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Abstract:  This paper reports the recent development and applications of conductive boron-

doped ultrananocrystalline diamond (BD-UNCD). The authors have determined that BD-

UNCD can be synthesized with an H-rich gaseous chemistry and a high CH4/H2 ratio, which 

is opposite to previously reported methods with Ar-rich or H-rich gas compositions but 

utilizing very low CH4/H2 ratio. The BD-UNCD has a resistivity as low as 0.01 ohm·cm, with 

low roughness (down to several nm) and a wide deposition temperature range (450-850ºC). 

The properties of this BD-UNCD were studied systematically using resistivity 

characterization, scanning electron microscopy, transmission electron microscopy, Raman 

spectroscopy, and roughness measurements. Near Edge X-ray Absorption Fine Structure 

(NEXAFS) spectroscopy confirms that up to 97% of the UNCD is deposited as sp3 carbon. 

These series of measurements also reveal additional unique properties for this material, such 

as an “M” shape Raman signature, line-granular nano-cluster texture and high C-H bond 

surface content. A hypothesis is provided to explain why this new deposition strategy, with 

H-rich/Ar-free gas chemistry and CH4/H2 ratio, is able to produce high sp3-content and/or 
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heavily doped UNCD. In addition, a few emerging applications for BD-UNCD in the field of 

atomic force microscopy, electrochemistry and biosensing are reviewed here.  

 

1. Introduction 

Ultrananocrystalline diamond (UNCD) is the newest member of diamond family, and it has 

attracted significant interests over the last two decades. [1-3] While maintaining most of the 

exceptional physical/chemical properties of conventional diamond materials, UNCD has an 

extremely low grain size (3-5 nm) and  roughness (sub-10 nm) independent of thickness, 

which drives its popularity as an engineering and functional martial, especially in the fields of 

tribology, biology, and micro/nano-technology. [4-5] In conventional polycrystalline 

diamond coatings, for either nanocrystalline diamond (NCD) or microcrystalline diamond 

(MCD), the gas composition usually consists of CH4 or other carbon source with majority of 

hydrogen gas in a chemical vapor deposition (CVD) reactor.   However, in the prior art, 

UNCD is only synthesized with an Ar-rich/H-lean gas chemistry. Gruen et al explained that 

the role of Ar is primarily to assist in the generation of a large number of C2 dimer molecules 

which act as the principal growth species for UNCD. These C2 dimers also acts as 

renucleation species which contribute to the high renucleation rate for UNCD and the 

resulting small grain size of UNCD. [4, 6] In this report, we show that Ar-rich gas mixtures 

are not the only gas system able to produce UNCD. A gas system, with hydrogen completely 

replacing Ar as the majority gas composition, and a methane/hydrogen ratio significantly 

higher than that in the conventional chemical vapor deposition polycrystalline diamond 

recipe, is introduced to enhance renucleation rate, which is different not only from 

conventional UNCD deposition which employs Ar, but also from conventional 

polycrystalline diamond deposition which utilizes a carbon/hydrogen ratio as low as 0.1-0.3 

%. [7]. Especially, in this H-rich gas system without Ar, high levels of boron doping has been 

realized in UNCD, which is the focus here.  

 

As an emerging P-type material, boron-doped diamond (BDD) combines the desirable 

mechanical properties of diamond with the additional advantages of a wide band gap [8], and 

a wide potential window with very low background currents when used as electrochemical 

electrode [9]. With a similar bonding structure to natural diamond, BDD shows extremely 

high chemical, biochemical, and electrochemical stability. These properties enable BDD to 

achieve wide application in the advanced oxidation of harmful chemicals or pathogens [10], 

On-Site Generation (OSG) for chlorine and mixed-oxidants, [11-13] and high sensitivity 
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biosensing [14-16] especially in harsh environments or in vivo testing conditions where 

extreme chemical and physiological inertness is desirable. However, most of the BDD 

discussed in the literature is the much rougher (and less physiologically inert) NCD or MCD, 

[17] with surface roughness values in excess of 100 nanometers. The rough as-deposited 

surfaces of these materials complicates further processing or patterning by high resolution 

photolithography, as well as bonding, or its integration into more complex structures. 

Although diamond surfaces inherently possess attractive tribological properties [18-20] and 

high biocompatibility [21-22], the roughness of NCD and MCD actually diminish their 

overall tribological and biological compatibility.  

 

While nitrogen-doped UNCD has been studied previously, [23-24] boron-doped UNCD (BD-

UNCD) has not been systematically described and characterized in the literature. Swain’s 

group reported the smoothest boron-doped diamond yet reported by adding a boron source 

(solid state BoronPlus and gas state B2H6) to conventional Ar-rich UNCD gas system. They 

achieved BDD with a minimum roughness of 34 nm and a resistivity on the order of 0.1 

ohm·cm. [25]  The present authors began developing boron-doped UNCD in 2009, targeting 

a super smooth, heavily doped UNCD film as a standard material to enable micro- and 

nanotechnology for MEMS and other devices, electrochemistry and biosensing applications. 

Through the use of an Ar-free gas strategy, heavily boron-doped UNCD with a resistivity as 

low as 0.01 ohm·cm was developed, with almost as low a surface roughness as un-doped 

UNCD. Since then, such BD-UNCD has been used to fabricate piezo-resistive 

microcantilevers [26], conductive atomic force microscopy probes, electrochemically stable 

electrodes and biosensors. To date, there is no report in the literature describing in detail the 

properties of BD-UNCD. Here, we discuss the film synthesis of BD-UNCD and address 

differences between BD-UNCD and conventional BDD, with emphasis on its signature 

properties revealed by scanning electron microscopy (SEM), transmission electron 

microscopy (TEM), Raman spectroscopy, and Near Edge X-ray Absorption Fine Structure 

(NEXAFS), and Atomic Force Microscopy (AFM) etc.  Typical applications of this versatile 

diamond film are also discussed. 

 

2. Experimental Section 

2.1 BD-UNCD Synthesis. BD-UNCD is deposited at Advanced Diamond Technologies, Inc. 

A hot-filament chemical vapor deposition (HFCVD) reactor is used for the deposition. 
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Diamond film synthesis begins with substrate seeding with commonly used seeding processes 

such as surface mechanical abrasion with diamond particles or sonication with slurries 

containing suspended diamond nanoparticles, [27]. A high density of diamond particles 

(usually 109-1012/cm2) on the substrate ensures appropriate seeding density which accelerates 

the onset of deposition and provides for a more uniform growth rate and thickness across the 

substrate. The reactor setup and seeding processes are similar to those reported in the prior art 

[28-29]. The major difference here is that we employ a H-rich gas system with a CH4/H2 ratio 

as high as 10%, which is much higher than that of the previously reported polycrystalline 

diamond with high sp3 purity and the chamber pressure is set lower than in the literature, i.e. 

< 15 Torr. The substrate temperature is in the range of 400˚C-850˚C, as monitored by 

thermocouples with their tips touching the back side of the witness Si chips. Deposition rates 

are in the range of 0.5-3 µm/hour, depending on coating temperature and loading area. The 

boron doping source is gaseous trimethylborane (TMB, i.e., B(CH3)3) premixed with very 

high ratio of hydrogen (> 95%). Boron-to-carbon ratio in the gas mixture (brief as B/C gas 

ratio in this paper) can be in a wide range from 0-13000 ppm. Without specific notes, the 

samples in this work were prepared with 5 Torr chamber pressure, 750 °C substrate 

temperature and 3000 ppm B/C gas ratio.   

 

2.2 Characterization.  The resistivity of the BD-UNCD as deposited was measured on 1-µm 

thick thermal oxidized Si wafers up to 12 inch in diameter (see insert of Fig. 1), with a Four 

Point Resistivity System (Lucas Labs Pro-4). High resolution SEM and TEM were used to 

study grain and surface morphology of the BD-UNCD. The accelerating voltage, aperture 

size and working distance of the SEM were 10 kV, 10 µm and 10 mm, respectively. 

Transmission electron microscopy (TEM) was performed on atomic force microscope tips 

composed of BD-UNCD.  Multiple probes with nominally identical geometries were 

fabricated from both materials using the molding technique described in [30], which results in 

sharp monolithic UNCD tips.  The probes were imaged using a JEOL 2010F TEM with a 

field-emission source, using an accelerating voltage of 200 kV.  The back sides of the 

cantilevers were sputter-coated with 100 nm of aluminum to enhance conductivity and 

prevent charging in the TEM.  In addition, a small amount of conductive epoxy was applied 

to ensure electrical connection between the UNCD and the TEM sample mount.  The Raman 

spectra were obtained using a spectrometer (Control Development 2DMPP) with an 

excitation laser wavelength of 532 nm. The NEXAFS measurements were performed at the 

National Synchrotron Light Source (NSLS) at Brookhaven National Laboratory (BNL, 
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Upton, NY). Two beam lines, U7A and U12A, were both employed for acquiring spectra on 

as-grown UNCD and BD-UNCD films. The photon source of these beam lines is a bending 

magnet, and which permits a wide spectral energy range from 100 to 800 eV. The photon flux 

was 2x1011 photons/second/0.1% bandwidth, with a resolution of ~1x10-3. All measurements 

were carried out in partial electron yield (PEY) mode at a photon incidence angle (relative to 

the sample surface) of 90º. The spectra acquired with the U7A beam line were first 

normalized to the absorption current measured simultaneously from a gold mesh placed in the 

beam line upstream from the analysis chamber, and then normalized based on the absorption 

in the post-edge region (at 320 eV).  The spectra acquired at U12A were first normalized to 

the absorption current measured under the same experimental conditions as those from U7a 

on a sputter-clean platinum sample, and then normalized based upon the absorption in the 

post-edge region (at 320 eV). The quantification of the sp2 fraction from NEXAFS spectra 

was performed following the approach described in [31]. Atomic Force Microscopy (AFM, 

Veeco Nanoscope IIIa) was employed to study the roughness of BD-UNCD. An AFM 

tapping mode was used to scan a 5 µm×5 µm area to extract the root mean square (RMS) 

roughness. 
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3. Results and discussions 

3.1 Electrical properties. Fig. 1 depicts the relationship between resistivity and B/C gas ratio. 

This relationship approaches a reciprocal trend, with a reciprocal constant at ~ 300 

ohm·cm·ppm. When the B/C gas ratio increases to range of ~ 9000 to 12500 ppm, the 

resistivity tends to saturate at 0.01 ohm·cm. When the B/C gas ratio reaches 15000 ppm or 

higher, the resistivity increases significantly to about one order of magnitude, to 8×10-3-3×10-

4 ohm·cm, corresponding to a film structural change from diamond to graphite, which is 

confirmed by other characterizations below.  At the lower doping end of the graph, when the 

B/C gas ratio decreases to 1000 ppm and less, the resistivity increases to > 0.8 ohm·cm. 

Resistivity determinations becomes more difficult when the B/C gas ratio decreases further, 

since the background boron contamination remaining in the reactor from other depositions 

introduces unaccountable errors in the estimation of the actual boron content in the gas 

mixture. As a reference, the resistivity of undoped UNCD, produced by a reactor never used 

for boron doping, was measured higher at 106 ohm·cm. 

Fig. 1 Resistivity vs. B/C gas ratio in gas mixture. Dash line represents a reciprocal curve with 

a reciprocal constant of 300 ohm·cm·ppm. Error of all data is < 10% except at 750 ppm which 

has an error of 20%. The insert shows a 12-inch BD-NUCD wafer under test.  
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Since the authors did not have access to secondary ion mass spectrometry (SIMS) a 

comparative measurement on the conductivity (the inverse of resistivity) vs. B/C gas ratio 

was conducted between the data presented here and the data from the literature for boron 

doped NCD [32]. At a B/C gas ratio of 6660 ppm, the reported conductivity for the heaviest 

doping is 76 s/cm, while by contrast, the BD-UNCD conductivity measured here was 100 

s/cm for the heaviest doping level at 12500 ppm, which is comparable with the literature 

value. This conductivity corresponds to a dopant concentration on the order of 1021/cm3. Such 

a heavy doping level likely arises from the presence of heavy boron concentrations at the 

incredibly large internal surface area of UNCD grain boundaries [33]. The carbon atoms on 

the boundary interfaces and in the boundaries themselves are expected to exhibit more 

dangling bonds to retain the boron dopant atoms than inside the grains themselves. A detailed 

study of the doping at the boundary based on actual SIMS data is required to substantiate this 

hypothesis. 

 

3.2 Grain and morphology. Figure 2a-g depicts BD-UNCD morphologies under high 

resolution SEM as obtained from different B/C gas ratios.  The top view SEM images of 

heavily doped BD-UNCD (Fig. 2b-f) usually show line-granular structures on the surfaces of 

the films, rather  

 

 

 

 



8 
 

than the faceted grains of conventional NCDs, which is also different from un-doped UNCD 

Fig. 2 SEM images of UNCD with B/C gas ratio of (a) 0 ppm i.e. undoped, (b) 750 ppm, (c) 

1500 ppm, (d) 3000 ppm, (e) 6000 ppm, (f) 9000, (g) 12500 ppm, and of (h) Nitrogen doped 

UNCD. Film thickness in of samples in (a)-(h) is 1 µm; (i) UNCD with 3000 ppm  B/C ratio, but 

with 10 µm thickness, and cross section images of (i) UNCD with 3000 ppm B/C ratio and 1 

µm thickness, (j) UNCD with 3000 ppm B/C ratio and 10 µm thickness, and (i) MCD with 3000 

ppm B/C ratio and with 1.5 µm thickness. Orange marks outline the line-granular structures of 

BD-UNCD. Scale bar in (a)-(i) represents 100 nm, (j) and (l) represents 200 nm and in (k) 

represents 2 µm. 

(a)	 

 

(g) 

(d) 

(i) 

(k) 

(h)	 

(f) 

(a)	 

(l)	 

(b) 

(e) 

 

(c) 

(j) 
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(Fig.2a) and nitrogen doped UNCD (Fig.2h). These line-granular structures contain many 

grains. The size of the line-granular structures increases as the B/C gas ratio increases until 

the B/C ratio reaches 9000 ppm. It is hypothesized that such an increase may arise from a 

slightly increased grain size, similar to that reported from the deposition of nitrogen doped 

UNCD, when the nitrogen concentration is increased. [24] However, no obvious facets of 

crystallites could be seen under SEM even with a magnification of 100,000 ×. At boron 

concentrations above 9000 ppm, the size increase of the line-granular structure does not 

increase significantly with increasing boron concentration.  When the B/C gas ratio increases 

to 13000 ppm, the film texture starts to change (Fig. 2d), which suggests the onset of 

graphitization. The typical BD-UNCD line-granular texture shown in Fig 2b-f is preserved as 

long as the deposition is conducted at deposition temperatures between 600-800 ˚C. The 

detailed mechanism for the formation of such a special structures is not yet known. When the 

deposition is conducted at a temperature lower than 600 ˚C, the facets of crystallites become 

much more evident under SEM as reported in ref [34].   

Fig.3 Representative TEM images showing AFM probes composed of BD-UNCD.  

Individual grains are readily discerned from lattice fringes and contrast variations.  For 

clarity, colored dashed lines have been superimposed on the image to identify grain 

boundaries.  Because this is a three-dimensional structure, grains can appear to overlap 

one another.  The B/C ratio of the BD-UNCD in the figure is 3000 ppm. The electron 

diffraction pattern of BD-UNCD is shown at the upper left corner. 



10 
 

It is interesting that this line-granular structures size and shape do not significantly change 

when the thickness is increased from 1 µm (Fig. 2d) to 10 µm (Fig. 2i). The cross sectional 

SEM images of the BD-UNCD films confirms that the topography of BD-UNCD remains 

smooth over a thickness range from submicron to 10 microns (Fig. 2j-k), which is a feature 

specific only to UNCD. This is, in contrast to MCD whose topography dramatically increases 

as the film grows (Fig. 2l). It should be noted that BD-UNCD is optically darker than 

undoped UNCD and NCD, and therefore its thickness is difficult to determine by means of 

reflectometry due to low signal if the film thickness is more than 1 µm. The thickness is 

usually measured by cross-sections of witness chips and visualizing the layer under either 

optical or electron microscopy. The detailed mechanisms for such high absorption is 

unknown, but one explanation is that the concentration of boron at the abrupt grain 

boundaries increases light absorption. Thickness measurements demonstrate that the 

deposition rate of BD-UNCD is 5-30% higher than that of un-doped UNCD. Bright-field 

TEM images, as shown in Fig. 3, enable visualization of individual crystalline grains within 

the BD-UNCD.  TEMs on AFM probes fabricated from BD-UNCD, with a B/C ratio of 3000 

ppm, show grain diameters ranging from 5-15 nm, in accordance with previously published 

undoped UNCD [2] or slightly larger. The insert diffraction pattern in Fig.3 consists of 

continuous and smeared-out circles with smaller bright dots, suggesting randomly oriented 

small grains of UNCD similar to those reported produced using Ar-rich gas mixtures. [2]  

3.3 Raman spectrum Fig. 4 shows a comparison of Raman spectra for B/C gas ratios of: 0 

(undoped), 750, 1500, 3000, 6000, 9000, and 12500 ppm. The Raman signal intensity 

decreases as the B/C gas ratio increases.  Therefore, the signals for films obtained with 0-

3000 ppm and films with 6000-12500 ppm B/C gas ratio are represented in separate graphs 

(Fig. 4a and 4b, respectively) such that the spectrum details for each ratio are evident. In Fig. 

4a, there are four peaks at 1150, 1310-1355, 1470, 1560 cm-1, similar to those reported by 

Swain’s Group. [25] However, there are two major differences from that work. The first 

difference is that there is no sharp peak around 1333 cm-1, suggesting a shortage of large size 

grains and enriched grain boundaries of UNCD. [35] Actually, in this range there is a wide 

“hybrid” peak combining a weak peak of first order of sp3 (1333 cm-1) and a more dominant 

so-called “D band” peak (1310-1450 cm-1). [36] As the B/C gas ratio increases, the center of 

the peak shifts from 1355 cm-1 (B/C = 0 ppm) to ~1300 cm-1 (B/C = 6000 ppm), similar to 

ref. [32]. Although the peak shift of the first order of sp3 has been explained well, the shift of 

the D band peak along with boron concentration has not yet been explained. Such a shift may 
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be caused by content changes at the grain boundary where B-C bonds are dramatically 

increased. It is known that in UNCD, most of the disordered carbon, represented by the D 

peak in a Raman spectrum, is confined to the grain boundary, therefore the introduction of  

excessive boron concentrations at the  grain boundary could change the distribution and 

properties of the disordered carbon.   

 

The second difference in the Raman spectrum from the prior art, are the peaks at 1150 cm-1 

[37-38] and 1470 cm-1 (1450 cm-1 as in [38]) according to the work of Show et al. [25] These 

peaks are evident only in undoped UNCD and low B/C gas ratio H-rich/Ar-free BD-UNCD 

in this paper, but become weaker when the B/C gas ratio increases. This was also observed in 

(a)  

(b)  

(c)  

12500 ppm 

9000 ppm 

6000 ppm 

3000 ppm 

1500 ppm 

750 ppm 

0 ppm 

Fig.4 Raman spectra of BD-UNCD with B/C gas ratio of  (a) 0-3000 ppm, (b) 6000-

12500 ppm and (c) 3000 ppm-only for best contrast.   
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boron doped NCD and MCD, [32] and was explained as a decrease of hydrocarbon content or 

hydrogen termination. Ferrari’s assignment of the 1150 cm-1 and 1470 cm-1 to ν1 and ν3 

modes of trans-polyacetylene, suggests that the amount of transpolyacetylene decreases as the 

boron doping level increases. When the B/C gas ratio reaches 3000 ppm, the Raman spectrum 

of BD-UNCD is dominated by only two major peaks, i.e., the D peak at 1310-1350 cm-1 and 

the G peak at 1560 cm-1,featured as an “M” shaped Raman spectrum as shown in Fig. 4c, 

with a  B/C gas ratio 3000 ppm shown as an example.  The “M” shape Raman spectrum was 

somewhat surprising, since a D- and G-peak dominated Raman spectra was usually attributed 

to a combination of a high percentage of graphite and disordered carbon, but actually, 

evidence collected from SEM, TEM above and NEXAFS data below, ruled out this 

suspicion.  

 

As the B/C gas ratio reaches 6000 ppm, it is noted that one of the two peaks of the “M” shape 

spectrum shifts from 1310-1350 cm-1 to 1220 cm-1, as shown in Fig. 4b, while the peak at 

1560 cm-1 is unaffected. Many authors reported a peak at 1220 cm-1 for heavily doped nano- 

or microcrystalline diamond Raman spectra, but the explanations for this peak are diverse. 

[32, 39-41]  As mentioned above, in this study no obvious facets of crystallites were seen 

under SEM even with a magnification of 100,000 ×. It is easy to distinguish the Raman 

signature of BD-UNCD from that of boron doped MCD, since the Raman spectrum of BD-

UNCD has an “M” shape signature, while the Raman spectrum of heavily doped MCD only 

has one major sharp peak at 1220 cm-1, without a  G peak from the grain boundaries, like “Λ” 

shape. In ref. [34], the authors observed that boron does assist in the generation of larger 

grains, but the presence of boron must be combined with very low deposition temperatures (< 

500 ˚C). When the B/C gas ratio is 15000 ppm or greater, the Raman spectrum acquires a 

signature typical of being evidently graphitized, which is compatible with SEM observations. 

 

3.4 Near-edge X-ray absorption fine structure (NEXAFS) spectroscopy. NEXAFS is sensitive 

to oxidation state, hydrogenation, hybridization, and local ordering.  It was used to gain 

insight into the bonding configuration of carbon in BD-UNCD and to compare it with that of 

undoped UNCD. The carbon 1s NEXAFS spectrum of undoped UNCD, shown in Fig. 5a, 

exhibits the characteristic features of diamond [42], namely the edge jump at ~289.0 eV, the 

exciton peak at ~289.3 eV, and the second band gap at ~302.5 eV. All these features are due 

to the C 1s → σ* transition for sp3-hybridized carbon-carbon bonds in the crystalline 
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diamond configuration. Besides the characteristic peaks of diamond, a small absorption band 

at 285.0 eV was detected. This can be assigned to the C 1s → π* transition for disordered sp2-

hybridized carbon-carbon bonds. The sources of this sp2-bonded carbon are surface 

contamination, surface reconstruction, and grain boundaries within the UNCD [42]. The 
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presence of a subtle shoulder at ~287.5 eV can be attributed to the C 1s → σ* transition for 

C-H bonds, indicating hydrogen termination of the UNCD surface. [19, 43] 

 

The characteristic NEXAFS spectrum of BD-UNCD (grown at the same temperature, i.e., 

(a)

(b)

(c)

Fig 5. C 1s NEXAFS spectra of: (a) undoped and BD-UNCD grown at the same 

temperature (i.e., 750-800°C); (b) BD-UNCD films grown at different temperatures. 

B/C gas ratio = 3000 ppm; (c) BD-UNCD films grown at 650-700ºC with different B/C 

gas ratios. The fraction of sp
2

-hybridized carbon is reported in the legend. 
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750-800°C as the undoped UNCD, in Fig. 5a exhibits all the characteristic diamond features 

listed above. Doping UNCD with boron did not affect the fraction of sp2-bonded carbon in 

the film, but resulted in a subtle change in the absorption of the C 1s → π* transition for 

disordered sp2-hybridized C-C bonds. In contrast, for undoped UNCD this feature is 

symmetric, and upon boron-doping a second band appeared at lower photon energies (~283.8 

eV). The detection of this second peak might be attributed to the presence of unoccupied gap 

states lying below the π* band. 

 

The effect of deposition temperature on the local bonding configuration was also investigated 

by NEXAFS spectroscopy. The NEXAFS spectra of BD-UNCD, with a constant B/C ratio of 

3000 ppm, grown at temperatures ranging from 460°C to 850°C exhibit significant changes 

(Fig. 5b). In particular, the fraction of sp2-bonded carbon was found to slowly decrease, down 

to 3.2%, upon increasing the deposition temperature up to 800°C. For deposition 

temperatures above 800°C, the fraction of sp2-hybridized carbon in BD-UNCD films 

significantly increases. The deposition temperature also affected the amount of hydrogen in 

the near-surface region: upon growing the films at lower temperatures (460-600°C), the 

intensity of the shoulder at ~287.5 eV, attributed to the C 1s → σ* transition for C-H bonds, 

increases.  This indicates that the number of C-H bonds formed at the UNCD surface is 

higher at lower deposition temperature than that of films deposited at higher temperatures. 

However, when the temperature is in the range of 650°C to 800°C, the C-H bond density 

becomes constant. Changing the growth temperature also resulted in a variation in the 

absorption of the C 1s → π* transition for disordered sp2-hybridized C-C bonds.  In addition 

to the band at ~283.8 eV, which was detected in all the spectra of BD-UNCD films 

independently of the deposition temperature, the NEXAFS spectra of BD-UNCD films grown 

at temperatures below 750ºC exhibited an additional feature at ~282.3 eV attributable to this 

C 1s transition. 

 

Fig. 5c shows the impact of different B/C gas ratio on the diamond chemistry. It suggests that 

the fraction of sp2-bonded carbon in the UNCD film is influenced by the B/C gas ratios: upon 

increasing this ratio, e.g. from  3,000 ppm versus 10,000 ppm, which corresponds to 

increasing the amount of dopant in the film by roughly three-fold, the fraction of sp2-bonded 

carbon only slightly increases. However, the intensity of the shoulder at ~287.5 eV, attributed 

to the C 1s → σ* transition for C-H bonds is not changed by B/C ratio. Since Fig. 5b 
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demonstrates that the 287.5 eV shoulder does not change with the diamond deposition 

temperature between 650 °C and 800 °C, combining Fig. 5a and 5c, one can conclude that the 

287.5 eV shoulder is actually unchanged in the whole range of B/C gas ratios, from 0 ppm 

(undoped) to 10000 ppm.  The BD-UNCD features 3 peaks at 282.3 eV, 283.8 eV, 285.0 eV, 

the C 1s → π* transition for disordered sp2-hybridized carbon-carbon bonds appear in both 

levels of B/C gas ratios, except the height of these peaks increases with almost the same ratio 

as the B/C ratio increases.   

 

3.5 Surface roughness.  

The dependence of surface roughness versus film thickness was also studied.  This study 

shows a merely linear dependence, from a very low value of 8 nm RMS at 0.5 µm thickness 

to 44.5 nm RMS at 13 µm thickness, comparable or slightly smoother than previous work. 

[25] This demonstrates that the roughness of BD-UNCD increased very slowly as the 

thickness increases, comparable to that of standard undoped UNCD, suggesting its roughness 

is much less dependent on thickness than NCD or MCD. As a comparison between BD-

UNCD and BD-NCD, Fig. 6a and 6b show AFM images of a 1-µm-thick BD-UNCD and 

BD-NCD with 8 nm and 76 nm RMS roughness respectively. For UNCD, the surface 

roughness of a diamond film is determined by the renucleation rate and the crystalline growth 

rate. If the renucleation rate is much higher than the crystalline growth rate, theoretically the 

diamond would be very smooth.  Therefore, if required, by further adjusting the gas (CH4, H2, 

and TMB) ratios and the reactor pressure to target a faster the renucleation rate, an even 

smoother BD-UNCD of thick films can be expected. Starting from an already low as-

deposited surface roughness, BD-UNCD can be polished to sub-nanometer roughness much 

more easily and cheaply than BD-NCD or MCD. An AFM image of a polished BD-UNCD 

surface with RMS roughness of less than 1 nm is shown in Fig. 6c.  Roughness variations 

with controlled B/C gas ratios have also been studied. The roughness of films with a standard 

1 µm thickness and different B/C gas ratios ranging from 0 ppm to 12500 ppm was measured 

and is presented in table I. It is interesting that no significant correlation between surface 

roughness and B/C gas ratio can be observed, while all these films display roughness values 

typical of UNCD. Even the SEM images (Figure 2a-f) demonstrate the size of the line-

granular structure and so possibly the grain size increases when the B/C gas ratio increases. 

This suggests that the grain size difference caused by the boron is too small to contribute 

significantly to the surface roughness. 
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Table 1: Surface roughness vs. B/C gas ratio. Each roughness value is an average from 5 

points across a 4 inch BD-UNCD coated wafer. 

 

B/C gas ratio (ppm) 0 750 1500 3000 6000 9000 12500 

RMS (nm) 6.8 6.6 6.5 7.4 6.8 7.5 6.9 
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3.6 Role of hydrogen 

From the data presented above, it can be deduced that the boron doped diamond films 

described in this report belongs to the UNCD type.  They feature very low surface roughness, 

Fig. 6 AFM images of (a) BD-UNCD, (b) BD-

NCD and (c) CMP smoothened BD-UNCD. 

All images are capture via Tapping Mode 

within 5µm×5µm
2

. 

(a)  

(b)  

(c)  
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low correlation between surface roughness and thickness, as well as a non-facet texture under 

SEM, and very small grain size as determined by TEM. In addition, according to the 

NEXAFS results, it can be concluded that the sp3 purity of the BD-UNCD is roughly 

equivalent to that of undoped UNCD reported previously in the literature. More importantly, 

undoped and doped UNCD can be fabricated with H-rich gas chemistry instead of an Ar-rich 

gas chemistry. In a PECVD system, Ar makes the plasma very hot, which generates more 

precursor species. However, in the HFCVD system, the precursor species are generated by 

the high temperature of the filament, so the involvement of Ar is unnecessary. The role of Ar 

in a PECVD reactor for UNCD synthesis is replaced by hot H atoms cracked from H2 gas.  

The energy for the cracking in the HFCVD reactor is provided by the heat obtained from the 

hot filament (at temperatures up to ~2400 °C). The major functions of the hot hydrogen are: 

1) Reacting with and removing sp2 carbon from the growing diamond film, 2) in a gas 

system when boron is present, facilitating access to the diamond surface for the boron to  

react with carbon more efficiently than Ar due to its smaller size and 3). Transferring energy 

to radicals and precursor species (such as CH3.), which enhances and accelerates the 

formation of the UNCD film. 

 

It should be noted that that the high sp3 percentage (diamond purity) of BD-UNCD can be 

realized in a high methane H-rich gas chemistry.  This is in contrast to the previous-reported 

chemistry used for UNCD, NCD and MCD, i.e., the present work shows that high CH4/H2 

ratio is not necessarily connected with low sp3 purity.  Conventional NCD or MCD 

depositions typically use CH4/H2 gas mixtures, while very low CH4/H2 ratios are required. To 

ensure high sp3 purity, the flow rate of CH4 in NCD/MCD deposition is recommended to be 

less than 0.5%, otherwise “dirty diamond” would be produced. [7, 25] For example, even 1-

3% CH4/H2 ratio would result in up to 50% sp2 impurities. [27]. However, the present study 

demonstrates that UNCD, especially BD-UNCD can be achieved not only in H-rich/Ar-free 

gas system, but also in a gas system with a high concentration of methane (up to 10%), which 

underscores the fact that a CH4/H2 ratio is not crucial for diamond quality. The work 

presented here is guided by a simple hypothesis: that as UNCD is a form of diamond with a 

much higher deposition renucleation rate than NCD or MCD, therefore any methods to 

maintain a sufficiently high renucleation rate, such as Ar addition, higher CH4/H2 ratios or 

even instant pressure changes, may all allow the deposition of a UNCD film. However, 

simultaneously with high renucleation, deposition of non-diamond carbon phase also exists. 

The key aspect differentiating between these methods is the method of removal of the non-
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diamond carbon and other hydrocarbon “scum” produced during renucleation. In the Ar-rich 

system, c-dimers may directly lead to diamond lattice construction, with minimum “scum” 

generation.  For the H-rich system, although “scum” is generated during the renucleation, if 

the filament temperature is high enough, abundant hot H-atoms can be generated to remove 

the “scum”, i.e. react with the non-diamond carbon and hydrocarbons, which leads to gaseous 

products that are able to be pumped away.  As NCD was considered as a thinner version of 

MCD, [44], previous work using similar deposition conditions to that of MCD have been 

used to produce NCD, which may lead to high levels of sp2 impurities. For example, reactor 

pressures were usually set high, typically > 30 Torr. [45-46] which is more suitable for MCD 

fabrication but may be a factor causing formation of excessive non-diamond carbon during 

deposition of the film.  Therefore high sp2 content has usually been reported when the 

concentration of the carbon-based gas was high. In the work presented here, the BD-UNCD 

deposition process employs a high CH4/H2 ratio and reactor pressure below 15 Torr, which 

ensures both a high diamond renucleation rate and a high non-diamond carbon removal rate. 

While maintaining such a low pressure and decreasing the CH4/H2 ratio to 0.5-2%, it was 

found that the diamond naturally transitions to a nanocrystalline form, but with <5% sp2 

content measured by NEXAFS (not shown here), much lower than has been reported with the 

similar CH4/H2 ratio. [25, 47] With the hypothesis of “scum removal”, the authors are able to 

explain that under lower pressure, hydrogen removes more non-diamond components 

(hydrocarbons and sp2 carbon etc.) to ensure a higher purity of sp3 deposition.  

 

This report provides an alternative method to fabricate UNCD with an H-rich/Ar-free gas 

system.  This does not suggest that the H-rich method will entirely replace the conventional 

Ar-rich method, since the molecular dynamics in the deposition require further study. 

However, the HFCVD UNCD method provides substantial advantages in the area of large 

area deposition and reduced capital cost for the reactor. In addition, the H-rich and HFCVD 

approach allows a much better overall understanding of the deposition mechanisms for 

UNCD under these deposition conditions and for those of the Ar-rich PECVD system.  

 

It is also speculated that, by avoiding the use of Ar and its high ionization rate, the rate of 

boron-carbon interaction may increase, especially at the grain boundaries, thus readily 

realizing a heavy boron doping in UNCD in the HFCVD system is easier than in PECVD 

systems. Since the mass of an Ar atom is larger than that of B, in an Ar-rich gas system, the 

B-C reaction is significantly hindered by Ar atoms.  The kinetic energy of B atoms in the Ar-
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rich system can be easily changed by collisions with Ar atoms; however, in the H-rich 

system, since the mass and volume of an H atom is much smaller than a B atom, H atoms 

affect the behavior of B to a lesser degree. For doped UNCD, a popular model is that the 

grain boundary accommodates the majority of the dopant. [33] In the narrow confines of 

diamond grain boundaries, H atoms in the Ar-free HFCVD system, interfere less with boron 

attachment to carbon’s dangling bonds than the larger and more energetic Ar atoms in the Ar-

rich PECVD system. Therefore, it is hypothesized that it is easier for an H-rich gas system to 

realize heavy boron doping and high conductivity UNCD than the Ar-rich PECVD system. 

This is more significant when low temperature depositions are required, e.g. for 

semiconductor applications with metallization already present on the wafer, in which the 

concentration of the precursor species near the substrate to be coated is very low and the 

presence of Ar may be even more “disturbing” both to diamond growth and B-C bond 

formation. In addition, when H atoms collide with B atoms, they tend to elastically recoil 

with the same or similar kinetic energy.  Thus, boron bond formation is not disrupted.  In 

contrast to Ar, even though its kinetic energy is low, the chemical reactivity of H atoms is 

very high for sp2 carbon and hydrocarbons which would otherwise form on the surface of the 

growing diamond film. Thus the relative efficiency for “scum removal” is very high for H 

atoms as compared to Ar, while the interference with boron bond formation with diamond’s 

dangling bonds is low due to the low kinetic energy of H as compared to Ar.  Since Ar does 

not tend to form bonds with carbon, its ability to chemically remove “scum” from the surface 

of the diamond is minimal. The above hypothesis for the mechanism by which H can 

facilitate BD UNCD formation is inferred from the known properties of these two atoms.  

However, further detailed research to quantify these mechanisms would be interesting and 

useful.   

 

4.Applications 

The BD-UNCD films described above are already being used commercially, with deposition 

on wafers up to 12 inches in diameter as shown in the insert of Fig.1. High thickness 

uniformity (> 90%, and as high as > 98% across 12” substrates), low roughness and 

controllable intrinsic stress (both tensile and compressive) enable the application of diamond 

in MEMS or even NEMS fabrication, with very tight manufacturing tolerances. A series of 

applications of BD-UNCD have been developed since 2009, including pure monolithic and 

coated BD-UNCD probes for scanning probe microscopy, electrodes for direct water 

purification with diamond-generated hydroxyl radicals in aqueous solution and oxidant 
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synthesis, e.g. chlorine/hypochlorite, ozone and peroxodisulphate, and biosensors for 

pathogen detection and electrochemical analysis.  

 

4.1 Robust, wear-resistant conductive AFM probes 

Conductive BD-UNCD AFM probes exploit two important properties of the material: its low 

wear rate (due to hardness, reduced coefficient of friction, and low chemical reactivity), and 

its electrochemical properties (low reactivity and wide electrochemical potential window). 

We have developed both “all-diamond” probes and diamond coated probes, i.e., the structural 

material of the probes is silicon but it is coated with a thin layer of BD-UNCD. 
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The “all-diamond” probes shown in Fig. 7a, with tips and cantilevers are all made from BD-

UNCD using a molding technique that involves forming the tip by depositing the diamond 

onto Si wafers with V-groove pits etched into them, then dissolving the Si. [48-49] Since the 

grain size for BD-UNCD is smaller than other types of boron doped diamond, BD-UNCD is 

able to fill the tip molds very accurately and continuously, and the curvature of the released 

cantilevers of the probes can be close to zero due to precise stress control during the BD-

UNCD deposition. The resulting probes’ typical tip radii can be as small as 20-50 nm (Fig. 

7b).  A cross-comparison of wear properties of different AFM probes, including doped and 

undoped UNCD probes showed no significant differences between the investigated diamond 

probes. [30] Additional sharpening to achieve tip radii below 10 nm and aspect-ratio 

Fig.7 (a) optical micrograph showing monolithic BD-UNCD AFM probes with different 

cantilever designs, (b) Regular un-sharpened BD-UNCD AFM probes obtained by direct 

molding into a Si V-groove, (c) BD-UNCD AFM probes obtained by molding into an oxidation-

sharpened Si V-groove, (d) BD-UNCD AFM probe tip with FIB-machined spike and (e) BD-

UNCD coated Si AFM probe with the tip magnified in insert. Scale bar in (a) represents 200 

µm, (b)-(c) represent 100 nm, (d) represents 200 nm, (e) represents 5 µm and insert of (e) 

represents 100 nm. 

(a)  (b)  (c)  

(d)  

 
 

(e)  
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improvements have been demonstrated by oxidation-sharpening the Si molding pits (Fig. 7c) 

or by additional focused ion beam machining of spikes on the tips (Fig.7d). The value of 

hardness in BD-UNCD AFM probes is particularly useful in techniques such as scanning 

spreading resistance microscopy (SSRM) where the conductive tips need to press through 

native oxides on conductive surfaces, to achieve electrical contact with the samples. Special 

tip shapes have been developed for such applications, based on molding in V-grooves etched 

in Si (311) wafers. [30] The electrochemical properties of BD-UNCD are of particular value 

in probes for scanning electrochemical microscopy (SECM), for which special probes have 

been developed, with complete electrical SiO2 insulation excepting a small portion of the tip 

apex.  

 

BD-UNCD can also be used to coat commercial silicon probes, to confer on them some of the 

low-wear and conductive properties of the diamond material. Since coating a tip with a film 

generally increases the tip radius with the thickness of the film, super thin continuous BD-

UNCD films were developed for this application. Such probes are of significantly lower cost 

and have wider design flexibility than “All-diamond” probes, allowing the transformation of 

any Si probe into a diamond probe by coating. Because of the extremely small grain size of 

BD-UNCD, the batch fabrication process produces BD-UNCD probes with diameters as 

small as 30 nm, with average diameters 70 nm across the entire wafer (Fig. 7e). It is noted 

that, if a NCD film is coated on an AFM probe, even though the initial grain size is as small 

as 10-20 nm, its facets would tend to form many “spikes” on the top of the probes, leading to 

“multi-tip effect”. [50] Another particular phenomena is that the NCD grain size increases 

much faster on apex locations or any other sharp structures than those on flat or blunted 

structures, while BD-UNCD maintains almost the same grain size on different textures.  

Individually coated AFM probes have been characterized showing tip diameters down to ~20 

nm by using a specific tip shape reconstruction method [51]. Wear tests were performed on 

hard surfaces including quartz, silicon carbide, or UNCD. In one extreme case, the coated 

probes were scanned for > 1 m at a scan speed of 25 µms-1 at temperatures in range of 25-

400 °C under loads up to 200 nN. Under these conditions, silicon tips are mostly or 

completely destroyed, while the UNCD tips exhibit much less or no wear. [52] Another case 

study of the AFM image evolution of the coated probes involved scanning on a rough MCD 

diamond surface under contact mode. After > 200 times scanning a 5 µm x 5 µm surface, no 

change in image quality was observed.  By contrast, when Si or SiN probes were tested with 

the same conditions, the image quality degraded quickly from one scan to another. BD-
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UNCD coated Si probes can also be used for low-cost SSRM. If a Si probe is coated with a 

thick BD-UNCD, a sharp diamond spike can be shaped on the tip by the aforementioned 

focused ion beam machining method, saving cost by avoiding an “all-diamond” probe 

manufacturing process. 

 

4.2 Electrochemically durable electrodes 

BD-UNCD has been proven to be a durable high-current density electrode material. 

Compared with their MCD counterparts, BD-UNCD’s faster deposition rate provides a 

decreased cost for these expensive industrial electrodes such as those used for water 

treatment.  Like other types of diamond, it has been proven that the integration of BD-UNCD 

on Nb, Si, Ta, and W is exceptionally robust [53] due to the strength of the chemical bonds 

between these substrates and their carbides, the stability of their carbides and the relatively 

low difference in thermal expansion coefficients. In addition, it was observed that film stress 

for BD-UNCD can be adjusted and its nanometer size grain can conformably fill the micro- 

or nano-scale structures of a substrate, which significantly reduces film delamination rate and 

coating defects such as pin-holes, [54] and therefore the underlying structural materials 

(metals or silicon) can be protected from the electrochemical attack and thus the electrodes 

lifetime is increased especially under high current density conditions.  

 

The authors have developed BD-UNCD based electrodes for use within electrochemical cells 

and systems, as shown in Fig. 8a, with extremely strong adhesion and electrochemical 

stability even at extreme voltages/current densities in aqueous solutions. A few different 

types of accelerated lifetime tests for these electrodes have been conducted on these new 

Fig. 8 (a) BD-UNCD electrodes with different geometries and substrates, b) an OSG 

cell with BD-UNCD electrodes and c) an OSG system with BD-UNCD electrodes. 
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electrodes. In the most aggressive Electrochemical Advanced Oxidation Process (EAOP) 

protocol, the electrodes were tested up to 4000 A-hr/cm2 in 1M NaClO4  (i.e. more than 1200 

hours under test), with a current density of 2500 mA/cm2 applied in galvanostatic mode (i.e. 

25A for a 10 cm2 active area electrode). The end of life of the electrodes was determined by 

both delamination of the anode material from its substrate and an increase in the cell voltage 

by greater than 3V.  In contrast, commercial Dimensionally Stable Anodes (DSA) or graphite 

electrodes would only survive a few hours (at best) under such conditions as they are 

typically operated for commercial chlorine (hypochlorite) production at a current density of 

100-150 mA/cm2 or less.  In another harsh protocol for the of On-Site Generation (OSG) of 

oxidants, the electrodes have been tested for more than 4000 A-hr/cm2 in 1 M solar salt with 

an applied current density of 2500 mA/ cm2 in galvanostatic mode and more than 15000 

hours in 2M solar salt with an applied current density of 450 mA/ cm2 without failure or any 

observed performance degradation. The BD-UNCD coated electrodes are now being applied 

widely on the (OSG) for chlorine (hypochlorite) (Fig. 8b-c), peroxodisulfate, and 

peroxodicarbonate, EAOP of wastewater, and ozone generation and wastewater treatment.  

 

4.3 Reliable and highly versatile sensors 

Advanced microsensors that can reliably detect target analytes in minimally prepared 

complex samples in real-time represent one of the greatest challenges for remote 

environmental monitoring, point-of-use diagnostics, personalized medicine and national 

security. The two principle issues in integrated electrochemical microsensor development are 

the achievement of highly stable active bio interfaces that interact with and measured 

analytes of interest, and the engineering of highly robust transducer electrode materials. This 

second issue is even more challenging when the sensor also fulfills the desired objectives of 

being ultra-small in size, versatile in immobilizing a wide range of bio layers, uses simple 

chemistries in functionalizing biomolecules, promotes long-term functional stability of bio 

layers, and is amenable to scale-up and large volume manufacturing. BD-UNCD is one of the 

most promising electrode materials because of its superior electrochemical properties as 

compared to noble metals and sp
2 hybridized carbon materials [55]. The electrochemical 

properties of diamond electrodes were found to be sensitive to the surface termination (-H vs. 

-O), allowing further optimization of electronic properties of these electrodes. [56] The 

diamond surface termination can be readily modified by chemical treatment in hot 

concentrated H2SO4 for an O-terminated surface and with H2 plasma treatment for a fully H-

terminated surface. Diamond microelectrode arrays (MEAs, Fig. 9a) are gaining attention for 
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biological and chemical sensing because of their high sensitivity and selectivity, multiplexing 

capability and low cost. [57-60] Electrochemical characterization studies of BD-UNCD 

demonstrated minimal variation in current peak separation in cyclic voltammograms from the 

array (<5%), demonstrating highly uniform, reliable microelectrodes with excellent 

electrochemical behavior: a quasi-reversible electrode process (the separation between 

oxidation and reduction peaks, ΔEp∼110 mV) (Fig. 9b); two-Q (Constant Phase Element, 

CPE) behavior; high S/N ratios of greater than 300 and minimal surface oxidation. The 

MEAs were successfully employed to detect a wide range of analytes including bacteria, [60] 

dopamine, [61] hormones and heavy metals (Fig.9c-d). BD-UNCD microsensors in 

microwire geometry (Fig.9e) are more suitable for in vivo voltammetry measurement of 

neuro active substances. These microwire sensors have been tested by using flow injection 

Fig.9. Biological and chemical sensing applications of UNCD 3×3 microarrays. (a) Optical 

image of microarray. The inset is the SEM image of microarray showing the nine 

individually addressable microelectrodes of 200 µm diameters. (b) Overlay of the cyclic 

voltammograms of the 10 µm (green), 50 µm (brown) and 100 µm (blue) microarrays. The 

electrolyte is 5 mM Fe(CN)
6

3−/4−

 in 1M KCl. (c) Square wave voltammograms of 10 ppm 

lead on a 100 µm microelectrode after five different deposition times of 0, 5, 25, 55 and 

110s (black to blue curves) at −1.52 V vs. Pt reference/counter. (d) Nyquist plot (dotted 

curve-experimental and solid curve-fitted) of 200 µm microelectrodes modified with anti-

K12 bacteria antibody and casein blocker (blue solid circles) and after K12 bacteria 

capture (pink solid circles). The optical (inset) images of a clean and E. coli K12 captured 

microelectrodes. The electrolyte used is 5 mM Fe (CN)
 6 

3−/4−

 in 0.01 M PBS buffer. (e) 

UNCD coated pre-sharpened tungsten microwire microsensor. The microelectrode is 

exposed at the tip by insulating with a 3 µm thick parylene and laser etched. 
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analysis and in rat brains for dopamine detection. Detection limits down to 27 nM were 

achieved.  It is notable that due to the unique properties of the UNCD interface such as its 

chemical stability, ultra-smooth surface morphology and minimal nonspecific binding, this 

new electrochemically robust material could emerge as the next best electrochemical 

transducer for advanced sensing, particularly in implant applications. 

 

5. Conclusions 

We have demonstrated boron doped UNCD fabricated with an H-rich/Ar-free and high 

CH4/H2 ratio gas chemistry in a HFCVD reactor. The BD-UNCD fabrication technique is 

different from both H-rich but low CH4/H2 ratio gas chemistry used in conventional 

NCD/MCD fabrication, and Ar-rich and low CH4/Ar ratio gas chemistry used in the 

conventional UNCD fabrication in PECVD tools. Low resistivity down to 0.01 ohm·cm 

measured by 4-point probe, a uniform and small grain size of 5-15 nm as measured by 

SEM/TEM, a low roughness down to several nm as measured by AFM, and a high purity sp3 

content confirmed by NEXAFS show that the diamond reported here is a heavily boron 

doped UNCD of high purity. These measurements also revealed feature roughness, nano-

texture, grain information, and surface chemistry of BD-UNCD. The results indicate that high 

purity UNCD is not necessarily linked to low CH4 content and/or Ar-rich gas, and for the first 

time BD-UNCD has been fabricated in a HFCVD tool mixed with a boron/methane ratio up 

to 12500 ppm. Applications of this type of BD-UNCD on conductive AFM probes, robust 

electrodes and high performance/biocompatible sensors have been demonstrated. An overall 

hypothesis for the deposition of BD-UNCD in both HFCVD Ar-free and PECVD Ar-rich 

deposition conditions arises from the results presented, i.e., that a high renucleation rate and 

the minimization of non-diamond carbon build-up tends to lead to the formation of UNCD. 

However, this hypothesis will require further investigation and quantification.  
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