
Detection of multiple and overlapping bidirectional communities

within large, directed and weighted networks of neurons

Umberto Esposito acp12ue@sheffield.ac.uk

University of Sheffield, Department of Computer Science, Sheffield, UK

Eleni Vasilaki e.vasilaki@sheffield.ac.uk

University of Sheffield, Department of Computer Science, Sheffield, UK

University of Sheffield, INSIGNEO Institute for in Silico Medicine, Sheffield, UK

University of Antwerp, Theoretical Neurobiology and Neuroengineering Laboratory, Department of Biomedical Sciences, Belgium

Abstract

With the recent explosion of publicly available biological data, the analysis of networks has gained
significant interest. In particular, recent promising results in Neuroscience show that the way neurons
and areas of the brain are connected to each other plays a fundamental role in cognitive functions
and behaviour. Revealing pattern and structures within such an intricate volume of connections is
a hard problem that has its roots in Graph and Network Theory. Since many real world situations
can be modelled through networks, structures detection algorithms find application in almost every
field of Science. These are NP-complete problems; therefore the generally used approach is through
heuristic algorithms. Here, we formulate the problem of finding structures in networks of neurons in
terms of a community detection problem. We introduce a definition of community and we construct a
statistics-based heuristic algorithm for directed and weighted networks aiming at identifying overlapping
bidirectional communities in large networks. We carry out a systematic analysis of the algorithm’s
performance, showing excellent results over a wide range of parameters (successful detection percentages
almost 100% all the time). Also, we show results on the computational time needed and we suggest
future directions on how to improve computational performance.

Introduction

In recent years the study of the wiring diagram of the brain has raised enormous attention in Neuroscience
[Lichtman and Sanes, 2008, Seung, 2009, Van Essen et al., 2012]. Several experimental works reported
significant excess of particular connectivity motifs in different areas of the brain [Song et al., 2005,Silberberg
and Markram, 2007, Lefort et al., 2009, Perin et al., 2011], suggesting that connectivity is generally not
random [Sporns, 2011b]. Moreover, different motifs seem to correlate with different synaptic properties
[Wang et al., 2006, Pignatelli, 2009], which in turn are related to signal transmission, underlying learning
mechanisms and eventually cognitive functions and behaviour [Lichtman et al., 2008,Bullmore and Sporns,
2009, Bressler and Menon, 2010]. It is largely believed that a complete map of the connections between
neurons, the so-called connectome [Sporns et al., 2005], could provide an unprecedented and extremely
powerful knowledge, with great benefits, for instance, in diseases treatment [Zhou et al., 2012, Van Essen
and Ugurbil, 2012,Wang et al., 2013].

It is therefore essential to reveal the structural and functional properties of brain networks. To achieve
this, principles and tools from Graph and Network Theory have been widely applied to brain networks [He
and Evans, 2010, Sporns, 2011a, Sporns, 2013] with promising results [Bassett and Bullmore, 2009, Guye
et al., 2010]. Several studies have demonstrated that many real world processes can be modelled in terms of
complex networks [Albert and Barabási, 2002,Barabási and Oltvai, 2004,Green and Sadedin, 2005,Newman,
2010], making the study of networks’ topology and properties a topic of major interest within the entire
scientific community.

Of particular relevance for brain networks is the problem of structures’ detection: sub-regions of networks
whose connectivity has been significantly shaped by an underlying learning process. Typical Graph Theory
problems dealing with structure searching, for instance sub-graph isomorphism and clique identification
[Bondy and Murty, 2008, Diestel, 2010], are proven to be either NP-complete or NP-hard [Cook, 1971,
Papadimitriou, 1977, Garey and Johnson, 1990, Bomze et al., 1999, Wegener, 2005]. Extensive search is
therefore impracticable and feasible approaches are based on heuristic search or on algorithms looking for
sub-optimal solutions. Even with these approaches, the computational complexity grows very quickly and

1

ar
X

iv
:1

51
1.

04
46

7v
1

 [
cs

.S
I]

 1
3

N
ov

 2
01

5

explodes for just few thousands of nodes, hence making impossible to perform an effective and accurate
search on large networks within a relatively small time scale. The purpose of this work is to contribute in
this direction by means of a heuristic algorithm designed to identify a particular class of such structures.

Besides the computational limitations, networks of neurons are arguably the most challenging type of
graph to deal with, as they are instances of directed and weighted graphs with continuous weights. Most
studied problems in Network Theory are based on undirected [Fortunato, 2010] networks, with some of
them focussing on directed un-weighted [Malliaros and Vazirgiannis, 2013] (or binary) graphs. In most of
the cases generalisation to directed and weighted graphs is not always trivial. Moreover, in general, there
is no limitation on the number of structures that can be formed within a network of neurons, nor on their
shapes and overlaps. This leads to a very generic problem that needs to be narrowed to design an effective
searching algorithm.

On the other side, we show that having a network of neurons and structures that arise from learning
allows us to make considerations and hypotheses that greatly simplify the searching task, ultimately framing
it within the domain of community detection in Network Theory [Girvan and Newman, 2002,Newman, 2004].
This field has received constantly increasing attention due to the fact that community structures are often
present in many types of networks and through their study the understanding of the network itself can be
greatly improved [Porter et al., 2009]. However, despite huge efforts of a large interdisciplinary community
of scientists, the problem is not yet satisfactorily solved.

Most of the existing algorithms for community structure use techniques like hierarchical clustering [Gir-
van and Newman, 2002,Newman and Girvan, 2004], modularity optimisation [Danon et al., 2005,Newman,
2006, Ovelgönne and Geyer-schulz, 2012] (which is also a NP-complete problem [Brandes et al., 2006]),
spectral searching [Newman, 2013] and statistical inference [Rosvall and Bergstrom, 2007,Ball et al., 2011].
These methods are usually not designed for directed and weighted networks and also they do not consider
overlapping communities. Furthermore, each class has its own limitations. For instance, modularity op-
timisation, which is the most widely used method, is known to have resolution problems [Fortunato and
Barthélemy, 2007], and spectral analysis is much more complex for directed graphs as it is characterized
by asymmetrical matrices. Developing methods of community detection for directed graphs is a hard task.
The most important class of algorithms for the complete problem, i.e. detection of overlapping communities
in directed and weighted graphs, is the clique percolation method [Palla et al., 2005, Karrer et al., 2014].
However, since it does not look for actual communities but just for regions containing many cliques, it fails in
several scenarios and its success also depends on the quantity of cliques that are present in the network [For-
tunato, 2010]. Community detection also suffers from the lack of a unique definition: how to identify a
community generally varies depending on the problem and on the algorithm, and often a community is just
the final outcome of the algorithm itself [Fortunato, 2010](a posteriori approach).

Here we start by giving a general definition of community (a priori approach) and we show how this
represents a great advantage as such a definition can be used as a guidance for building the algorithm.
Our method, which aims at detecting multiple and overlapping bidirectional communities in directed and
weighted networks of neurons, is based on a statistical analysis of connections and it is a mixture of different
techniques. At the basis of the algorithm there is the notion of symmetry measure introduced by Esposito
et al. [Esposito et al., 2014] as an indicator of the global symmetry of a network’s connectivity. Below,
we introduce a local version of this measure, which, together with the community definition, allows us to
develop a peculiar searching technique, a mixture between top-down and bottom-up approaches that does
not require looking at single connections to identify communities. This first part already provides very
good results and in a very short time, but is able to detect only the non-overlapping parts of communities
. Following this, we implement a neuron by neuron evaluation, that we call friendship algorithm, where
we restore the detailed information about which pairs of neuron are connected to each other. This greatly
increases the total computational time but it also improves the accuracy on the final outcome and allows
detecting overlapping regions as part of more than one community.

Methods

Consider a directed and weighted network of N nodes that are all-to-all connected, with connectivity
matrix W . Without losing generality, we allow single connections wij to vary in [0, 1], where wij represents
the strength of the connection from node j to node i. We do not consider self-interactions, i.e. wii = 0
∀i = 1 . . . N .

2

Preliminary assumptions

We assume that the network described by W is the result of some learning process that affects only
(unknown) parts of the network, significantly shaping these connections away from their initial configuration.
Hence:

• Prior learning, there is no way to differentiate the neurons that are going to be affected by the process
from the rest of the network. We therefore assume that before learning all the connections in the
network are randomly drawn from the same distribution.

• Connections between any pair of neurons are subject to the same learning process and therefore evolve
in a similar way, which constraints structures to have the particular shape of a blob, rather than, for
example, of a filament or a ring.

As a result, structures appear as regular bumps that stand out of the global randomness of the network’s
connectivity. In addition, we take into account that learning can occur with an efficacy ϕ ≤ 100% (some
connections may be faulty and not evolve) and that it can be slower for some neurons and faster for
others. This makes the final blobs’ connectivity far from being a perfect and regular structure: locally, some
connections may not display any feature of the learning process, but the majority of the connections in the
structure does, which preserves the global property of forming a bump in the network’s connectivity.

In what follows, we adopt and generalise the terminology from Network Theory and refer to these
structures as communities.

Definition of community and bidirectional community

For unweighted graphs, a community is generally a region where the edge concentration inside is higher
than outside [Fortunato, 2010]. In this case, the community detection problem for a complete network has
the network itself as the only, trivial solution. When searching for communities in continuous weighted
networks, it is essential to specify with respect to which property of the connectivity we are investigating
the community structure: by changing the feature of the connectivity we look at, a different community
structure can emerge. We can therefore phrase the concept of community in terms of an over-expression, in
this case, of some property related to the connectivity. Thus, a complete weighted graph, differently from
an unweighted one, can present solutions different from the trivial ones and in principle it can offer the same
variety in the community structure as a sparse unweighted network.

In our case, the feature we investigate is bidirectionality. Two neurons i, j form a bidirectional pair when
both connections have a similar strength, wij ' wji, resulting in information flowing nearly equally in both
directions. Guided by experimental results showing excess of bidirectional connections in some regions of
the brain [Song et al., 2005, Wang et al., 2006], we assume that learning strengthens all the connections
involved, thus acting as a Hebbian-like process [Vasilaki et al., 2009, Clopath et al., 2010, Richmond et al.,
2011, Vasilaki and Giugliano, 2012, Vasilaki and Giugliano, 2014, Esposito et al., 2015]. This leads to the
formation of what we call bidirectional communities within the network: subsets of neurons that show an
over-expression of bidirectional connections among them, when compared with the rest of the network.
Since connections are continuous variables, there is no clear way to discriminate a pair that is bidirectional
from a pair that is not without using the threshold concept. In the following, we will describe how to fix a
bidirectionality threshold, essential for the algorithm implementation.

Local estimator of bidirectionality. Esposito et al. 2014 [Esposito et al., 2014] introduced a measure
of network’s connectivity, ranging from 0 to 1, that for fully connected networks reduces to the following:

s = 1− 2

N (N − 1)

N∑
i=1

N∑
j=i+1

|wij − wji|
wij + wji

. (1)

The extreme values s = 1 and s = 0 respectively correspond to completely symmetric networks, for which
wij = wji ∀ i, j = 1 . . . N , and to completely asymmetric networks, for which wij = 0, wji 6= 0 ∀ i, j =
1 . . . N with i > j. In between these extremes, there is a continuum of values with smooth transitions
between bidirectional, random and unidirectional networks. Through a statistical analysis of this symmetry
measure on random networks, it is possible to identify a bidirectionality threshold sB , which depends on the
distribution of connections, separating bidirectional networks from non-bidirectional ones [Esposito et al.,
2014].

This is, however, a global indicator that cannot capture a deeper organisation at a sub-networks level,
nor it can be directly used to find communities, as it would require an extensive search. However, it can be

3

used i) to validate community candidates after a successful searching and ii) to construct a local estimator
encoding for the bidirectionality feature. Indeed, the symmetry measure is a global average of a local
pairwise quantity, the relative strength of a pair of connections, defined as:

Zij =
|wij − wji|
wij + wji

(2)

Z is a continuous variable ranging from 0 to 1 that covers all the possible states in which a connection
pair can be found. In particular, bidirectionality is expressed by Z → 0. Similarly to s, we can map this
continuum into a discrete two-state space, corresponding to randomness and bidirectionality, by fixing a
local bidirectionality threshold ZB on the connection pair. This can be done by simply translating sB into
the corresponding value of Z by using the definition of s itself:

ZB = 1− sB (3)

This follows from the consideration that a network with all equal values of Zij = Z̄, for which s̄ = 1 − Z̄,
must show the same property, for instance bidirectionality, both locally in each pair and globally.

Thus, a bidirectional community of neurons is a set of neurons within which the majority of all possible
connection pairs satisfy the relation Z ≥ ZB , i.e. they are bidirectional.

Over-density indicator. The loose concept of majority reflects the over-density property and it can be
mathematically formalised by setting a community threshold ϑC ≤ 100%: a set of neurons is a bidirectional
community when, for each neuron within it, at least ϑC of the available connections with other the neurons
in the set is bidirectional. This threshold is clearly related to the learning efficacy ϕ. For all-to-all connected
networks, like the ones we are considering here, we can give the following formal definition:

Definition of Community Be C a set of neurons, i ∈ C a neuron and SiC := {j ∈ C : Zij ≥ ZB} the set
in C of all and only the neurons that form a bidirectional pair with neuron i. Then C is a community with
respect to the property of bidirectionality if and only if each neuron in C forms within C itself at least a
number of bidirectional connections equal to a fraction ϑC of the total available connections in C. In formal
terms, this can be expressed with the following set of equations:

|SiC | ≥ ϑC (|C| − 1) ∀i ∈ C , (4)

where | · | represents the cardinality of a set. Hence, |SiC | is the number of connections between neuron i and
the other neurons in C that are bidirectional, and |C|−1 represents the number of neurons in the community
available for forming a bidirectional pair. The maximum value ϑC = 100% corresponds to the specific case
of a clique, the final result of a perfectly efficient learning ϕ = 100%. equation (4) clearly captures the main
difficulty of the community detection problem: we want to find a set of neurons C whose definition relies
on the sets

{
SiC
}

, which in turn are defined in terms of C itself and are unknown, with the set
{
|SiC |

}
also

being unknown.

Algorithm description

The algorithm we describe below aims at identifying multiple and overlapping bidirectional communities,
as defined in equation (4), within large networks of neurons. This is achieved by a popularity ranking (Step 1
below) followed by two different techniques that are applied in sequence (Step 2 and Step 3). If implemented
alone, each of them already offers good results, but the combination refines the search and in some cases it
also makes it faster.

In Fig. 1-3 we show the algorithm implementation on a toy network of N = 11 neurons, all-to-all
connected and labelled as N1, N2, . . . N11 (Fig. 1a, left). For simplicity, instead of using Ni when referring
to the neurons of the example, we assume that indices like i vary directly in the set N1, N2, . . . N11. Moreover,
for a better understanding, in Tab. 1 we report a list of the symbols used and their description.

Step 1. Neurons popularity ranking. From the full network’s connectivity W (Fig. 1b, left), we
derived the relative strength Zij of each pair of neurons (Fig. 1b, middle), given by equation (2), and we
assess their bidirectionality using the threshold ZB defined in equation (3). This allows assigning to each
neuron i a number ni representing how many bidirectional pairs that neuron forms in the entire network
(Fig. 1b, right).

Based on this information, neurons are initially entered in a bidirectional pool P depending on a minimum
required number of bidirectional pairs nminP , which can be arbitrarily chosen (Fig. 1a, middle). Neurons
that do not meet the pool entering condition ni ≥ nminP are excluded from P, as they do not have the basic

4

Symbol Description

N Size of the network
wij Strength of the single connection from neuron j to neuron i
Zij Relative strength of the connection pair between neurons i and j
ZB Bidirectionality threshold for connection pairs
ni Number of bidirectional pairs formed by neuron i in the entire network
P Bidirectional pool
NP Size of the bidirectional pool
nminP Minimum number of bidirectional pairs to be part of the pool
niP Number of bidirectional pairs formed by neuron i within the pool
C Bidirectional community
niC Number of bidirectional pairs formed by neuron i within the community
ϑC Threshold for belonging to a community
Cmaxi Largest possible community that neuron i can form in the pool

B̃ Bidirectional candidate blob
NB̃ Size of the bidirectional candidate blob
Nmax
B̃ Size of the largest community the bidirectional candidate blob can be part of
niB̃ Number of bidirectional pairs formed by neuron i within the candidate blob

nminB̃
Minimum number of bidirectional pairs that each neuron in the candidate blob

needs to form within it
B Bidirectional blob
niB Number of bidirectional pairs formed by neuron i within the blob

C̃ Bidirectional candidate community
NC̃ Size of the bidirectional candidate community

nminC̃
Minimum number of bidirectional pairs that a candidate neuron needs to form with

the candidate community

niC̃
Number of bidirectional pairs formed by neuron i with the members of the current

candidate community
ϑnoise Threshold for noisy communities
ϑω Threshold for communities merger

Table 4.1 List of the symbols used for the algorithm description and their meaning.

requirement for being part of a community. As a consequence, the bidirectional pairs that these excluded
neurons form in the network also cannot be part of any community, hence they should be subtracted from
the

{
ni
}

of the involved neurons. Therefore, after P is formed, neurons are subject to the pool staying
condition niP ≥ nminP , where niP is the number of bidirectional pairs formed only within P. Nodes violating
this inequality are excluded from P and so are their bidirectional pairs. The pool is therefore reduced and{
niP
}

need to be updated. This iterative process stops when niP ≥ nminP ∀i ∈ P or when the number of
neurons left in the pool is below the noise threshold (meaning that an eventual community can be considered
as a random happening, see below). In the first case, the final P is the working material for the next steps,
whereas in the second case the entire algorithm ends with no communities found.

Differently from the following steps, nodes that are left out of P are definitely lost, as they will not be
reconsidered again. Hence, the value assigned to nminP has to be carefully evaluated: limiting the number of
neurons in the pool will greatly reduce the computational cost of the rest of the algorithm; however, the risk
of not including neurons that are actually part of a community increases. Throughout this paper we adopt
the ”safe” choice nminP = 1, for which P coincides with the whole network when N and ZB are sufficiently
large like the ones we use. This is also the case of the toy network we are considering in this section (all
neurons of the network are admitted to the pool, see Fig. 1a).

Neurons in P can be sorted in a popularity ranking based solely on niP (Fig. 1a, right). In doing so,
nodes with the same value of niP are treated as identical because we are (temporarily) losing all the detailed
information of which pairs of neurons are effectively connected with each other. Step 2 below is built only
upon the popularity ranking, therefore without the need to access this detailed information. This allows to
save a considerable amount of computational resources and to speed up the research, while still obtaining
great results in terms of community detection.

Popularity ranking is a preliminary step, deterministic and with no approximations (i.e. there is no loss
of information) as long as the threshold nminP is kept to a low value. From now on we will be working only
with the neurons in P.

5

8 6

8

7

2

6

7

6

9

6

8 6 7

8

7

2
6

7
6
9

6

Popularity of a neuron

7

Pool of bidirectional

neurons f

𝑵𝟏

𝑵𝟐

𝑵𝟑

𝑵𝟒

𝑵𝟓

𝑵𝟔

𝑵𝟕

𝑵𝟖

𝑵𝟗

𝑵𝟏𝟎

𝑵𝟏𝟏

All-to-all connected

network

Single connections 𝒘𝒊𝒋, 𝒘𝒋𝒊 Bidirectional connection pairs 𝒁𝒊𝒋 ≥ 𝒁𝑩 Connection pairs 𝒁𝒊𝒋

Popularity Ranking

a

b

Figure 1 Algorithm Step 1: Neurons popularity ranking. A All-to-all toy network of N = 11 neurons labelled
fromN1 toN11 (left). Each neuron i is associated with an integer representing the number of bidirectional connections
made by i in the entire network, ni. Neurons meeting the threshold nmin

P = 1 are entered in a bidirectional pool
P (middle), and here they are sorted in a popularity ranking according to the number of bidirectional connections
made within the pool, ni

P (right). In this example, network and pool coincide. B Zoom on a portion of the network
highlighting the procedure to obtain

{
ni
}

: The initial directed network {wij , wji} (left) is mapped into an undirected
network of single connection pairs {Zij} (middle). ni counts how many of these pairs fall in the bidirectional domain
(right). This quantity is used as initial criterion to enter the neurons in the pool P (see text).

Step 2. Blob search. Our heuristic approach consists in using the popularity ranking to narrow the
research to the regions in P where it is more likely to find a community. The key observation is that once
we give a formal definition of community like equation (4), we can use it a basis for a reliable heuristic
search. On the left hand side of equation (4) we have the number of bidirectional pairs formed by neuron
i within the community C, which, by using the notation introduced in this section, can be rewritten as
niC . As pointed out earlier, these quantities are unknown; however, they are upper bounded by niP , which
corresponds to the case where all the bidirectional pairs that a neurons forms are part of the same, unique
community. We can invert this argument and derive from equation (4) the size of the largest community
that each neuron can potentially form within the pool:

|Cmaxi | = niP
ϑC

+ 1 ∀i ∈ P . (5)

|Cmaxi | does not take into account which are the neurons connected with neuron i through the niP bidirectional
connections. As a consequence, all the NP = |P| relations of equation (5) are uncoupled, differently from
what happens in the community definition. Starting from equation (5), this second step aims at filling
the gap with equation (4) by progressively incorporating these element that have been discarded, hence
producing as a result sets of neurons in P that satisfy the full community definition. The goal of this step
is indeed to find the largest possible communities in the network. This is done through a recursive two-step
procedure, depicted in (Fig. 2):

• Part 1. Starting form equation (5), we find the largest set of neurons in the pool that could potentially
form a community based only on the information contained in the popularity ranking. We call this a

6

Add next wave to the blob

Candidate blob

Initial

candidate blob

Add next wave to the blob
Selected wave cannot be accepted

Wave 1

Wave 2

Wave 3 a

Blob

There is a community structure

b Candidate blob

Figure 2 Algorithm Step 2: Blob search. A Part 1 : Detecting a candidate blob B̃. The research starts with
the highest ranked neuron as the only one in B̃ (top left). The other neurons left in the ranking are divided into
waves depending on ni

P and are progressively added to the candidate blob until the condition Nmax
B̃ > NB̃ is violated

(middle), see explanation in the text. If Nmax
B̃ < NB̃, as in this example, then B̃ is the set of neurons found before

adding the current wave (top right). B Part 2 : Candidate blob validation. The full community definition is restored
within B̃, giving the minimum number of bidirectional pairs that each neuron of the blob needs to form within the
blob itself, nmin

B̃ (left). In this example all the neurons in the candidate blob meet this requirement (middle), as they
are all-to-all bidirectionally connected except for the pair N4, N10. The candidate blob satisfies then the complete
community definition and gets the status of blob B (right).

bidirectional candidate blob B̃. Formally, B̃ is a set of neurons such that:

niP ≥ ϑC
(
|B̃| − 1

)
∀i ∈ B̃ with B̃ as large as possible. (6)

Respect to equation (5), with equation (6) we are restoring the coupling between the equations, that
is an essential feature of the community definition. On the other hand, the approximation that we are
making respect to equation (4) is clear when we compare the two relations: neurons are included in
B̃ not because of the number of bidirectional connections that they form within B̃, as the community
definition would require, but depending on the total number of bidirectional connections that they
form in the entire pool, niP .

Note that B̃ does not coincide with the potential community that the most popular neuron can form
(maxi∈P |Cmaxi |), but it is highly likely that such a neuron is part of B̃. In other words, the most
popular neuron i∗ = argmaxi∈P |Cmaxi | is the node that has the highest probability in the entire

network to belong to B̃, hence it is the first one to be recruited. In the example, i∗ = N2, with 9
bidirectional pairs formed in the pool (see Fig. 2a, top left). The other neurons are organised in waves,
formed by identically ranked nodes, which are evaluated one at a time in a descending order (Fig. 2a,
middle). At every iteration, the candidate blob is fully characterised by two quantities: the actual size

7

NB̃ and the size Nmax
B̃ of the largest possible community the entire set B̃ can be part of, based on the

popularity ranking. Since for each neuron this is given by equation (5), then, for the candidate blob
as a whole, Nmax

B̃ is determined by the last wave of neurons included:

Nmax
B̃ = min

i∈B̃
|Cmaxi | . (7)

At the beginning, B̃ = {i∗}, hence NB̃ = 1 and Nmax
B̃ = |Cmaxi∗ |. As we progressively recruit waves of

neurons, NB̃ increases whereas Nmax
B̃ decreases. As long as NB̃ < Nmax

B̃ then B̃ can potentially be a
community and we can keep on recruiting the next wave of neurons to investigate whether a larger
candidate blob (which could lead to a larger community) is possible. When the inequality is no longer
satisfied then the process of recruiting neurons stops. We can have two scenarios: NB̃ > Nmax

B̃ means

that some neurons in B̃, the most recently added ones, do not have enough bidirectional pairs: even in
the most optimistic case where all these pairs are within B̃, these neurons do not meet the community
threshold, given the actual size of B̃. Thus, the largest possible candidate blob is the one found at the
previous iteration. This is the case of the toy network we are considering, as shown in Fig. 2a, top
right. The second scenario is when NB̃ = Nmax

B̃ , and the largest possible candidate blob is the set of
neurons found at the current iteration.

• Part 2. At this stage we have a set of neurons, a candidate blob B̃ (Fig. 2b, left), that satisfies
equation (6): according to the number of bidirectional connections that each of them forms in the
pool, B̃ is suitable to form a community. We can therefore move on and restore the full community
definition, equation (4), by computing the number of bidirectional connections niB̃ that each neuron in

B̃ forms within B̃ itself (Fig. 2b, middle). In other words, we are substituting niP with niB̃ in equation

(6), obtaining exactly the community definition. Thus, if each neuron in B̃ satisfies the condition, then
there is a community structure and we call it a bidirectional blob B (Fig. 2b, right): a set of neurons
that certainly contains at least one bidirectional community.

If the community definition is not satisfied, then we withdraw those neurons that violate it to obtain
a new B̃ and to apply Part 2 again. This refinement process continues until the algorithm finds a blob
B or until B̃ contains only one neuron, meaning that there is no blob.

Whenever this step gives a non empty blob as a result, then we proceed with Step 3 below to finally find
the communities that are present in B. After this, we temporarily eliminate from the pool all the neurons
that have been detected as being part of a community so far, and to this modified pool we apply Step 2
from the beginning. Therefore, if a neuron is found to be part of a community, it does not get the chance
to be evaluated again for being included in other blobs, meaning that blobs are all disjointed sets. This is
one of the reasons why we introduce Step 3 below, which is built to detect overlapping communities.

The procedure continues until there is no blob found. In this case the entire algorithm goes to an end
and its final outcome are all the bidirectional communities found so far within the previously detected blobs.
Thus, the result of this step is a set of non-overlapping blobs, each of them containing for sure at least one
bidirectional community.

Step 3. Looking into a blob: the friendship algorithm. The set B that we obtain at the end of Step
2 certainly forms a community, as it satisfies the definition. However: i) two different communities, or at
least parts of them, may be detected within the same blob (resolution problem). ii) The method does not
correctly identify overlapping communities. If there is an overlap between any of them, the above procedure
assigns the intersection region to only one community (overlapping problem). iii) Mistakes may occur during
the identification process: some neurons that are originally part of a community may have been left out of
the blob that contains that community, we call them good friends, whereas some other neurons may have
been erroneously included in B, we call them false friends (accuracy problem).

In order to address these issues, at this stage we define a procedure that builds up a community neuron
by neuron through direct verification of the definition. This approach is much more feasible and robust at
this stage rather than at the very beginning, for two reasons: i) we apply it to a very limited set of neurons,
i.e. the blob B, and ii) we already know that these neurons are relevant in terms of community structure.

Step 3 starts by selecting the three neurons of the blob that are the most popular ones and at the same
time form only bidirectional pairs among them. We call this candidate community core, and its purpose
is to give a likely basis where to start building the candidate community C̃ (Fig. 3a). The reason why we
choose three neurons is to minimise mistakes: there is no guaranty that these three nodes really belong to
the same community, but the probability of this event to happen is high, and it monotonically decreases
with the size of the candidate community core. Also, among all the possible triplets of neurons, these three

8

7

7

7
7

Blob

Community core

7
7

7

Initial candidate community

Current random

candidate

Candidate accepted

Nodes left in the blob Final candidate community

a

b

The 3 highest ranked neurons

that are all to all connected

through a bidirectional pair

Figure 3 Algorithm Step 3: Friendship algorithm. A Detecting the candidate community core: The highest
ranked neurons in the blob that are also all-to-all bidirectionally connected. B Building a candidate community:
Starting from the core (left), one of the neurons that are left in the blob is randomly selected at a time and, based
on the community definition, its inclusion in the candidate community is evaluated (middle). Here we show only the
first iteration with the neuron N4: Because it forms a bidirectional connection with all the 3 neurons in C̃ (n4

C̃ = 3),
it can be accepted, resulting in a bigger candidate community for the next iteration (right).

nodes maximise the probability of having three neurons being part of the same community, since they are
the highest in the ranking. On the other side, the choice of having a core of only two neurons does not
seem very reliable because, due to the random generation process of connections in the network (see below),
the event that two neurons are connected with a bidirectional pair is very common, even among neurons
that are not part of any community. Once we identify the candidate community core, in each iteration we
randomly select a neuron in the blob and we ask if it satisfies the community definition (Fig. 3b): given
the current size of the candidate community NC̃ , by using the definition equation (4) and rounding up the
result, we have the minimum number of bidirectional connections nminC̃ that the candidate neuron needs to

form with the current members of C̃ in order to join it.
In Fig. 3b we show the procedure for the first iteration only, where C̃ = {N2N8N9}, hence NC̃ = 3,

nminC̃ = 3, and N4 is the randomly selected node. This neuron forms 7 bidirectional connections in the entire
network, but at this stage this is not relevant anymore. What matters is that it forms a bidirectional pair
with each of the neurons in the current candidate community (n4C̃ = 3), meaning that it is ”friend” with all

of them and thus it can clearly be accepted in C̃. In the next iteration, the candidate community is then
C̃ = {N2N4N8N9}, which results in NC̃ = 4 and nminC̃ = 3 again. Thus, the neuron that will be selected,
either N10 or N11, needs to form at least 3 bidirectional connections with the 4 candidate community’s
members in order to join it. This is exactly what happens in this example, and, since in the last iteration
also the last neuron turns out to have enough friends in C̃ (for which it will be NC̃ = 5 and nminC̃ = 4), the

final candidate community will coincide with the blob: C̃ = {N2N4N8N9N10N11}.
Note that in early iterations, when the candidate community is not well formed yet, false friends still

get a chance to pass the test and be recruited in C̃. On the other hand, strongly connected neurons within
the original community have much higher chances to pass the test, no matter at which iteration they are
selected. Thus, once the recruitment within the blob has finished and C̃ is formed, we check again that each
neuron is entitled to stay in C̃ through the verification of the community definition (false friends expulsion).
In the example we are using, no neuron in C̃ fails to meet the requirement so they all definitely earn the
right of being in the candidate community.

9

Most likely, the above procedure returns a set that is a single, well consistent candidate community,
hence solving the resolution problem. However, it might not be the original complete community: good
friends may be left out, most likely in the blob B but also in the pool P. Therefore, we start recruiting
for a second time with the condition of satisfying the community definition, first among the neurons left in
the blob and then within the pool (good friends inclusion). This procedure, together with the false friends
expulsion, addresses the accuracy problem. Moreover, recruitment among neurons in the pool allows to
consider for the current candidate community also neurons that have been previously included in other
blobs or communities, hence solving the overlapping problem. In our example, there are no neurons left in
the blob so we check the ones in the pool: N1, N3 and N7 are recruited whereas N5 and N6 are left out,
giving finally a community candidate of 9 neurons that coincides with the original true community.

Step 4. Candidate community global control. As pointed out earlier, based on Esposito et al.
(2014) [Esposito et al., 2014], for a set of neurons to be a bidirectional community C, its symmetry measure
equation (1) must exceed a threshold value sB , which depends on the distribution of connections considered.
Now that we isolated a candidate community from the rest of the network, we are in the position of applying
this criterion. Candidate communities that do not pass this test are sets that cannot be qualified as commu-
nities. Note, however, that they are still bidirectional communities in the sense of our topological definition
equation (4). Since this definition is threshold-based, it introduces a binary criterion with subsequent loss
of information. The definition is guidance for community detection that reduces the weighted network to
an un-weighted one. Thus, once the research has been successful, the complete information stored in the
weights needs to be recovered and the actual identity as bidirectional community can be finally evaluated
by means of the symmetry measure.

Sets that cannot be qualified as communities present an excess of bidirectional pairs due to the random
generating process, which made these sets to be detected as possible communities, but failure in the sym-
metry measure test means that the rest of the pairs are far from being bidirectional, hence pulling the value
of the symmetry measure down within the randomness boundaries. This is no evidence that learning took
place in the specific set as a whole. Statistically, this situation is likely to happen for small sets of neurons,
and indeed this is when we observe failure of the symmetry measure test. These sets of neurons are therefore
safely withdrawn.

Step 5. Noisy candidate communities identification. Besides the real communities that are present
in the network as a result of learning, communities can be also formed out of chance, due to the randomness
in the network’s connectivity: it is highly likely that small sets of 4− 5 neurons show community properties
and thus will be detected as such. Since the probability of randomly forming a community dramatically
drops with the size, we can define a noise threshold ϑnoise and discard all sets below such a threshold.
This clearly fixes a lower limit to the resolution of the algorithm. However, the maximum size of a random
community, which ideally corresponds to such a threshold, grows with the size of the network in a way that
is sub-linear, allowing to set a unique, relatively small threshold for all the networks with a large size that
does not affect the overall performance.

Step 6. Single community reduction. At this stage we have single communities C, but we might
have a final redundancy problem, especially for networks of small size: it can happen that the same original
community has been detected more than once, every time with different false friends included and good
friends left out. It can also happen that the original community is broken into two overlapping parts
detected as different communities. The final step is therefore trying to resolve these issues calculating the
overlap degrees between each pair of communities. Pairs with an overlap exceeding the overlap threshold
ϑω are merged together and the symmetry measure is used as an evaluating criterion: if the value on
the merged community is higher than the values of the single communities, then the merged community
definitely replaces the two single ones, otherwise they are kept separate.

Network and communities generation: benchmark procedure

To test the above algorithm, we generated in silico data representing several different scenarios, which
will be discussed in the Results section alongside the algorithm performance. Below, we describe the general
procedure used to produce a connectivity matrix for a network containing bidirectional communities.

The first step for creating a bidirectional community is to decide the value of its symmetry measure,
which has to be in the range [sB , 1] [Esposito et al., 2014]. By definition, this gives the mean value of the
strength of the connection pairs in the community, 〈Z〉 = 1 − s. Because the learning process shapes the
connections of a community in the same direction, it is reasonable to assume that at the end of learning

10

the pairs form a Gaussian distribution. Therefore, for each community in the network, we generated the
set of {Zij} according to a Gaussian distribution with mean 〈Z〉 and standard deviation σ, which is a
free parameter. We recall that Z is a variable ranging from 0 to 1 and that the bidirectionality region is
[0, ZB]. Based on this, two issues may arise when we generate the pairs, related to the two boundaries and
to the choice of σ: i) some of the Zij could be negative. If this is the case, the tails of the distribution are
symmetrically folded towards the inside so as to guarantee the non-negativity of the {Zij} and to preserve
the mean value of the distribution. ii) A considerable part of the distribution could fall in the randomness
domain (Z > ZB), meaning that many pairs will not be classified as bidirectional. As a consequence, some
neurons may not form the minimum number of bidirectional pairs required by the community definition,
resulting in the whole set not being a community anymore. To avoid this issue, we make sure that the
integral of the Gaussian in the bidirectional region, which gives the probability of forming a bidirectional
pair ℘B , exceeds the community threshold ϑC .

Once we have the set of {Zij} for each community, we can generate the single connections wij . A first
half of them is directly drawn from the uniform distribution in [0, 1], be the upper (or the lower) triangular
part of the community’s connectivity matrix. This first half, together with the {Zij}, is used to compute the
second half of the single connections by means of equation (2). The rest of the connections in the network
are drawn from the uniform distribution in [0, 1].

Overlaps between communities are governed by the set of parameters {ωλρ} representing the fraction of
the community ρ that is in common with the community λ:

ωλρ =
|Cλ ∩ Cρ|
|Cρ|

(8)

We allow overlaps only between subsequent pairs of communities. In other words, we can progressively
enumerate the communities in the network in such a way each of them overlaps at most with only the
previous and following one. Formally: ωλρ = 0 if |λ − ρ| ≥ 2, leading to a tridiagonal matrix of overlaps.
In cases of overlap between two communities, after having generated the first community, the mean of the
pairs in the intersection is computed and it is used to offset the mean of the Gaussian distribution for the
rest of the pairs in the second community, so as to preserve the value of the symmetry measure that we
chose.

The set of parameters {sλ}, {σλ}, {ωλρ} we introduced here for the connections generation, together
with the size of communities {Nλ} and network N , entirely define the structure of a network, but they
do not uniquely determine its connectivity because all the connections are generated through the above
mentioned random process. Due to the presence of random elements in both data generation and detection
procedure, for each combination of parameters we consider, we repeat the experiment niter = 100 times.
Each experiment, or run, consists in generating the network connectivity as described above and applying
our detection algorithm. Cumulative and averaged results are displayed in the appropriate section.

Analysis of the results: measuring successful detection

At the end of each run, on one side we have the communities that we generated at the beginning, i.e.
the real communities, and on the other side those detected by the algorithm. One way of measuring the
quality of the results is to count how many good neurons have been detected. However, since this is going to
be displayed as an average over the runs, we may lose too much information about the single run. Also, as
pointed out earlier, failure in detecting single neurons may still happen despite the bulk of the community
has been correctly identified.

Therefore, we introduce a criterion to determine successful community detection: whenever the number
of neurons in a detected community equals at least a fraction ϑrecog of the neurons in a real community,
we count that real community as successfully identified. If there is more than one detected community
for which this happens relatively to the same real community, then the one with the highest percentage is
considered to be one matching the real community and the others are counted as false communities, unless
they result to match some other real community in the network. We choose ϑrecog = 75% as in our opinion
three quarters is a fraction that already carries the distinctive features of the community to which it belongs.

At the end of the results’ evaluation, the analysis of the algorithm performance can be done by using he
following information on each real community: i) how many times it has been successfully detected in all
runs, and ii) how many good neurons have been identified as average across the runs. Alongside, we also
display information about false communities that have been detected and false neurons included in good
communities. Results about communities’ detection provide a quantitative tool to evaluate the goodness of
the algorithm, whereas neurons detection provide a qualitatively information on its accuracy. Finally, we
show the time needed to run the algorithm.

11

Thresholds

The algorithm described above makes use of 5 customisable thresholds, see Tab. 1. Throughout this
paper we keep them fixed at their respective values. Since we assume a uniform distribution of connections
prior learning, we can directly rely on the results of Esposito et al. 2014 [Esposito et al., 2014] for uniform
distributions: by fixing a level of confidence at p = 0.05, the bidirectionality threshold we use is sB = 0.6954,
which in turn gives ZB = 0.3046. The threshold ϑC for community existence is rather arbitrary and it can be
fixed according to how dense we require the communities to be. In the present study we choose ϑC = 75%.
Concerning the noise effect, after observing the size of the noisy communities detected by the algorithm, we
fix ϑnoise = 30. For the other thresholds, also arbitrary, we use nminP = 1 as a safe choice (as previously
stated) and ϑω = 25% as a limit case before two communities can be considered as part of a single bigger
one (after evaluation of symmetry measure, see Step 6).

Results

In this section we present the results obtained by applying the community detection algorithm to networks
of neurons with different community structures. In all the cases, we assume that the given network is the final
product of a learning process that shaped the connections of some sub-regions away from the initial uniform
distribution, to form what we called bidirectional communities, equation (4). The rest of the connections
remain unchanged and therefore they are uniformly distributed. Network connectivity is generated according
to the procedure outlined in Methods section.

Since the learning process is not explicitly simulated here, we have total control on the final structure of
the network, through the tuning of 6 sets of parameters: the size of the network N , the number of commu-
nities ν, the size of communities {Nλ} and the overlap between communities {ωλρ} define the architecture
of a network. The symmetry measure of the communities {sλ} and the standard deviation of the connection
pairs in the communities {σλ} define how much a community has been shaped towards bidirectionality.

The way the algorithm is constructed, we expect that strong bidirectional communities, i.e. with s→ 1
and small σ, are the easiest to detect, compared with bidirectional communities with s → sB and large
standard deviation. The degree of difficulty in the detection of a community can be derived from the way
we generate the community itself. Indeed, as pointed out in the Methods section, s and σ determine the
number of bidirectional pairs that each neuron forms in the community, through a random process. Thus,
necessary condition for a set of neurons to be a community (and therefore to be detected) is that this number
exceeds the threshold for community existence. Also, the closer this number to the threshold (from above),
the more difficult the detection of the community.

Each simulation consists of niter = 100 runs, each of them starts with communities and network genera-
tion, continues with the communities’ detection algorithm and finally ends with the evaluation of the results,
where we compare detected and generated communities. To evaluate the algorithm performance, we use
two indicators for each community generated in the network. The first quantity counts how many times a
community has been successfully detected during the niter iterations (see Methods). Once a community has
been correctly identified, the second indicator measures how many nodes of the generated community have
been detected, and displays this information as an average percentage across niter iterations and relative
to the total number of nodes in the generated community. Additional indicators for the number of false
communities detected and for the percentage of false neurons in a correctly detected community complete
the evaluation.

Networks with a single community

Alongside the size of the community, we introduce the community to network ratio rc/n = NC/N , which
is a more significant indicator to assess the algorithm performance. A complete evaluation (at least in the
single community case) requires, therefore, carrying out 3 different analyses, corresponding to fixing one of
the three quantities NC , N, rc/n while varying the other two.

Single, size-varying community in a network of fixed size

We begin the analysis of the algorithm performance with the most common and typical problem: given
a network, we want to know if there is a community and of which size. Therefore, we fix the size of
the network at N = 5000 neurons and we systematically vary the size of the community in the set
{75, 100, 250, 500, 750, 1000, 2500}. The community is generated with sC = 0.75 and σC = 0.05, result-
ing in a probability of forming a bidirectional pair ℘B = 0.863. Correctly, ℘B > ϑC (see Network and
community generation subsection in Methods).

12

Ti
m

e
pe

r n
eu

ro
n

[s
]

0

0.02

0.04

0.06

0.08

0.1

 200 400 800

2000
4000

8000

Network size

0.025
 0.05 0.1 0.25 0.5 1

Ratio Community to Network

Ti
m

e
pe

r n
eu

ro
n

[s
]

0

0.02

0.04

0.06

0.08

0.1

0.015
 0.02

 0.05
 0.1

 0.15
 0.2 0.5

Ratio Community to Network

 75

 100
 250

 500
 750

1000
2500

Community size

C
om

m
un

ity
 D

et
ec

tio
n

0

20

40

60

80

100

 50 75 100 150 250 350 500 750

Community size

N
eu

ro
ns

 D
et

ec
tio

n
%

0

20

40

60

80

100

 200 400 800

2000
4000

8000

Network size

C
om

m
un

ity
 D

et
ec

tio
n

0

20

40

60

80

100

 200 400 800

2000
4000

8000

Network size

N
eu

ro
ns

 D
et

ec
tio

n
%

0

20

40

60

80

100

0.015
 0.02

 0.05
 0.1

 0.15
 0.2 0.5

Ratio Community to Network

C
om

m
un

ity
 D

et
ec

tio
n

0

20

40

60

80

100

0.015
 0.02

 0.05
 0.1

 0.15
 0.2 0.5

Ratio Community to Network

a

b

c

e

f

d g

h

i

N
eu

ro
ns

 D
et

ec
tio

n
%

0

20

40

60

80

100

 50 75 100 150 250 350 500 750

Community size

Ti
m

e
pe

r n
eu

ro
n

[s
]

0.2

0.4

0.6

 50 75 100 150 250 350 500 750

Community size

 1000
 1500

 2000
 3000

 5000
 7000

10000
15000

Network size

Figure 4 Algorithm Performance for the case of single community of sC = 0.75 and σC = 0.05
embedded in a network. A - C Network’ size fixed at N = 5000 neurons while varying community’ size.
D - F Ratio community to network fixed at rc/n = 0.05 while varying both network’ and community’ size. G - I
Community’ size fixed at NC = 200 neurons while varying network’ size. All results in each panel are relative to
niter = 100 repetitions. A, D, G Cumulative community detection. Blue bars: Successful detection, Red upside
down bars: False detection. The dashed line represents the best possible performance of correctly detecting the
community all the time. B, E, H Average percentage of neurons detection, relative to the size of the generated
community. Blue bars: Good neurons, Red upside down bars: False neurons. C, F, I Simulation time per neuron in
the network. Error bars represent standard error. Note that the scale of all x-axes is logarithmic.

In Fig. 4a we report the results concerning community detection: blue bars show the cumulative number
of successful detection of the generated community, whereas the upside down red bars count the number of
false communities. Similarly, Fig. 4b shows the average percentage of good neurons (blue bars) and false
neurons (upside down red bars) in the detected community. Blue bars carry what we can call a positive
information as we want to maximise them, whereas red bars is what we want to minimise to zero, hence
they carry a negative information. The horizontal black dashed line marks the optimality level for positive
information: when for the same value of rc/n both bars of Fig. 4a,b hit this level means that the algorithm
has detected all the neurons forming that community all the time. For the values considered here, this
is almost always the case, except for the smallest community case where detection of the community is
successful only 20% of the times. Note that whenever this community is identified, the algorithm correctly
recruits all the good neurons (the blue leftmost bars of 4a,b have the same height). As expected, these
results suggest that the bigger the size of the community the easier to detect it, with a critical value of
∼ 100 neurons.

Fig. 4c shows a very interesting result, direct consequence of the algorithm architecture: the computa-
tional time per neuron in the network is smaller for small communities. In other words, when we increase the
difficulty of the task, the time needed for the detection is reduced, provided that the size is above the critical
value for the search to be successful. It is also interesting to note that if we increase the bidirectionality of

13

the community (by increasing the value of its symmetry measure), the algorithm time is the same (result
not shown here). This means that detection time is not affected by the internal structure of the community
but only by its size.

Single, size-varying community in a size-varying network with fixed ratio

The above scenario gives only partial information on the goodness of the algorithm, as the size of the
network is fixed to a single value: Fig. 4a-c show results when we vary only the size of the community to
account for different ratios community to network. However, the task of finding a community of 100 neurons
in a network of 1000 nodes might be different from searching for a community of 1000 in a network of 10000
nodes.

Therefore, we investigate a second scenario: a single, size-varying community within a network whose size
also varies, in such a way to keep the ratio community to network fixed. We choose a relatively small value
rc/n = 0.05, while the size of the community varies between the values {50, 75, 100, 150, 250, 350, 500, 750}.
The size of the network varies accordingly from 1000 to 15000. As above, sC = 0.75 and σC = 0.05.

Results are shown in Fig. 4d-f, with the same meaning of quantities and colours as in Fig. 4a-c. Detection
is perfect almost all the time, with very few mistakes mostly in the sense of detecting false communities.
At first, the performance is fairly independent of the absolute sizes, as expected. A more careful inspection
shows that slightly better performances are obtained for larger sizes. The reason could be that for larger
networks the fluctuations on the bidirectional pairs formed out of chance become smaller and for the neurons
being part of the generated community is easier to stand out of the crowd of nodes, hence the precision of
the algorithm increases.

Single, fixed size community in a size-varying network

Finally, to complete the analysis of the single community case, we study the algorithm performance
when we increase the size of the network while keeping fixed the number of nodes in the community.
We choose a small community of NC = 200 neurons and we vary the size of the network in the set
{200, 400, 800, 2000, 4000, 8000}. The ratio community to network varies accordingly from 1 to 0.025. Again,
sC = 0.75 and σC = 0.05.

Results are shown in 4g-i. Once again, the performance of the algorithm is excellent in the range of values
considered, in terms of both positive and negative information. In particular, 4h shows that the algorithm
finds exactly the 200 neurons forming the community all the time, with no false neurons. As expected,
increasing the size of the network also increases the time needed for the detection, with dependence from
the time per neuron of the network that looks quadratic.

Community NC sC σC ωCC′ ℘B

1 200 0.75 0.05 - 0.86
2 200 0.75 0.05 0.2 0.86
3 500 0.74 0.05 0.1 0.81
4 150 0.74 0.05 0.2 0.81
5 150 0.79 0.1 0 0.81

Table 4.2 List of parameter’s values used to generate the community structure in the case of ν = 5 communities.

Column 1: Community progressive number. Column 2: Size of the community. Column 3: Symmetry measure.

Column 4: Standard deviation of the connection pairs Z. Column 5: Overlap with the previous community, expressed

as number of common neurons divided by the number of total neurons in the community. Column 6: Probability

that a neuron of the community forms a bidirectional pair, as a result of a Gaussian distribution with parameters

based on Columns 3 and 4.

A multiple communities case

Finally, we wish to study the behaviour of our detection algorithm when more than one community is
present in the same network. As an example, we choose a challenging task: a network with 5 communities
generated with different parameters’ values so as to have a certain complexity in the overall structure, see
Tab. 2. The size of network is varied in the set {1500, 2143, 3000, 5000, 7500}. Note that values of the
symmetry measure are all very close to the limit between bidirectionality and randomness, making the
detection more difficult, as can be inferred from the last column of the table.

14

0

50

100

C
om

m
un

ity
 4

7500
5000

2143
1500Network Size

0.100
0.070

0.050
0.030

0.020

Comm 4 Ratio

 Comm Detection

3000

Good Neurons
False Neurons

0

50

100

C
om

m
un

ity
 3

7500
5000

2143
1500Network Size

0.333
0.233

0.167
0.010

0.067

Comm 3 Ratio

 Comm Detection

3000

Good Neurons
False Neurons

0

50

100

C
om

m
un

ity
 2

7500
5000

2143
1500Network Size

0.133
0.093

0.067
0.040

0.027

Comm 2 Ratio

3000

 Comm Detection
Good Neurons

False Neurons

0

50

100

C
om

m
un

ity
 1

7500
5000

2143
1500Network Size

0.133
0.093

0.067
0.040

0.027

Comm 1 Ratio

 Comm Detection

3000

Good Neurons
False Neurons

Ti
m

e
pe

r n
eu

ro
n

[s
]

0.1

0.2

0.3

0.4

1500
2143

3000
5000

7500

Network size

0.020.030.050.07 0.1

Ratio Community to Network

Av
. C

om
m

un
ity

 D
et

ec
tio

n

0

1

2

3

4

5

6

1500
2143

3000
5000

7500

Network size

0

50

100

C
om

m
un

ity
 5

7500
5000

2143
1500Network Size

0.100
0.070

0.050
0.030

0.020

Comm 5 Ratio

 Comm Detection

3000

Good Neurons
False Neurons

a

f

b

g

c

d

e

Figure 5 Algorithm Performance for a network with complex structure. Five communities with different
sets of parameters, see Tab. 2, are embedded in the network. Communities’ size are kept fixed while varying
network’ size. All results in each panel are relative to niter = 100 repetitions. A Global performance. Dark grey
bars: Successful detection with all communities resolved, grey bars: Successful detection with two communities
unresolved (see text for details), light grey bars: False communities. The dashed line represents the best possible
performance of correctly detecting all the five communities all the time. B - F Single community detection statistics.
Dark grey bars: Cumulative community detection over the 100 repetitions, grey bars: Good neurons, light grey bars:
False neurons. Note that the (expected) discrete amount of false neurons detected in communities 2 and 3 is due to
the unresolved cases between these two communities (see text for a discussion). G Simulation time per neuron in the
network. Error bars represent standard error. Note that the scale of all x-axes is logarithmic. The ratio community
to network below panel g is relative to the smallest community in the network.

Fig. 5a shows the global performance of the algorithm, in the form of stacked bars for each value of
the network’s size considered. The dark grey part at the bottom of the bars counts how many times the 5
communities have been correctly detected as 5 different communities, as an average over niter = 100 runs.
The central part in grey shows the average number of times that a community has been detected as an
unresolved community, i.e. two overlapping communities detected as a single big one (never more than
two). The upper part in light grey shows the average number of false communities. Clearly, as the size
of network increases, the number of false communities also increases, but the performance on the 5 true
communities remains stable and optimal. Indeed, all the communities are detected almost all the time,
either resolved (more than 95% of the time) or unresolved. From a more detailed analysis of the results,
it can be seen that when there is an unresolved community this is always the union of the communities 2
and 3 in Tab. 2. This is reasonable as C3 is by far the largest in the network and the overlap of 0.1 with
community C2 means that they have 50 neurons in common. From the perspective of community 2 this is
a considerable overlap of 25%, which indeed equals the value we chose for the overlap threshold ϑω. It is
therefore a matter of few neurons whether these two communities are merged or not during the last step of
the algorithm (see Methods).

Fig 5b-f shows the algorithm performance community by community, with bars showing the cumulative
community detection (dark grey), percentage of good neurons (grey) and percentage of false neurons (light
grey). Detection of communities 1 and 5 is perfect, both in terms of good neurons and false neurons.
Communities 2 and 3 present a visible amount of false neurons, most of which, however, are due to the

15

unresolved cases between these two communities. In this sense they are not completely false neurons.
Finally, community 4 is the only one showing a decrease in the performance as the size of the network
increases, with percentages still above 85% for N = 7500. The reason is that C4 is the most difficult to
detect because is the one with the lowest values of NC , sC and σC .

The last panel, Fig. 5g shows the simulation time per neuron in the network. Note that, compared to
the case of a single community, the time needed is nearly five times larger, suggesting that it grows linearly
with the number of communities.

Discussion

In this paper we address the problem of structure detection in networks of neurons, which is of crucial
importance in the study of connectome in Neuroscience, framing it within the well-known, in Network
Theory, community detection problems. By nature, networks of neurons are weighted and directed graphs,
which makes the problem of structures searching in these networks one of the most difficult ones to approach.
In the general, for most of the problems related to structures detection in Graph and Networks Theory it is
not possible to give an exact solution, hence heuristic algorithms are often adopted.

Here we present an algorithm for the detection of a particular class of communities in large scale simulated
networks. Thus, this is intended mainly as a tool to help in silico research aiming at understanding the
connectome. In the future, the opportunity of having direct access to synaptic weights, and therefore to
connectivity matrices, may also allow a direct application of the algorithm to experimental data. Moreover,
the algorithm could be of more general interest for pure studies in Networks and Graph Theory and it can
be adapted to similar problems in other disciplines where nodes are not neurons.

Differently from cliques, that are very well defined objects, the concept of community is vague and
we cannot find a unique definition in the literature. Traditional methods for community searching are
either based on cliques or define a community a posteriori, i.e. as the outcome given by the algorithm.
Here we propose a different approach by giving a formal definition for communities a priori. We show
how having such a definition is an advantage as the algorithm can use it directly for a more efficient and
direct research. Also, the method is based on a definition of symmetry measure, which allows manipulating
the original connectivity and deal with quantities carrying much reduced information. This implies a loss
of information, but we show that results are excellent and there is a great benefit in terms of time and
computational resources.

The algorithm we present is based on statistics and it requires that the distribution of the connections
is known and is somehow regular: we assumed a uniform distribution, but in principle the method works
for any kind of distribution for which it makes sense to define mean and variance. As such, differently from
traditional approaches, our method works better for large number of neurons: we show that increasing both
the size of the network and the community gives better results. Also, we chose to focus on bidirectional
communities, but the procedure can be extended to other kind of communities, for instance unidirectional
ones. Indeed, similarly to bidirectional structures, experimental results show also an excess of unidirectional
connections in some parts of the brain [Wang et al., 2006,Lefort et al., 2009,Pignatelli, 2009]. Generalisation
to sparse networks should be also possible.

The results we present here are relative to worst case scenarios, because the communities are generated
with symmetry measure very close to the random domain. For communities that are more markedly bidi-
rectional the performance would be even better. Besides measuring the success on community detection,
the performance of the algorithm is also evaluated on the false detections: false communities and false
neurons within good communities. Based on initial results, to minimise false communities we naively fixed
a threshold for a minimum community size at 30 neurons, considering everything smaller as an outcome
of the random process used to generate the connections in the network. This limits the resolution of the
algorithm: if there are real communities whose size is smaller than the threshold, they will not be detected.
Since the average size of communities formed out of random depends on the size of the network, this part
of the algorithm can be improved by using a threshold that is a function of N . Such a function can be de-
rived by carrying out a systematic analysis on completely random networks, both theoretically and through
simulations.

On the other hand, it is worth noting there is nothing that makes a false community different from a
true community, except for the fact that the latter has gone through a learning process. A possible approach
to solve this problem could be therefore to track the evolution of the connectivity whenever possible. After
having detected the communities, looking back at the history of their connections could give important
insights about which sets really experienced a learning process.

The algorithm we presented requires setting a number of thresholds, which makes the research highly
customisable and it also allows different degrees of searching: for instance we can be interested in finding

16

only highly significant bidirectional communities, if any. We can tune the thresholds as we like for a stricter
search, which would require also less computational time. Once we have the outcome, we can then gradually
relax the values of the thresholds for a broader search, if we need.

The full algorithm is the combination of two sub-algorithms executed one after the other. The first sub-
algorithm alone already gives excellent results, especially for single community detection, with a massive
reduction of the running time. Indeed, the second sub-algorithm is essential for dealing with overlaps and
for resolving two communities that have been detected as a big one. Also, due to the statistical approach of
the algorithm, it is possible to evaluate the level of noise (bidirectional pairs formed out of chance) and take
it into account from the beginning of the procedure. This would allow to withdraw a consistent fraction
of neurons before executing the two sub-algorithms and therefore to greatly reduce the number of neurons
for the search. These aspects need to be further investigated, together with the possibility of introducing
parallel computing, to improve on the computational time requirements.

References

[Albert and Barabási, 2002] Albert, R. and Barabási, A.-L. (2002). Statistical mechanics of complex net-
works. Reviews of Modern Physics, 74.

[Ball et al., 2011] Ball, B., Karrer, B., and Newman, M. E. J. (2011). Efficient and principled method for
detecting communities in networks. Phys Rev E Stat Nonlin Soft Matter Phys, 84(3 Pt 2):036103.

[Barabási and Oltvai, 2004] Barabási, A.-L. and Oltvai, Z. N. (2004). Network biology: understanding the
cell’s functional organization. Nat Rev Genet, 5(2):101–113.

[Bassett and Bullmore, 2009] Bassett, D. S. and Bullmore, E. T. (2009). Human brain networks in health
and disease. Curr Opin Neurol, 22(4):340–347.

[Bomze et al., 1999] Bomze, I. M., Budinich, M., Pardalos, P., and Pelillo, M. (1999). Handbook of Combi-
natorial Optimization. Kluwer Academic Publishers, Norwell, USA.

[Bondy and Murty, 2008] Bondy, A. and Murty, U. (2008). Graph Theory. Springer.

[Brandes et al., 2006] Brandes, U., Delling, D., Gaertler, M., Grke, R., Hoefer, M., Nikolski, Z., and Wagner,
D. (2006). On Modularity - NP-completeness and Beyond. Universität Karlsruhe, Fakultät für Informatik,
Bibliothek.

[Bressler and Menon, 2010] Bressler, S. L. and Menon, V. (2010). Large-scale brain networks in cognition:
emerging methods and principles. Trends Cogn Sci, 14(6):277–290.

[Bullmore and Sporns, 2009] Bullmore, E. and Sporns, O. (2009). Complex brain networks: graph theoret-
ical analysis of structural and functional systems. Nat Rev Neurosci, 10(3):186–198.

[Clopath et al., 2010] Clopath, C., Buesing, L., Vasilaki, E., and Gerstner, W. (2010). Connectivity reflects
coding: A model of voltage-based stdp with homeostasis. Nat Neurosci, 13:344–52.

[Cook, 1971] Cook, S. A. (1971). The complexity of theorem-proving procedures. In Proceedings of the
Third Annual ACM Symposium on Theory of Computing, STOC ’71, pages 151–158, New York, NY,
USA. ACM.

[Danon et al., 2005] Danon, L., Duch, J., Diaz-Guilera, A., and Arenas, A. (2005). Comparing community
structure identification. J. Stat. Mech.

[Diestel, 2010] Diestel, R. (2010). Graph Theory. Springer-Verlag Berlin Heidelberg.

[Esposito et al., 2014] Esposito, U., Giugliano, M., van Rossum, M., and Vasilaki, E. (2014). Measuring
symmetry, asymmetry and randomness in neural network connectivity. PLoS One, 9(7):e100805.

[Esposito et al., 2015] Esposito, U., Giugliano, M., and Vasilaki, E. (2015). Adaptation of short-term plastic-
ity parameters via error-driven learning may explain the correlation between activity-dependent synaptic
properties, connectivity motifs and target specificity. Front Comput Neurosci, 8:175.

[Fortunato, 2010] Fortunato, S. (2010). Community detection in graphs. Physics Reports, 486(3-5):75–174.

[Fortunato and Barthélemy, 2007] Fortunato, S. and Barthélemy, M. (2007). Resolution limit in community
detection. Proc Natl Acad Sci U S A, 104(1):36–41.

17

[Garey and Johnson, 1990] Garey, M. R. and Johnson, D. S. (1990). Computers and Intractability: A Guide
to the Theory of NP-completeness. W. H. Freeman & Co., New York, USA.

[Girvan and Newman, 2002] Girvan, M. and Newman, M. E. J. (2002). Community structure in social and
biological networks. Proc Natl Acad Sci U S A, 99(12):7821–7826.

[Green and Sadedin, 2005] Green, D. and Sadedin, S. (2005). Interactions matter–complexity in landscapes
and ecosystems. Ecological Complexity, 2:117–130.

[Guye et al., 2010] Guye, M., Bettus, G., Bartolomei, F., and Cozzone, P. J. (2010). Graph theoretical anal-
ysis of structural and functional connectivity mri in normal and pathological brain networks. MAGMA,
23(5-6):409–421.

[He and Evans, 2010] He, Y. and Evans, A. (2010). Graph theoretical modeling of brain connectivity. Curr
Opin Neurol, 23(4):341–350.

[Karrer et al., 2014] Karrer, B., Newman, M. E. J., and Zdeborové, L. (2014). Percolation on sparse net-
works. Phys. Rev. Lett., 113.

[Lefort et al., 2009] Lefort, S., Tomm, C., Floyd Sarria, J.-C., and Petersen, C. C. H. (2009). The excitatory
neuronal network of the c2 barrel column in mouse primary somatosensory cortex. Neuron, 61(2):301–316.

[Lichtman et al., 2008] Lichtman, J., Livet, J., and Sanes, J. (2008). A technicolour approach to the con-
nectome. Nat Rev Neurosci, 9:417–22.

[Lichtman and Sanes, 2008] Lichtman, J. W. and Sanes, J. R. (2008). Ome sweet ome: what can the genome
tell us about the connectome? Curr Opin Neurobiol, 18(3):346–353.

[Malliaros and Vazirgiannis, 2013] Malliaros, F. D. and Vazirgiannis, M. (2013). Clustering and community
detection in directed networks: A survey. Physics Reports, 533(4).

[Newman, 2004] Newman, M. (2004). Detecting community structure in networks. The European Physical
Journal B, 38(2):321–330.

[Newman, 2010] Newman, M. (2010). Networks: An Introduction. Oxford University Press.

[Newman, 2006] Newman, M. E. J. (2006). Modularity and community structure in networks. Proc Natl
Acad Sci U S A, 103(23):8577–8582.

[Newman, 2013] Newman, M. E. J. (2013). Spectral methods for network community detection and graph
partitioning. Phys. Rev. E.

[Newman and Girvan, 2004] Newman, M. E. J. and Girvan, M. (2004). Finding and evaluating community
structure in networks. Phys Rev E Stat Nonlin Soft Matter Phys, 69(2 Pt 2):026113.

[Ovelgönne and Geyer-schulz, 2012] Ovelgönne, M. and Geyer-schulz, A. (2012). An ensemble learning
strategy for graph clustering. In 10th DIMACS Implementation Challenge Graph Partitioning and Graph
Clustering.

[Palla et al., 2005] Palla, G., Derényi, I., Farkas, I., and Vicsek, T. (2005). Uncovering the overlapping
community structure of complex networks in nature and society. Nature, 435(7043):814–818.

[Papadimitriou, 1977] Papadimitriou, C. H. (1977). The euclidean travelling salesman problem is np-
complete. Theoretical Computer Science, 4(3):237–244.

[Perin et al., 2011] Perin, R., Berger, T., and Markram, H. (2011). A synaptic organizing principle for
cortical neuronal groups. Proc. Nat. Acad. Sci. U.S.A., 108(13):5419–24.

[Pignatelli, 2009] Pignatelli, M. (2009). Structure and Function of the Olfactory Bulb Microcircuit. PhD
thesis, École Polytechnique Fédérale de Lausanne, http://library.epfl.ch/en/theses/?nr=4275.

[Porter et al., 2009] Porter, M., Onnela, J.-P., and Mucha, P. J. (2009). Communities in networks. Notices
of the American Mathematical Society, 56(9):1082–1097.

[Richmond et al., 2011] Richmond, P., Buesing, L., Giugliano, M., and Vasilaki, E. (2011). Democratic
population decisions result in robust policy-gradient learning: A parametric study with GPU simulations.
PLoS One, 6(5):e18539.

18

[Rosvall and Bergstrom, 2007] Rosvall, M. and Bergstrom, C. T. (2007). An information-theoretic frame-
work for resolving community structure in complex networks. Proc Natl Acad Sci U S A, 104(18):7327–
7331.

[Seung, 2009] Seung, H. (2009). Reading the book of memory: Sparse sampling reading the book of memory:
Sparse sampling versus dense mapping of connectomes. Neuron, 62:17–29.

[Silberberg and Markram, 2007] Silberberg, G. and Markram, H. (2007). Disynaptic inhibition between
neocortical pyramidal cells mediated by martinotti cells. Neuron, 53(5):735–46.

[Song et al., 2005] Song, S., Sjöström, P., Reigl, M., Nelson, S., and Chklovskii, D. (2005). Highly nonran-
dom features of synaptic connectivity in local cortical circuits. PLoS Biol, 3(3):e68.

[Sporns, 2011a] Sporns, O. (2011a). The human connectome: a complex network. Ann N Y Acad Sci,
1224:109–125.

[Sporns, 2011b] Sporns, O. (2011b). The non-random brain: efficiency, economy, and complex dynamics.
Front Comput Neurosci, 5:5.

[Sporns, 2013] Sporns, O. (2013). Structure and function of complex brain networks. Dialogues Clin Neu-
rosci, 15(3):247–262.

[Sporns et al., 2005] Sporns, O., Tononi, G., and Kötter, R. (2005). The human connectome: A structural
description of the human brain. PLoS Comput Biol, 1(4):e42.

[Van Essen and Ugurbil, 2012] Van Essen, D. C. and Ugurbil, K. (2012). The future of the human connec-
tome. Neuroimage, 62(2):1299–1310.

[Van Essen et al., 2012] Van Essen, D. C., Ugurbil, K., Auerbach, E., Barch, D., Behrens, T. E. J., Bucholz,
R., Chang, A., Chen, L., Corbetta, M., Curtiss, S. W., Della Penna, S., Feinberg, D., Glasser, M. F.,
Harel, N., Heath, A. C., Larson-Prior, L., Marcus, D., Michalareas, G., Moeller, S., Oostenveld, R.,
Petersen, S. E., Prior, F., Schlaggar, B. L., Smith, S. M., Snyder, A. Z., Xu, J., Yacoub, E., and , W.
U.-M. H. C. P. C. (2012). The human connectome project: a data acquisition perspective. Neuroimage,
62(4):2222–2231.

[Vasilaki et al., 2009] Vasilaki, E., Frémaux, N., Urbanczik, R., Senn, W., and Gerstner, W. (2009). Spike-
based reinforcement learning in continuous state and action space: when policy gradient methods fail.
PLoS Comput Biol, 5(12):e1000586.

[Vasilaki and Giugliano, 2012] Vasilaki, E. and Giugliano, M. (2012). Emergence of connectivity patterns
from long-term and short-term plasticities. In Villa, A., Duch, W., rdi, P., Masulli, F., and Palm, G.,
editors, Artificial Neural Networks and Machine Learning ICANN 2012, volume 7552 of Lecture Notes
in Computer Science, pages 193–200. Springer Berlin Heidelberg.

[Vasilaki and Giugliano, 2014] Vasilaki, E. and Giugliano, M. (2014). Emergence of connectivity motifs in
networks of model neurons withshort- and long-term plastic synapses. PLoS One, 9(1):e84626.

[Wang et al., 2013] Wang, J., Zuo, X., Dai, Z., Xia, M., Zhao, Z., Zhao, X., Jia, J., Han, Y., and He,
Y. (2013). Disrupted functional brain connectome in individuals at risk for alzheimer’s disease. Biol
Psychiatry, 73(5):472–481.

[Wang et al., 2006] Wang, Y., Markram, H., Goodman, P., Berger, T., Ma, J., and Goldman-Rakic, P.
(2006). Heterogeneity in the pyramidal network of the medial prefrontal cortex. Nat Neurosci, 9(4):534–
42.

[Wegener, 2005] Wegener, I. (2005). Complexity Theory: Exploring the Limits of Efficient Algorithms.
Springer Science & Business Media.

[Zhou et al., 2012] Zhou, J., Gennatas, E. D., Kramer, J. H., Miller, B. L., and Seeley, W. W. (2012).
Predicting regional neurodegeneration from the healthy brain functional connectome. Neuron, 73(6):1216–
1227.

19

Acknowledgements

We acknowledge support from the European Commission (FP7 Marie Curie Initial Training Network
“NAMASEN”, grant n. 264872, http://cordis.europa.eu/fp7) and from the Engineering and Physical Sci-
ences Research Council (grant n. EP/J019534/1). The funders had no role in study design, data collection
and analysis, decision to publish, or preparation of the manuscript.

Author contributions statement

U.E. E.V. conceived and designed the experiments. U.E. performed the experiments and analysed the
data. U.E. E.V. wrote and revised the manuscript.

Additional information

Competing financial interests The authors declare no competing financial interests.

20

http://cordis.europa.eu/fp7

