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ISS of multistable systems with delays: application
to droop-controlled inverter-based microgrids

Denis Efimov, Romeo Ortega and Johannes Schiffer

Abstract—Motivated by the problem of phase-locking in
droop-controlled inverter-based microgrids with delays, the
recently developed theory of input-to-state stability (ISS) for
multistable systems is extended to the case of multistable
systems with delayed dynamics. Sufficient conditions for ISS
of delayed systems are presented using Lyapunov-Razumikhin
functions. It is shown that ISS multistable systems are robust
with respect to delays in a feedback. The derived theory is
applied to two examples. First, the ISS property is established
for the model of a nonlinear pendulum and delay-dependent ro-
bustness conditions are derived. Second, it is shown that, under
certain assumptions, the problem of phase-locking analysis in
droop-controlled inverter-based microgrids with delays can be
reduced to the stability investigation of the nonlinear pendulum.
For this case, corresponding delay-dependent conditions for
asymptotic phase-locking are given.

I. INTRODUCTION

The increasing penetration of renewable distributed gen-
eration (DG) units at the low and medium voltage levels
has a strong impact on the power system structure [9], [38],
[8]. This fact requires new control and operation strategies
to ensure a reliable and efficient electrical power supply [9],
[11]. An emerging concept to address these challenges is the
microgrid [17], [14], [9]. A microgrid is a locally controllable
subset of a larger electrical network. It is composed of several
DG units, storage devices and loads.

Typically, most DG units in an AC microgrid are con-
nected to the network via AC inverters [11]. Under ideal
conditions, an inverter-based DG unit can be modeled as an
ideal controllable voltage source [18], [26]. Furthermore, a
popular control scheme to operate inverter-based DG units
with the purpose to achieve frequency synchronization and
power sharing in the network is droop control [5], [13].
Conditions for stability in droop-controlled microgrids with
inverters modeled as ideal controllable voltage sources have
been derived, e.g., in [30], [28], [21].

In general, inverter-based microgrids operated with droop
control have several equilibria [30], [28]. Thus they are
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multistable systems. Stability analysis [3], [7], [37], [20],
[22], [24], [25], [27], [31] and robust stability analysis
[1], [2], [4], [6], [35] for this class of systems is rather
complicated. Recently, the ISS theory [33] has been extended
to multistable systems in [2] (see also [15] for discussion on
ISS property with respect to an unbounded set).

Furthermore, in a practical setup, the droop control scheme
is applied to an inverter by means of digital discrete time
control. Besides clock drifts, see, e.g., [29], digital control
usually introduces time delays [16], [19], [23]. According to
[23], the main reasons for this are 1) sampling of control
variables, 2) calculation time of the digital controller and 3)
generation of the pulse-width-modulation. We refer the reader
to, e.g., [23] for further details. To the best of the authors’
knowledge this fact has yet not been considered in previous
analysis of droop-controlled microgrids.

Motivated by the abovementioned phenomenon, the main
contribution of the present paper is to extend the recently
derived ISS framework for multistable systems [2] to multi-
stable systems with delay. In particular, sufficient conditions
for ISS of multistable systems in the presence of delays are
given in terms of a Lyapunov-Razumikhin function. It is also
shown that ISS multistable systems are robust with respect to
feedback delays. This result is illustrated via the example of a
nonlinear pendulum. Next, based on the established results,
we provide a condition for asymptotic phase-locking in a
microgrid composed of two droop-controlled inverters with
delay. The analysis is conducted for a simplified inverter
model derived under the assumptions of constant voltage
amplitudes and ideal clocks, as well as negligible dynamics
of the internal inverter filter and controllers. In that scenario,
the delay merely affects the phase angle of the inverter output
voltage. The stability results are illustrated by simulations.

II. PRELIMINARIES

For an n-dimensional C2 connected and orientable Rie-
mannian manifold M without a boundary, let the map
f(x, d) : M × R

m → TxM be of class C1, and consider
a nonlinear system of the following form:

ẋ(t) = f(x(t), d(t)), (1)

where the state x ∈ M and d(t) ∈ R
m (the input d(·) is a

locally essentially bounded and measurable signal) for t ≥ 0.
We denote by X(t, x0; d) the uniquely defined solution of (1)
at time t fulfilling X(0, x0; d) = x0. Together with (1) we
will analyze its unperturbed version:

ẋ(t) = f(x(t), 0). (2)



A set S ⊂ M is invariant for the unperturbed system (2)
if X(t, x; 0) ∈ S for all t ∈ R and for all x ∈ S. Define
the distance from a point x ∈ M to the set S ⊂ M as
|x|S = mina∈S δ(x, a), where the symbol δ(x1, x2) denotes
the Riemannian distance between x1 and x2 in M , |x| =
|x|{0} for x ∈ M or a usual euclidean norm of a vector
x ∈ R

n. For a signal d : R → R
m the essential supremum

norm is defined as ‖d‖∞ = ess supt≥0 |d(t)|.

A. Decomposable sets

Let Λ ⊂ M be a compact invariant set for (2).

Definition 1. [22] A decomposition of Λ is a finite and
disjoint family of compact invariant sets Λ1, . . . ,Λk such
that

Λ =

k⋃

i=1

Λi.

For an invariant set Λ, its attracting and repulsing subsets
are defined as follows:

W s(Λ) = {x ∈ M : |X(t, x, 0)|Λ → 0 as t → +∞},

Wu(Λ) = {x ∈ M : |X(t, x, 0)|Λ → 0 as t → −∞}.

Define a relation on W ⊂ M and D ⊂ M by W ≺ D if
W s(W) ∩Wu(D) 6= ⊘.

Definition 2. [22] Let Λ1, . . . ,Λk be a decomposition of Λ,
then

1. An r-cycle (r ≥ 2) is an ordered r-tuple of distinct
indices i1, . . . , ir such that Λi1 ≺ . . . ≺ Λir ≺ Λi1 .
2. A 1-cycle is an index i such that [Wu(Λi)∩W s(Λi)]−

Λi 6= ⊘.
3. A filtration ordering is a numbering of the Λi so that

Λi ≺ Λj ⇒ i ≤ j.

As we can conclude from Definition 2, existence of an r-
cycle with r ≥ 2 is equivalent to existence of a heteroclinic
cycle for (2) [12]. Furthermore, existence of a 1-cycle implies
existence of a homoclinic cycle for (2) [12].

Definition 3. The set W is called decomposable if it admits
a finite decomposition without cycles, W =

⋃k

i=1 Wi, for
some non-empty disjoint compact sets Wi, which form a
filtration ordering of W , as detailed in definitions 1 and 2.

B. Robustness notions

The following robustness notions for systems represented
by (1) have been introduced in [2].

Definition 4. We say that the system (1) has the practical
asymptotic gain (pAG) property if there exist η ∈ K∞ and
a non-negative real q such that for all x ∈ M and all
measurable essentially bounded inputs d(·) the solutions are
defined for all t ≥ 0 and the following holds:

lim sup
t→+∞

|X(t, x; d)|W ≤ η(‖d‖∞) + q.

If q = 0, then we say that the asymptotic gain (AG) property
holds.

Definition 5. We say that the system (1) has the limit
property (LIM) with respect to W if there exists µ ∈ K∞

such that for all x ∈ M and all measurable essentially
bounded inputs d(·) the solutions are defined for all t ≥ 0
and the following holds:

inf
t≥0

|X(t, x; d)|W ≤ µ(‖d‖∞).

Definition 6. We say that the system (1) has the practical
global stability (pGS) property with respect to W if there
exist β ∈ K∞ and q ≥ 0 such that for all x ∈ M and
measurable essentially bounded inputs d(·) the following
holds for all t ≥ 0:

|X(t, x; d)|W ≤ q + β(max{|x|W , ‖d‖∞}).

It has been shown in [2] that to characterize pAG property
in terms of Lyapunov functions the following notion is
appropriate.

Definition 7. We say that a C1 function V : M → R is a
practical ISS-Lyapunov function for (1) if there exists K∞

functions α1, [α2], α3 and γ, and scalar q ≥ 0 [and c ≥ 0]
such that

α1(|x|W) ≤ V (x) ≤ [α2(|x|W + c)],

the function V is constant on each Wi and the following
dissipation holds:

DV (x)f(x, d) ≤ −α3(|x|W) + γ(|d|) + q.

If the latter inequality holds for q = 0, then V is said to be
an ISS-Lyapunov function.

Notice that α2 and c are in square brackets as their
existence follows (without any additional assumptions) by
standard continuity arguments.

The main result of [2] connecting these robust stability
properties is stated below, it extends the results of [32], [34]
obtained for connected sets.

Theorem 1. Consider a nonlinear system as in (1) and let

a compact invariant set containing all α- and ω-limit sets of

(2) W be decomposable (in the sense of Definition 3). Then

the following facts are equivalent.

1. The system admits an ISS Lyapunov function;

2. The system enjoys the AG property;

3. The system admits a practical ISS Lyapunov function;

4. The system enjoys the pAG property;

5. The system enjoys the LIM property and the pGS.

A system in (1), for which this list of equivalent properties
is satisfied, is called ISS with respect to the set W [2].

III. MULTISTABLE SYSTEMS WITH DELAYS

Let τ > 0, for a function d : [−τ,+∞) → R
m and

t ≥ 0 denote a function dt(·) : [−τ, 0] → R
m defined

by dt(θ) = d(t + θ) for θ ∈ [−τ, 0]. Denote by D a
set of bounded and piecewise continuous functions dt(·) :
[−τ, 0] → R

m. Consider a functional differential equation on



an n-dimensional C2 connected and orientable Riemannian
manifold M without a boundary:

ẋ(t) = F (xt, dt), x0 ∈ Cτ , (3)

where the map F : Cτ × D → TxM is of class C1 (we will
denote a set of continuous functions ξ : [−τ, 0] → M by Cτ ),
x(t) ∈ M is the state, xt ∈ Cτ and dt ∈ D for all t ≥ 0. We
denote by X(t, x0; d) the uniquely defined solution of (3)
at time t fulfilling X(θ, x0; d) = x0(θ) for all θ ∈ [−τ, 0];
Xx0,d

t (θ) = X(t+θ, x0; d) for θ ∈ [−τ, 0]. Define as in [36]

|xt| = max
θ∈[−τ,0]

|x(t+ θ)|, ||x||t0 = sup
t≥t0

|xt| = sup
t≥t0−τ

|x(t)|.

Again, together with (3), we will analyze its unperturbed
version:

ẋ(t) = F (xt, 0). (4)

A set S ⊂ Cτ is invariant for the unperturbed system (4)
if Xx0,0

t ∈ S for all t ∈ R+ and for all x0 ∈ S . Define
the distance from a function ξ ∈ Cτ to a set S ⊂ Cτ as
||ξ||S = minα∈S |ξ − α|.

Let W ⊂ M be a set, denote by
︷︸︸︷

W a subset of W =

{ξ ∈ Cτ : ξ(t) ∈ W ∀t ∈ [−τ, 0]} such that if ζ ∈
︷︸︸︷

W then
ζ = Xξ,0

τ for ξ ∈ W . For stability analysis in time-delay
systems it is required to define a distance to invariant sets in
two spaces: in R

n with respect to the set W and in Cτ with

respect to corresponding invariant set
︷︸︸︷

W (functions from
Cτ taking values in W and solutions of (3)). The following
stability notions for (3) are considered in this work.

Definition 8. The system (3) has the pAG property with
respect to the set W if there exist η ∈ K∞ and a non-negative
real q such that for all x0 ∈ Cτ and all bounded piecewise
continuous inputs d(·) the solutions are defined for all t ≥ 0
and the following holds:

lim sup
t→+∞

|X(t, x0; d)|W ≤ η(‖dt‖0) + q.

If q = 0, then we say that the AG property holds.

This property can be equivalently stated as

lim sup
t→+∞

||Xx0,d
t ||︷︸︸︷

W
≤ η(‖dt‖0) + q

and it implies that (a subset of)
︷︸︸︷

W is invariant for (4) if
q = 0.

Definition 9. The system (3) has the pGS property with
respect to the set W if there exist β ∈ K∞ and q ≥ 0 such
that for all x0 ∈ Cτ and all bounded piecewise continuous
inputs d(·) the following holds for all t ≥ 0:

|X(t, x0; d)|W ≤ q + β(max{||x0||︷︸︸︷
W

, ‖dt‖0}).

To characterize pAG and pGS properties for a time-delay
system (3) the Lyapunov-Razumikhin approach is used in
this work. Given a continuous function x : [−τ,+∞) → M
with a C1 function U : M → R denote U(t) = U(x(t)), if
x(t) = X(t, x0; d) is a solution to (3) for some piecewise

continuous d : [−τ,+∞) → R
m and initial condition x0 ∈

Cτ , then the upper right-hand side derivative of U along this
solution is

D+U(t) = lim sup
h→0+

U(t+ h)− U(t)

h
.

Definition 10. A C1 function U : M → R is a practical
ISS-Lyapunov-Razumikhin (ISS-LR) function for (3) if there
exist K∞ functions α1, [α2], α4, γ and γU , γU (s) < s for all
s > 0, and scalar q ≥ 0 [and c ≥ 0] such that

α1(|x|W) ≤ U(x) ≤ [α2(|x|W + c)],

U(t) ≥ max{γU (|Ut|), γ(|dt|), q} ⇒

D+U(t) ≤ −α4[U(t)].

If the latter inequality holds for q = 0, then U is said to be
an ISS-LR function.

The following result can be stated connecting pAG, pGS
properties and existence of an ISS-LR function.

Theorem 2. Consider the system (3). Suppose there exists

an ISS-LR function U : M → R as in Definition 10. Then the

system (3) admits the pAG property from Definition 8 with

η(s) = α−1
1 ◦ γ(s) and pGS property from Definition 9.

Proof. The proof mainly follows the ideas of [36].

IV. ISS OF MULTISTABLE SYSTEMS WITH DELAYED

PERTURBATIONS

In this section we consider the robustness of the system
(1) with respect to a disturbance d, which is dependent on a
delayed state. The analysis is conducted under the assumption
that the system (1) is ISS with respect to a set W .

A. Robustness analysis

If (1) is ISS with respect to the set W , then by Theorem 1
there exists an ISS Lyapunov function V as in Definition 7.
From the inequalities α3[0.5α

−1
2 ◦ V (x)] ≤ α3(0.5[|x|W +

c]) ≤ α3(|x|W) + α3(c) we obtain

DV (x)f(x, d) ≤ −α4[V (x)] + γ(|d|) + q̃,

where α4(s) = α3[0.5α
−1
2 (s)] and q̃ = q + α3(c).

Assume that the input d has two terms d1 and d2, and d2
is a function of xt ∈ Cτ for some τ > 0, i.e.:

d = d1 + d2, d2 = g(xt), (5)

where g is a continuous function, |g(xt)| ≤ υ(|Vt|) + υ0
for υ ∈ K∞ and υ0 ≥ 0. Denote further for simplicity of
notation d = d1, then the system (1) is transformed to (3)
with

F (xt, dt) = f(x(t), d+ g(xt)),

and

D+V (t) ≤ −α4(V (t)) + γ(2υ(|Vt|) + 2υ0) + γ(2|dt|) + q̃.



This estimate can be rewritten as follows:

V (t) ≥ max{γ̂V (|Vt|), γ̂(|dt|), q̂} ⇒

D+V (t) ≤ −0.5α4(V (t)),

γ̂V (s) = α−1
4 [6γ(4υ(s))], γ̂(s) = α−1

4 [6γ(2s)],

q̂ = α−1
4 [6q̃ + 6γ(4υ0)].

It is straightforward to see that if γ̂V (s) < s for all s >
0, then V is an ISS-LR function for (1) with (5), and by
Theorem 2 this system possesses pAG and pGS properties.

B. Illustration for a nonlinear pendulum

Consider a nonlinear pendulum:

ẋ1 = x2,
ẋ2 = −Ω2 sin(x1)− κx2 + d,

(6)

where the state x = [x1, x2] takes values on the cylinder
M := S× R, d(t) ∈ R is an exogenous disturbance, and Ω,
κ are constant positive parameters. The unperturbed system
(6) admits a Hamiltonian H(x) = 0.5x2

2 + Ω2(1− cos(x1))
and Ḣ = x2d − κx2

2. The unperturbed system (6) has two
equilibria [0, 0] and [π, 0] (the former is attractive and the
latter one is a saddle-point). Thus, W = {[0, 0] ∪ [π, 0]} is
a compact set containing all α- and ω-limit sets of (6) for
d = 0. In addition, it is straightforward to check that W is
decomposable in the sense of Definition 3.

Lemma 1. The system (6) is ISS with respect to the set W .

Proof. Developing ideas of [4], the result follows from
Theorem 1 considering a Lyapunov function candidate

V (x) = H(x) + κǫ(1− cos(x1)) + ǫx2 sin(x1),

which admits derivative

V̇ = −[κ− ǫ cos(x1)]x
2
2 − ǫΩ2 sin2(x1)

+ǫ sin(x1)d+ x2d (7)

≤ −0.5[κ− ǫ]x2
2 − 0.5ǫΩ2 sin2(x1)

+0.5[ǫΩ−2 +
1

κ− ǫ
]d2

provided that 0 < ǫ < κ.

Now consider a time-delay modification of (6):

ẋ1(t) = x2(t),
ẋ2(t) = −Ω2 sin[x1(t− τ)]− κx2(t) + d(t),

(8)

where τ > 0 is a fixed delay. The unperturbed system (8)
with d(t) = 0 has the same equilibria as (6), i.e. [0, 0] and
[π, 0]. The system (8) can be represented as follows:

ẋ1(t) = x2(t),
ẋ2(t) = −Ω2 sin[x1(t)]− κx2(t)

+d(t) + Ω2{sin[x1(t)]− sin[x1(t− τ)]}.

By the Mean value theorem

| sin[x1(t)]− sin[x1(t− τ)]| = | cos[x1(φ)]x2(φ)τ |

≤ |x2(φ)|τ

for some φ ∈ [t− τ, t]. Thus, the system (8) can be analyzed
as a perturbed nonlinear pendulum with part of the input d
dependent on the delay. By taking the estimate derived for
V in (7) we obtain for µ = ǫΩ−2 + 1

κ−ǫ
:

D+V (t) ≤ −0.5[κ− ǫ]x2
2 − 0.5ǫΩ2 sin2(x1)

+µΩ4x2
2(φ)τ

2 + µd2.

It is straightforward to check that

V (x) ≤ 0.5[1 + ǫ]x2
2 + 0.5ǫ sin2(x1) + 2[Ω2 + κǫ],

x2
2 ≤

2

1− ǫ
V (x) +

ǫ

1− ǫ

for 0 < ǫ < min{1, κ}, then for ρ = min{κ−ǫ
1+ǫ

,Ω2}

D+V (t) ≤ −ρ{V (t)− 2[Ω2 + κǫ]}

+µΩ4x2
2(φ)τ

2 + µd2

≤ −ρ{V (t)− 2[Ω2 + κǫ]}

+
µΩ4

1− ǫ
τ2[2V (φ) + ǫ] + µd2.

Therefore,

V (t) ≥
6

ρ
max{2

µΩ4

1− ǫ
τ2|Vt|, 2ρ[Ω

2 + κǫ]

+
µΩ4

1− ǫ
τ2ǫ, µd2} ⇒

D+V (t) ≤ −0.5ρV (t)

and V is an ISS-LR function for (8) provided that

12

ρ

µΩ4

1− ǫ
τ2 < 1. (9)

The inequality (9) is a delay-dependent stability condition for
(8), which is always satisfied for a sufficiently small delay
τ . If we assume that max{0, κ−Ω2

1+Ω2 } < ǫ < min{1, κ}, then
min{κ−ǫ

1+ǫ
,Ω2} = κ−ǫ

1+ǫ
and the condition (9) can be rewritten

as follows:

τ2 <
1

12Ω2

1− ǫ

1 + ǫ

1

ǫ(κ− ǫ) + Ω2
.

Since the functions 1−ǫ
1+ǫ

and 1
ǫ(κ−ǫ)+Ω2 are decreasing for ǫ ∈

(max{0, κ−Ω2

1+Ω2 },min{1, κ}), selecting ǫ = max{0, κ−Ω2

1+Ω2 }+
ε for a sufficiently small ε > 0 optimizes the value of the
admissible delay τ to

τ∗ =
1

2Ω

√

1− ǫ

1 + ǫ

1/3

ǫ(κ− ǫ) + Ω2
,

i.e. for any τ < τ∗ the system (8) admits V as an ISS-LR
function.

V. APPLICATION TO A MICROGRID COMPOSED OF TWO

DROOP-CONTROLLED INVERTERS WITH DELAY

By following [28], under the assumption of constant volt-
age amplitudes, a lossless droop-controlled microgrid formed
by two inverters with delay can be modeled as:

θ̇(t) = ω1(t)− ω2(t), (10)

τP1
ω̇1(t) = −ω1(t)− kP1

a12 sin[θ(t− τd1
)] + c1 + d1(t),

τP2
ω̇2(t) = −ω2(t) + kP2

a12 sin[θ(t− τd2
)] + c2 + d2(t),



where θ(t) ∈ [0, 2π) is the phase difference in inverters,
ω1(t), ω2(t) ∈ R are time-varying frequencies of the in-
verters; τd1

> 0 and τd2
> 0 are delays caused by the

digital controls required to implement the droop controls;
τP1

> 0, τP2
> 0, kP1

> 0, kP2
> 0, a12 > 0, c1

and c2 = −
kP2

kP1

c1 are constant parameters, the disturbances
d1(t) and d2(t) represent additional model uncertainties. We
say that a solution of (10) is phase-locked if θ(t) = θ0 is
constant ∀t ∈ R+ for some θ0 ∈ [0, 2π) [10]. If this property
holds asymptotically, i.e., for t → +∞, we speak about an
asymptotic phase-locking.

For brevity of presentation, we impose the following
restrictions on the values of parameters.

Assumption 1. τP1
= τP2

= τP > 0 and τd1
= τd2

= τ >
0.

Under this assumption, define the new coordinates:

x1 = θ, x2 = ω1 − ω2, x3 =
kP2

kP1

ω1 − ω2.

Then the system (10) can be rewritten as follows:

ẋ1(t) = x2(t), (11)

τP ẋ2(t) = −x2(t)− [kP1
+ kP2

]a12 sin[x1(t− τ)]

+[1 +
kP2

kP1

]c1 + d1 − d2, (12)

τP ẋ3(t) = −x3(t) +
kP2

kP1

d1 − d2. (13)

Thus, the system (10) is decomposed into two independent
subsystems: (11), (12) and (13). The variable x3 converges
asymptotically to zero with the time constant τP if d1 =
d2 = 0. Hence, asymptotically the frequencies ω1 and ω2

are locked. The dynamics (11), (12) have the form of (8) for
d = [1 +

kP2

kP1

]c1 + d1 − d2 and, as it has been established
above, have pAG and pGS properties from definitions 8 and
9 respectively if condition (9) is satisfied, which for (11),
(12) takes the form:

τ2 <
min

{
τ
−1

P
−ǫ

1+ǫ
,
[kP1

+kP2
]a12

τP

}

12
[kP1

+kP2
]2a2

12

τ2
P
(1−ǫ)

[
ǫ

[kP1
+kP2

]a12
+ 1

1−τP ǫ

] (14)

for 0 < ǫ < min{1, τ−1
P }. Therefore, for a sufficiently

small delay τ the inverters may demonstrate a phase-locking
behavior. According to [23], a good estimate of the overall
delay introduced by the digital control is τ = 1.75TS

1,
where TS = 1/fS and fS ∈ R>0 is the switching frequency
of the inverter. Since usually fS ∈ [5, 20] kHz [11], τ is
reasonably small in most practical applications. Hence, we
expect condition (14) to be satisfied for most practical choices
of parameters τP , kP1

and kP2
.

The analysis is illustrated in a simulation example with
the following set of parameters for the system (10): τP = 1,
kP1

= 10, kP2
= 20, a12 = 0.1, c1 = 0.2 and τ = 0.05.

Condition (14) is satisfied for ǫ = 0.5min{1, τ−1
P }. The

1The overall delay reduces to τ = 1.5TS if no moving average function
for the measurement is used [23].

Figure 1. Simulation results for the system (10). The solid lines show
the state trajectories for the case d1(t) = d2(t) = 0. The dashed lines
correspond to the case d1(t) = 0.8 sin(t), d2(t) = 0.9 sin(2t).

simulation results are shown in Fig. 1. The solid lines
represent the state (θ, ω1, ω2)

T trajectories for the case
d1(t) = d2(t) = 0, and the dashed lines correspond to
d1(t) = 0.8 sin(t), d2(t) = 0.9 sin(2t). The phase-locking
phenomenon is observed in these simulation results.

VI. CONCLUSIONS

Sufficient conditions for ISS of multistable systems with
delay have been derived. The conditions have been estab-
lished using Lyapunov Razumikhin functions. The potential
of the presented approach has been illustrated by providing
several new robustness properties for a nonlinear pendulum
with delay. Furthermore, it has been shown that phase-
locking in a lossless droop-controlled microgrid formed by
two inverters with delays can be analyzed based on the
pendulum model. By exploiting this fact, a delay-dependent
condition for ISS of such a microgrid has been presented.

Future work will consider an extension of the analysis to
more complex inverter models with delays and, e.g., time-
varying voltages or internal filter and controllers.
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