Graph complexity from the Jensen-Shannon divergence, in: Proceedings of SSPR/SPR,

2012, pp. 79-98.

[20] L. Bai, E.R. Hancock, Graph clustering using the Jensen-Shannon kernel, in: Proceedings of International

Conference on Computer Analysis of Images and Patterns, 2011, pp. 394-401.

[21] M. Dehmer, Information-theoretic concepts for the analysis of complex networks, Applied Artificial Intelligence

22 (2008) 684-706.

[22] K. Anand, G. Bianconi, S. Severini, Shannon and von Neumann entropy of random networks with heterogeneous

expected degree, Physical Review E 83 (2011), 036169.

[23] F. Passerini, S. Severini, Quantifying complexity in networks: the von Neumann entropy, International Journal

of Agent Technologies and Systems 1 (2009), 58-67.

[24] T.H. Cormen, C.E. Leiserson, R.L. Rivest (Eds), Introduction to Algorithms, MIT Press and McGraw-Hill, 2001.

[25] M. Gadouleau, S. Riis, Graph-theoretical constructions for graph entropy and network coding based communi-

cations, IEEE Transactions on Information Theory 57 (2011), 6703-6717.
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