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The relative contribution of orbital forcing and greenhouse

gases to the North American deglaciation

Lauren J. Gregoire1, Paul J. Valdes2, and Antony J. Payne2

1School of Earth and Environment, University of Leeds, Leeds, UK, 2School of Geographical Sciences, University of Bristol,

Bristol, UK

Abstract Understanding what drove Northern Hemisphere ice sheet melt during the last deglaciation

(21–7 ka) can help constrain how sensitive contemporary ice sheets are to greenhouse gas (GHGs) changes.

The roles of orbital forcing and GHGs in the deglaciation have previously been modeled but not yet quantified.

Here for the first time we calculate the relative effect of these forcings on the North American deglaciation

by driving a dynamical ice sheet model (GLIMMER-CISM) with a set of unaccelerated transient deglacial

simulations with a full primitive equation-based ocean-atmosphere general circulation model (FAMOUS).

We find that by 9 ka, orbital forcing has caused 50% of the deglaciation, GHG 30%, and the interaction

between the two 20%. Orbital forcing starts affecting the ice volume at 19 ka, 2000 years before CO2 starts

increasing in our experiments, a delay which partly controls their relative effect.

1. Introduction

The last deglaciation (21–9 ka) was a period of major climate change, during which the demise of the North

American and Eurasian ice sheets and retreat of the Greenland and Antarctic ice sheets resulted in the

sea level rising by 130m since 21 ka [Lambeck et al., 2014]. According to the Milankovitch theory, the last

deglaciation was caused by summer insolation increase at the latitude of the Northern Hemisphere ice

sheets (45–80°N), starting around 23 ka [Milankovitch, 1941]. This was followed by an increase in atmospheric

CO2 concentrations, from 200ppm at 19 ka to 260ppm at 8 ka [Monnin et al., 2001; Veres et al., 2013], and an

increase in CH4 and N2O concentrations [Spahni et al., 2005], which further affected the climate. Quantifying

the relative contribution of these forcings to the Northern Hemisphere ice sheet retreat can help us constrain

the ice sheets sensitivity to increases in these gases.

The roles of orbital and atmospheric CO2 changes in glacial-interglacial cycles have been investigated with

a range of methods using simple theoretical models [e.g., Paillard, 1998], intermediate complexity models

[e.g. Gallée et al., 1992; Heinemann et al., 2014], and parameterizations based on complex general circulation

models [e.g. Abe-Ouchi et al., 2013]. The difference in timescales and spatial scales of climate and ice sheet

processes makes it difficult to model the full climate-ice sheet interaction with complex models, because of

the length of model simulations required and because small climate model biases can produce large errors

in ice volume [Pollard, 2000, 2010]. One way to overcome this is to use Earth system Models of Intermediate

Complexity (EMICs) [Gallée et al., 1992; Charbit et al., 2005; Bonelli et al., 2009; Ganopolski and Calov, 2011]

in which atmospheric processes are simplified and resolved at very coarse resolution. Gallée et al. [1992]

showed that deglaciation could be simulated with an EMIC, but required additional processes such as aging

of snow albedo, while in Charbit et al. [2005], the Cordilleran sector did not fully deglaciate. Moreover,

simplifications of the atmospheric component result in relatively crude simulations of precipitation and

heavy use of downscaling techniques which introduce their own complexity.

More recently, using a slower, but more complex EMIC, LOVECLIM, coupled with a 3-D ice sheet model

Heinemann et al. [2014] was able to simulate the last deglaciation. With a complex general circulation

model (GCM), Abe-Ouchi et al. [2013] derived a sophisticated parameterization of glacial-interglacial climate

evolution with ice sheet feedbacks. They showed that the geometry of the North American continent is

key to explaining the timing of deglaciations.

These studies show that orbital changes are the primary driver of glacial-interglacial cycles [Ganopolski and

Calov, 2011; Abe-Ouchi et al., 2013]. Orbital changes also triggered [Heinemann et al., 2014] and were the main

driver of ice retreat [Charbit et al., 2005] and climate change [He et al., 2013] during the last deglaciation.
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CO2 has a secondary role in driving the glacial-interglacial cycles [Abe-Ouchi et al., 2013] yet is crucial in

controlling the amplitude of the cycles [Berger et al., 1998; Ganopolski and Calov, 2011] and fully deglaciating

North America [Charbit et al., 2005; Heinemann et al., 2014].

Despite this mechanistic understanding, the relative contributions of CO2 and orbital forcings to deglacial ice

retreat have not yet been quantified. Moreover, the timing and amplitude of CO2 and orbital effects on ice

sheets remains uncertain because of shortcomings in methodologies. For example, to compensate for their

model’s low climate sensitivity, Heinemann et al. [2014] artificially triple the radiative effect of CO2. This bias

correction makes the large assumption that the missing feedbacks that cause the low climate sensitivity (e.g.,

convective cloud feedback) only occur when climate change is forced by CO2 and not by orbital changes. This

potentially exaggerates the effect of CO2. In the same study, the change in greenhouse gas concentrations

and orbital parameters evolve 20 times faster than reality. This acceleration can affect the amplitude of

changes and distort the leads and lags of the system [Lunt et al., 2006] and may have slowed down the effect

of CO2 [Heinemann et al., 2014]. Finally, the parameterization of glacial cycle climate from Abe-Ouchi et al.

[2013] assumes a constant relationship through time and space between temperature and CO2 and orbital

forcings. This may introduce distortions in amplitude and timing of ice sheet changes.

We present the first quantification of the relative contribution of greenhouse gases (GHG) and orbital changes

in the North American last deglaciation using transient simulations of the last deglaciation from a primitive

equation-based coupled ocean-atmosphere GCM, FAMOUS, with no acceleration, bias correction, or additional

parameterization of climate change. The climate simulations are forced with combinations of orbital, GHG, and

geographical (sea level and ice sheet) changes and are used to drive the Glimmer-CISM ice sheet model offline.

We use a factor decomposition technique to separate the contributions of these different forcings to the North

American deglaciation. Since the ice sheet-climate feedbacks are prescribed as a forcing rather than being

simulated, we quantify the uncertainty associated with transforming this ice forcing into a feedback.

2. Methodology

2.1. Ice Sheet Model

We model the North American ice sheet with the Glimmer-CISM 3-D thermomechanic ice sheet model

version 1.0.14 [Rutt et al., 2009]. The shallow ice approximation used in this version does not represent all

marine ice sheet processes but allows for reasonably fast computation and is adequate for simulating the broad

features of the North American ice sheet, where ocean-ice sheet interactions play a secondary role. The model

performs well against EISMINT benchmarks [Rutt et al., 2009] and has been used to simulate the Greenland ice

sheet [Lunt et al., 2008; Stone et al., 2010] and the North American deglaciation [Gregoire et al., 2012].

We use the same setup as Gregoire et al. [2012]. The North American ice sheet domain is represented by a

40 km Cartesian grid with 11 vertical sigma coordinate levels on a Lambeck azimuthal equal area projection

[Snyder, 1987]. The mass balance is calculated with an annual positive degree day (PDD) scheme [Reeh, 1991]

in which surface melting is proportional to the sum of positive degree day over a year. The PDD factors are

set to 3mm/d/°C for snow and 8mm/d/°C for ice as in other studies [Marshall et al., 2002; Charbit et al., 2007;

Bonelli et al., 2009; Abe-Ouchi et al., 2013; Heinemann et al., 2014]. All precipitation is assumed to fall as snow,

and up to 60% of meltwater can refreeze in the snow pack. To calculate the bedrock isostatic adjustment to

the ice load, the solid Earth is represented as an elastic lithosphere floating on top of a relaxing mantle.

We start our experiments at the last glacial maximum (LGM; 21 ka), with ice thickness, extent, temperature, and

velocity taken from spun-up LGM ice sheets as in Gregoire et al. [2012]. In this spin-up, we interpolated between

the FAMOUS present day and LGM equilibrium climate with a climate index based on a Greenland ice core

record δ
18O record [NGRIP Members, 2004] and use the interpolated climate to built-up the ice sheet

through the last glacial cycle (120–21 ka). Ice is allowed to advance on shallow basins and calving occurs

only where the bathymetry is deeper than 500m. In the subsequent deglacial experiment, calving occurs

when ice reaches a floating point. The main tuneable model parameters (basal sliding, flow factor, lapse

rate, PDD factors, and mantle relaxation time) were previously adjusted to optimize ice volume and area

at the LGM compared to the ice-5G reconstruction [Gregoire, 2010] (see Table S1 in the supporting information).

The resulting LGM North American ice sheet has a volume of 3.5 × 106 km3 (7% larger than ICE-5G) over

16 × 106 km2 (4% less than Ice-5G).

Geophysical Research Letters 10.1002/2015GL066005
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2.2. Climate Forcing

To force the ice sheet model through the deglaciation, we use monthly mean temperature and precipitation

from a set of transient simulations of the last deglaciation as in Gregoire et al. [2012]. In these runs, ice sheet

extent, bathymetry, orography, and the land-sea mask are updated every 1000 years based on Ice-5G [Peltier,

2004]. The vegetation is held constant at the present-day values, except for area covered by ice. Similarly, aerosols

are held constant throughout the run. CO2, CH4, and N2O concentrations are varied every time step with values

taken from European Project for Ice Coring in Antarctica Dome C on the original chronologies [Monnin et al., 2001;

Spahni et al., 2005] (Figure 1). The simulations are forced with continuously varying insolation at the top of the

atmosphere taken from Berger and Loutre [1992]. The freshwater flux to the oceans, produced as part of the

ORMEN project, consists of a background flux from ice sheet melt and three meltwater pulses (Figure 1).

We use five experiments with different combinations of climate forcing: (1) GEOG: changes in geography are

prescribed, and other boundary conditions are fixed to those of the LGM; (2) GEOG_ORB: the geography and

orbital parameters are changed; (3) GEOG_GHG: the geography and trace gases concentrations are changed;

(4) GEOG_ORB_GHG: the geography, orbital parameters, and trace gases concentrations are changed; and

(5) ALL: includes all the above changes and the additional freshwater forcing.

Figure 1. Boundary condition for the FAMOUS deglacial climate simulation. (a) Ice-5G ice sheet volume [Peltier, 2004],

(b) atmospheric trace gases concentration [Monnin et al., 2001; Spahni et al., 2005], (c) July insolation at 65°N [Berger and

Loutre, 1992], and (d) freshwater flux.

Geophysical Research Letters 10.1002/2015GL066005
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With all the forcings included (ALL), global temperatures warm by 4.2°C between 21 ka and 9 ka. The model

simulates the appropriate LGM temperature and subsequent warming over Greenland compared to the

Greenland Ice Sheet Project Two record [Alley, 2004] but shows amuch smaller variability in the climate change

(Figure S1). In particular, the model does not simulate the rapid Bølling warming and the Younger-Dryas cold

event [Alley, 2004]. Possible explanations for this are (i) that the freshwater forcing used here is missing

some key fluxes or that these are put in the wrong locations, (ii) that the ocean circulation in FAMOUS is

not sensitive enough to the forcings, or (iii) simply that the climate changes are caused by another factor

not included in our model. The lack of large rapid change in our climate forcing could impact the resulting

temporal evolution of ice volume. However, the model produces the correct range of temperature change

in Greenland, which suggests it simulates well the overall deglacial climate change.

We use monthly precipitation and temperatures from these transient simulations to force the ice sheet model.

Orography is also input into the ice sheet model to downscale the temperature field onto the ice sheet grids

using a 5°C/km constant lapse rate. We do not make any corrections to the precipitation as the field is already

consistent with the climate model orography taken from Ice-5G.

In our control experiment (CTRL) we keep the climate fixed at the LGM for 12,000 years. Other ice sheet

experiments are referred to by the name of their forcing climate simulation: GEOG, GEOG_ORB, GEOG_GHG,

GEOG_ORB_GHG, and ALL. We have six experiments including the control CTRL.

2.3. Factor Decomposition

Using CTRL, GEOG, GEOG_ORB, GEOG_GHG, and GEOG_ORB_GHG, we decompose the effects of changes

in geography (GEOG), orbital parameters (ORB), and GHG on the total North American ice volume [Stein and

Alpert, 1993]. We, respectively, call Vi, Vij, and Vijk the North American ice volume when the factor(s) i, i and

j, or i, j, and k are considered. We call bV i the fraction of V induced by the factor i. The factor cV ijk is therefore the

contribution of the pure triple interaction between i, j, and k. We name the geography forcings I (for ice), the

orbital forcing O, and the greenhouse gases forcing G. Following this notation, the North American ice volume

in the simulations CTRL, GEOG, GEOG_ORB, GEOG_GHG, and GEOG_ORB_GHG is written VC, VI, VIO, VIG, and

VIOG, respectively. Ice volume change in each experiment can be decomposed in the following way:

VC ¼ cVC

V I ¼ bV I þ cVC

V IO ¼ bV I þ cVO þ cV IO þ cVC

V IG ¼ bV I þ cVG þ cV IG þ cVC

V IOG ¼ bV I þ cVO þ cVG þ cV IO þ cV IG þ dVOG þ dV IOG þ cVC

(1)

With five simulations (including the control), we do not fully solve our system of equations [Stein and Alpert,

1993], but we can separate the effect of the three factors by rearranging the previous equations. For convenience,

we represent the ice volume lost since the LGM by multiplying the equations by �1. We therefore express the

contributions of geography (ICE), orbital forcing (ORB), and GHG to the ice volume lost through time, as follows:

ICE tð Þ ¼ � bV I tð Þ ¼ VC tð Þ � V I tð Þ

ORB tð Þ ¼ � cVO tð Þ þ cV IO tð Þ
� �

¼ V I tð Þ � V IO tð Þ

GHG tð Þ ¼ � cVG tð Þ þ cV IG tð Þ
� �

¼ V I tð Þ � V IG tð Þ

(2)

Here ORB and GHG include the effect of interactions between geography and orbit, and geography and GHG.

We also define the total ice volume loss through time as

TOTAL tð Þ ¼ VC tð Þ � V IOG tð Þ; (3)

which can be expressed as the sum of ICE, ORB, and GHG, plus a term involving interactions between orbital

and GHG forcings:

TOTAL tð Þ ¼ ICE tð Þ þ ORB tð Þ þ GHG tð Þ þ Int tð Þ; (4)

with

Int tð Þ ¼ dVOG tð Þ þ dV IOG tð Þ: (5)

Geophysical Research Letters 10.1002/2015GL066005
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3. Results and Discussion

3.1. Evaluation

With all forcings included, the extent of the North American ice sheet modeled through the deglaciation

matches well the reconstruction of Dyke [2004], also used in the Ice-5G reconstruction [Peltier, 2004]. This is

partly because Ice-5G is used as an input to our climate experiments. Ice thickness and surface elevation

on the other hand differ from Ice-5G but are similar to the newer Ice-6G_C reconstruction [Peltier et al., 2015]

(Figures 2a and 2b) and the reconstruction of Tarasov and Peltier [2006] (not shown).

The Cordilleran and Laurentide ice sheets separate late, around 11.6 ka instead of ~14.5 ka in Dyke [2004]. This

delay is as yet unexplained [Gregoire et al., 2012], but interestingly, other modeling studies report a similar

Figure 2. Ice surface elevation of (a) the model initial condition (21 ka), (b) Ice-6G_C at 21 ka [Peltier et al., 2015], and (c–e)

GEOG_ORB_GHG experiment at 16, 12, and 9 ka. Difference in ice thickness in meters (f and g) between the GEOG_GHG

experiment and the GEOG_ORG experiment (GEOG_GHG-GEOG_ORG) at 16, 12, and 9 ka. Red colours indicate areas where

orbital forcing has caused a greater ice loss than GHG changes.

Geophysical Research Letters 10.1002/2015GL066005
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timing for this separation [Abe-Ouchi et al., 2013; Heinemann et al., 2014]. Despite the delay, the continent is

completely deglaciated by 6 ka as in Dyke [2004]. We therefore simulate well the duration and rate of the

deglaciation on North America, giving us confidence that processes involved in the overall deglaciation

are well represented (more details in Gregoire et al. [2012]).

3.2. Effect of Geography

Part of the ice retreat in the model is driven by the geographical changes prescribed in the climate experiments

(ICE in Figure 3), involving bathymetry, orography, coastlines, and ice sheet extent and elevation. Additional

climate model simulations (W. H. G. Roberts, personal communication) suggest that the dominant components

of these “geography” changes are the ice sheet extent and elevation. The bathymetry and coastline changes

generally have a much smaller impact on climate. The changes in ICE-5G extent and elevation modify the

albedo and atmospheric (and potentially oceanic) circulation resulting in changes to temperature and preci-

pitation and hence changes in ice sheet surface mass balance. The ICE contribution only becomes large after

14 ka because ice sheet extent only starts significantly changing at this time (Figure 1).

b

c

Figure 3. Contributions to North American ice volume lost through the deglaciation due to each forcing expressed (a) as

ice volumes calculated from equations (2) and (3), (b) as a percentage of the total volume loss (TOTAL in equation (3)), and

(c) as a percentage contribution when ICE is considered as a feedback. The blue vertical lines represent the uncertainty

associated with representing ICE as a feedback (Text S2).

Geophysical Research Letters 10.1002/2015GL066005
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Over the deglaciation, geographical changes produce an average 3°C summer warming over North America

between 21 and 13 ka (Figure 4a). Where the ice margin has retreated, the warming can exceed 10°C and

precipitation increases (Figures 4a and 4c). Because ice extent is updated every 1000 years in our climate

experiments, ice sheet melt increases sharply at these intervals, especially at 14, 13, 12, and 10 ka.

By 9 ka, the ICE forcing accounts for around half the North American ice loss (Figure 3b). This shows that this

feedback process significantly amplifies the GHG and orbital changes. In a coupled ice-climate system these

geographical changes would have been caused by orbital or GHG forcings alone. The ICE component can

therefore be seen as representing ice-climate feedbacks, and we can recalculate the relative contributions

of ORB and GHG with ICE as a feedback (Figure 3c and Text S2). These feedbacks mostly involve ice albedo

and atmospheric circulation, since ice elevation is corrected for with a fixed lapse rate.

3.3. Effects of CO2 and Orbital Forcings

Even though greenhouse gas changes produce a greater annual mean warming than the orbital forcing

between 21 ka and 13 ka (Figure 4e), they produce a much weaker summer warming (Figure 4d). Hence,

we would expect orbital forcing to have a larger impact on the North American ice sheet, since ice sheet mass

balance is mostly controlled by the summer melting season [Milankovitch, 1941].

Orbital changes start noticeably affecting the North American ice volume at 19 ka, while the effect of GHG only

starts to be significant at 16 ka (Figure 3a). After 16 ka, the sum of ORB and GHG is mostly lower than 100% of

Figure 4. (a–c) Impact of geography and (d–f) comparison of orbital, greenhouse gases effect on June to August mean

temperature in °C (Figures 4a and 4d), annual mean temperature in °C (Figures 4b and 4e), and annual mean precipitation

in mm/d (Figures 4c and 4f). Figures 4a–4c show the GEOG experiment at 13 ka minus 21 ka. Figures 4d–4f show

climatologies of GEOG_GHG minus GEOG_ORB at 13 ka. Temperatures are corrected for changes in elevation using a

lapse rate of 5°C/km.

Geophysical Research Letters 10.1002/2015GL066005
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TOTAL (Figure 3c); this means that the remaining interactive term Int(t) is positive. This is due to the nonlinearity

of the ice sheet response to climate forcings, which in this instance likely originate from a surfacemass balance-

elevation feedback acting to reinforce the deglaciation. The relative contribution of orbital forcing peaks at

10.9 ka and that of GHG peaks at 9.6 ka, when the Cordilleran and Laurentide ice sheet separate, which

causes an acceleration of the ice melt (Figure S2) due to the saddle collapse mechanism [Gregoire et al.,

2012]. The difference in the timing of the separation is what temporarily increases the relative contribution

of the forcings and causes the interactive term Int(t) to be negative around 10.5 ka (Figures 3b and 3c).

By 9 ka, the orbital forcing has contributed 50% and the greenhouse gas forcing 30% to the North American

deglaciation, if we consider the geographical changes (ICE) as a feedback in the climate system (Figure 3c).

The remaining 20% of the deglaciation is caused by interactions between the forcings. These results are for

the case where the ICE feedback is assumed to be the same for all forcings (Text S2). However, this may not

be the case because orbital and GHG forcings affect the climate differently both seasonally and spatially

(Figures 4d–4f). Based on extreme cases where the ICE feedback is twice and half as strong for one forcing

than the other (Text S2), we find that the contributions or orbital and GHG forcings vary by ± 7% (blue bars

in Figure 3c).

The relative contributions of orbital and GHG forcings to ice volume changes vary over time (Figure 3c).

From 16 to 9 ka, the average mass balance is the same in GEOG_ORB and GEOG_GHG (Figure S2) meaning

that the effects of orbital and greenhouse gas forcings are equivalent over that period. Orbital and GHG

forcings also produce similar patterns of ice retreat; the differences in ice thickness between the GEOG_ORB

and GEOG_GHG experiments follow the pattern of deglacial ice retreat (Figures 2c–2g). Therefore, these

differences mostly reflect a delay in the GEOG_GHG deglaciation compared to GEOG_ORB. This suggests

that orbital forcing contributes more to the deglaciation partly because orbital forcing starts changing

before CO2.

The recent Antarctic ice core chronology 2012 ice core chronologies [Parrenin et al., 2013] date the initial

CO2 increase 1600 years earlier than in the Monnin et al. [2001] record used in our climate simulations.

Therefore, the effect of CO2 on ice retreat may be delayed and underestimated in our results. This late

CO2 increase could partly explain why the Laurentide and Cordilleran ice sheets separate 2500 years late

in our model and other studies. This delay could also be caused by missing or misrepresented processes

in our model. For example, the shallow ice approximation used here does not fully represent ice stream

dynamic. More complex and slower ice sheet models are required to correctly simulate this. Also, the positive

degree day mass balance scheme does not explicitly account for the effect of shortwave radiation changes

on the ice sheet mass balance [Robinson et al., 2010; van de Berg et al., 2011] which could lead to the orbital

forcing being underestimated here.

3.4. The Additional Effect of Meltwater

Ice sheet and iceberg meltwater entering the oceans generally has little impact on the climate simulated by

FAMOUS, except for a weakening in the Atlantic Overturning Circulation from 20 sverdrup (Sv) to 12Sv around

14.5 ka due to the meltwater pulse 1a freshwater pulse, resulting in a ~1°C cooling in northeast Canada and

the Hudson Bay region (not shown). This delays the North American deglaciation by 700years. As mentioned

earlier, the ALL FAMOUS experiment does not reproduce the details of the rapid cooling and warming patterns

of the deglaciation [Alley, 2004]; it is therefore possible that the effect of freshwater on the climate is not well

represented in our model.

4. Conclusions

Wehave calculated the relative effect of CO2 and orbital forcings on the North American deglaciation by forcing

a dynamic ice sheetmodel with a set of fully transient deglacial simulations from a GCM and performing a factor

decomposition on the results.

We find that orbital forcing explains 50%±7% of the reduction in North American ice volume, while GHG

increases, which include CO2, explain 30%±7% of this deglaciation. We suggest that the relative contribution

of these forcings is partly controlled by the relative timing of the forcings. In our experiments, orbital forcing

starts affecting the ice volume at 19 ka, 3000 years before the CO2 forcing does. The reduction in ice sheet

elevation and extent adds a further major feedback on to the climate change.

Geophysical Research Letters 10.1002/2015GL066005
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Our results agree well with other studies [Ganopolski and Calov, 2011; Abe-Ouchi et al., 2013; He et al., 2013;

Heinemann et al., 2014] in terms of the timing of initiation and of the role of orbital forcing and CO2. In addition,

we are able to go a step further and quantify the relative contributions of these forcings. Further work using

fully coupled runs of the last deglaciation with a similar general circulation model and an energy mass balance

scheme would be needed to confirm the results.
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