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ABSTRACT. We explore a mathematical model that couples together a thermomechanically evolving
subglacial channel, distributed cavity drainage, and basal sliding along a subglacial flood path fed by a
jökulhlaup lake. It allows water transfer between channel and cavities and a migrating subglacial water
divide or ‘seal’ to form between floods. Notably, it accounts for full coupling between the lake and
subglacial drainage in terms of both discharge and pressure, unlike models that neglect the pressure
coupling by imposing a known history of lake discharge at the channel inlet. This means that flood
hydrographic evolution and its impact on glacier motion are consistently determined by our model.
Numerical simulations for a model alpine lake yield stable limit cycles simulating repeating jökulhlaups,
with the channel drawing water from the cavities at a varying rate that modulates basal sliding during
each flood. A wave of fast sliding propagates down-glacier at flood initiation, followed by deceleration
as the growing channel sucks water from the cavities. These behaviours cannot be correctly simulated
without the full coupling. We show that the flood’s peak discharge, its initiation threshold and the
magnitude of the ‘fast sliding’ wave decrease with the background water supply to the cavities.

1. INTRODUCTION
In Nye’s (1976) jökulhlaup theory, water from a flood lake
drains in a subglacial channel whose size evolves to govern
the drainage hydrograph. His theory ignores glacier flow due
to basal sliding, which may respond to changing subglacial
water pressures during floods. Such coupling between floods
and ice dynamics is observed in alpine jökulhlaup systems as
‘ice-motion’ events, such as speed-up (Anderson and others,
2005; Mayer and others, 2008; Riesen and others, 2010;
Sugiyama and others, 2010; Bartholomaus and others, 2011)
and uplift (e.g. Anderson and others, 2005; Sugiyama and
others, 2008; Magnússon and others, 2011) during flood
growth followed by deceleration or reversal in ice flow during
flood recession (Anderson and others, 2005; Sugiyama and
others, 2008; Magnússon and others, 2011). This coupling
also occurs in ice sheets. Studies in Greenland show that
surface meltwater routed via supraglacial lakes and moulins
to the bed can cause short-term changes in surface velocity
(Zwally and others, 2002; Das and others, 2008) and seasonal
ice speed-up (Bartholomew and others, 2011). These obser-
vations raise the question of whether and howmuch climate-
warming induced changes will increase the long-term ice
flux (e.g. Schoof, 2010; Sundal and others, 2011). Both alpine
marginal lakes and supraglacial lakes are reservoirs whose
water balance depends on climate, and drainage–ice-flow
coupling in both types of system involves rapid, high-
magnitude variations in subglacial discharge; Nye’s theory
offers a foundation for modelling the physics of this coupling.

Here, considering alpine jökulhlaups only, we present a
consistent model of this coupling by extending several
strands of previous work. A key feature of Nye’s (1976)
theory is the growth of channel discharge through positive
feedback with melt enlargement of the channel during the
rising flood stage. As the lake drains and its level drops,
reduced subglacial water pressure promotes channel closure
and flood termination. Numerical solution of this model (e.g.
Spring and Hutter, 1981; Clarke, 1982, 2003; Ng, 1998;
Fowler, 1999, 2009; Ng and Björnsson, 2003; Kessler and

Anderson, 2004; Ng and others, 2007) shows that simulation
of jökulhlaup discharge requires full coupling between sub-
glacial drainage and the lake – defined by the two conditions:
(1) water flux at the channel inlet equals the lake outflow, and
(2) the lake-water depth controls the water pressure at the
channel inlet (correctable, in the case of a subglacial lake
covered by an ice shelf, for over-pressurization due to vertical
shear stresses in the shelf; Evatt and Fowler, 2007). Full
coupling is also necessary in any extended model incorpor-
ating ice flow and aimed at predicting flood hydrographs.

Recent numerical studies have highlighted the rich
hydrological and glacier-dynamical behaviour that can arise
when Nye’s evolving channel coexists with a distributed
drainage system. Flowers and others (2004) showed that lake
water injected into a subglacial water sheet, that in turn feeds
and rapidly enlarges a channel, can explain the fast-rising
discharge seen at the start of the 1996 Grı́msvötn (Iceland)
flood hydrograph (Björnsson, 2002), not reproducible by
Nye’s model (Jóhannesson, 2002). Pimentel and Flowers
(2011) added other processes to this description – high-order
glacier dynamics, basal sliding, ice hydraulic fracture and ice
uplift – to explore several glacio-hydraulic scenarios. Since
these studies did not focus on flood dynamics, they
prescribed a known discharge at the top end of the channel,
neglecting condition (2) above. In our model, we use full
coupling to let the channel discharge evolve freely, so that
the response it causes in distributed drainage and ice flow
can feed back and influence lake drainage. Themodel is used
to examine jökulhlaup characteristics and glacier motion
during floods. We study specifically whether the incorpor-
ation of distributed drainage and ice motion into Nye’s theory
alters the floods’ hydrographs, their initiation threshold and
recurrence. Impact of ice motion on supraglacial lake
drainage is also conceivable in the ice-sheet scenario, where
a supraglacial lake or a moulin acts as a reservoir with more
complex geometry than an ice-marginal lake.

A further research strand provides us with a model of
distributed drainage and sliding. Hewitt and Fowler (2008)
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proposed a theory to explain seasonal waves on glaciers. By
linking channelized subglacial drainage to cavity drainage
with sliding, they showed that imposing periodic meltwater
input to this system can cause oscillations in ice flow
resembling observations. We adopt some of their cavity
system equations below, but couple them to a fully dynamic
channel, itself pressure-coupled to a lake. Hewitt and
Fowler’s way of forcing the system also inspires us to view
the background water supply to the cavities (MC) as an
environmental factor behind jökulhlaups.

Our model and its numerical solution are described in
Section 2. To gain general insights into alpine and ice-cap
jökulhlaup systems, we assume simplified lake and glacier
geometry representative of these systems, rather than tailor
parameters for a given lake. Section 3 reports our numerical
experiments. We show that water transfer from the cavities
to the channel can suppress the growth of recurring floods,
and we study the spatio-temporal pattern of glacier flow
during jökulhlaups. We find that basal sliding is strongly
sensitive, but the flood hydrograph weakly sensitive, to MC.
We discuss these findings alongside field observations at
several jökulhlaup lakes in Section 4.

2. MATHEMATICAL MODEL
Figure 1 shows our system. A lake feeds a subglacial channel
of length s0, which exchanges water with a distributed
system of linked cavities outside it; the cavities influence
and are influenced by sliding. We denote distance down-
glacier from the lake by s, time by t, and use subscripts R (for
Röthlisberger) and C to label channel and cavity variables,
respectively. While we aim to couple flood and ice-flow
dynamics, three specific ‘couplings’ occur in the model:
between the lake and subglacial drainage, between the
channel and cavities, and between cavities and sliding.

2.1. Channelized drainage
Nye (1976) envisaged the channel cross-sectional area SR to
evolve under the competition between melt enlargement
and creep closure. We use Fowler’s (1999) version of his
model, which allows the discharge QR to go negative (e.g.
when the channel drains into the lake between floods), and
where the equations for channel evolution, mass conserva-
tion and momentum conservation, are, respectively:
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In Eqn (1), the two terms on the right represent melting and
closure. The mass melted per unit channel length per unit
time, m, is given by m= ( + @NR/@s)|QR|/L; this expression
assumes that potential energy is instantaneously dissipated
through friction to melt the channel walls. NR is channel
effective pressure (= Pi – PR, with Pi being ice overburden
pressure, PR being channel water pressure), �w and �i are
water and ice densities, g is gravity, L is latent heat
of fusion of water and f is hydraulic roughness
(f= n’2(l2/SR)

2/3�0.07m–2/3 s2 for a semicircular channel
with wetted perimeter l and Manning’s roughness coefficient
n’=0.1m–1/3 s). The constants n=3 and K0 = 10–24 Pa–3 s–1

pertain to temperate ice rheology (Fowler, 1999); K0 accounts
for the assumed semicircular cross section of the channel.

The term T in Eqn (2) represents the rate of water transfer
into the channel from the cavities (volume flux per unit
distance). Following Hewitt and Fowler (2008) we model it
as proportional to the pressure difference between these
drainage components:

T ¼ Rkk NR �NCÞ,ð ð4Þ
where NC is the cavity effective pressure and k is a
connectivity constant (we adopt Hewitt and Fowler’s value
10–9m2 s–1Pa–1). Rk is a dimensionless factor used in our
experiments (Section 3.1) for varying the transfer rate Rkk
that saves us from writing out its units each time.

Equation (3) derives from Manning’s friction formula and
 is the basic hydraulic gradient, given by

 ¼ �wg sin�b � @Pi
@s

, ð5Þ
where �b is the glacier bed slope. We assume a slab glacier
with uniform thickness H (Fig. 1), so  is constant.

Equations (1–3) neglect the lake’s internal energy that
could enhance the channel melt rate m (Clarke, 1982), so
this model assumes lake and subglacial water temperatures
equal to the pressure-melting point. Also, as NR and NC stay
positive in our simulations, we do not model channel
enlargement caused by ice uplift when NR or NC� 0
(Jóhannesson, 2002; Hewitt and others, 2012).

2.2. Lake evolution
The lake depth hL (Fig. 1) evolves with water input (Qin) and
outflow (QR at the channel inlet) following the continuity
equation

dhL
dt

¼ 1
AL

Qin �QR 0, tð Þ½ �, ð6Þ

Fig. 1. Diagram of our model jökulhlaup system.
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where AL is uniform lake area. Equation (6) expresses
condition (1) of our full coupling (Section 1). According to
condition (2) of our full coupling, the hydrostatic lake
pressure fixes the channel-inlet effective pressure to be

NRð0, tÞ ¼ �igH � �wghLðtÞ ð7Þ
at all times, and this provides a boundary condition for NR in
Eqn (3).

2.3. Linked-cavity drainage and basal sliding
We follow Hewitt and Fowler (2008) in using a pseudo-
steady description for the geometry of the cavities, with a
conservation equation for the water flux through them and a
sliding law. For sliding at velocity ub over bed obstacles of
height R, Walder (1986) showed that the typical cavity cross-
sectional area is
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where ��0.32 and k1� 1.1 are constants, and that the water
discharge through the cavity system, QC, depends on
hydraulic gradient (just as for the channel) so that QC and
SC are related via
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We adopt a power law to describe sliding,

ub ¼ cs
�
p
b

Nq
c

ð10Þ

(e.g. Bindschadler, 1983), where p=4, q=1, cs is a constant
dependent on bed roughness (� 2�10–20m s–1 Pa–3; Hewitt
and Fowler, 2008), and �b is the basal shear stress assumed to
balance local driving stress �igH sin�s where �s is glacier
surface slope (Cuffey and Paterson, 2010). Following Walder
(1986) and Kamb (1987), we assume that the sliding control
on cavity size (the first of the two terms enclosed by the
square brackets in Eqn (8)) dominates frictional heating (the
second term). On neglecting the latter term, eliminations
between Eqns (8) and (10) lead to
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which give the cavity effective pressure and sliding velocity
in terms of SC. For the bed obstacle height R, we useWalder’s
(1986) value of 0.1m.

A final equation describes water conservation in the
cavities:

@SC
@t

¼ MC � @QC

@s
� T , ð12Þ

whereMC is the backgroundwater supply to the cavities from
basal- and surface-derived melt. We assume that the channel
receives meltwater only via the cavities (through T) and none
directly via moulins or other englacial routes.

Equations (1–6), (9), (11a), (11b) and (12) complete our
model. In essence it describes the coupled evolution of
channel size, cavity size, and lake level. SR, QR, NR, T, SC,
QC, NC and ub are functions of t and s, while hL is a function
of t only. This model differs from Hewitt and Fowler’s not just
in its inclusion of the lake and a channel that evolves at a rate
dictated by melt and ice creep, but also in using the total

hydraulic gradients  >+ @NR/@s and  + @NC/@s to drive
channel and cavity flow (rather than  alone). Four boundary
conditions are needed in Eqns (2), (3), (9) and (12) for
determining the discharge and pressure in these systems. For
the channel we impose the condition in Eqn (7) and NR =0 at
the terminus (s= s0). For the cavities, an equation like (7)
could be used to couple the cavities and the lake
hydraulically. Preliminary investigations indicate that inter-
esting dynamics result from this coupling, but a full
exploration of its consequences is beyond our scope here.
Instead, for simplicity, we isolate the cavities from the lake,
by assuming that NC at the lake (s=0) and at the terminus
(s= s0) are both constant, �1� 105 Pa. Although this value
may seem arbitrary, the qualitative features of our results
reported below are not sensitive to its size.

Our assumption of pseudo-steady cavity geometry is
motivated by the supposition that, unlike in channels, the
cavity system’s effective pressure–discharge relationship will
be negative whether the system is steady or not, and
motivated by the lack of unsteady cavity drainage models
that are strongly verified by subglacial observations. How-
ever, the potential limitations of our model need to be
recognized. Since, in reality, cavity size will not react
instantaneously to pressure changes, our model overesti-
mates the role of water storage in cavities when water transfer
changes rapidly and neglects the lag of peak cavity size
behind peak cavity water pressure. In such situations, the
model will underestimate actual NC and ub variations. Also,
our model precludes investigation of a possible negative
feedback between cavity size and pressure suggested by
Bartholomaus and others (2011). In a recent theory, Hewitt
and others (2012) have tried to overcome these limitations by
modelling the cavity system dynamically as a sheet with a
cavity evolution equation analogous to Eqn (1).

2.4. Method of numerical solution
We solved the equations with the finite-difference method on
a discretized space–time domain. The forward Euler method
was used to integrate Eqns (1), (6) and (12), with upwinding
for the spatial derivative in Eqn (12). When calculating results
at the next time-step, we first used variables from the current
time-step to update the lake depth hL and cavity area SC, from
which the sliding velocity ub, cavity discharge QC and
pressure NC could be found by Eqns (11) and (9). Turning to
the channel, we then used Eqn (1) to update SR, and used SR
in Eqns (2) and (3) (with their boundary conditions and NC at
the new time) to find the discharge and pressure distributions
QR and NR at the new time-step. In this boundary-value
problem, where (and whether) QR switches sign along the
channel is not known a priori. To overcome this we solved
Eqns (2) and (3) by two nested iteration loops. In the inner
loop, a guess of the lake outflow QR(s=0) at the new time
was used as the boundary condition for integrating Eqn (2)
into s>0. We used dynamic relaxation for Eqn (2) and
introduced a fictitious "@QR/@t to its left-hand side, and
iteratedQR to steady state on the fast (") timescale. This inner
loop thus yields the QR and NR distributions simultaneously,
including the channel effective pressure at its inlet, NR(s=0).
Generally, QR(s=0) and NR(s=0) at the new timestep from
this loop mismatch the lake condition in Eqn (7). In the outer
loop, we use the Newton–Raphson method to correct the
guess of QR(s=0) iteratively (letting the inner loop converge
each time) to obtain the match.
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3. RESULTS OF NUMERICAL SIMULATIONS
We report here numerical experiments made with the model
to study (1) the cyclicity of recurring floods, (2) variations in
ice flow in each jökulhlaup cycle, and (3) sensitivity of these
variations to the cavity water supply, MC. Throughout, a lake
with area AL = 5 km2, and a glacier described by parameters
s0 = 10 km, H=100m and sin�s = sin�b = 0.01, are assumed.
These values pertain to Merzbacher Lake and South Inylchek
Glacier, Kyrgyzstan (Ng and Liu, 2009), and lead to
 �100Pam–1 and �b�9 kPa.

3.1. Flood cycles
Nye’s model formulated with only time dependence and no
spatial dependence can simulate recurring floods, but their
size grows indefinitely with time through a feedback
between decreasingly small channel size and increasing
highstand and peak discharge (Ng, 1998; Ng and Björnsson,
2003). In reality many jökulhlaups terminate through
complete emptying of the lake, which would interrupt such
unbounded growth, but Ng and Björnsson (2003) also found
this behaviour when simulating floods from Grı́msvötn,
Iceland, which does not empty (Björnsson, 2002). Conse-
quently, unbounded flood growth is seen as an intrinsic
weakness of some jökulhlaup models. Fowler (1999) showed
that model flood cycles remain bounded if spatial depend-
ence is included, the channel receives a uniform meltwater
supply and the basic hydraulic gradient near the lake is
negative (e.g. due to retrograde ice-dam surface slope
towards the lake – a ‘topographic seal’). Whether uniform
channel supply and a topographic seal are necessary
conditions for bounded flood cycles has remained unex-
plored. As our model treats how the channel captures
subglacial water in more detail than Fowler’s model and uses
a positive basic hydraulic gradient everywhere, we address
this by asking whether we can simulate stable flood cycles.

Figure 2 shows the simulated time series from a set of
model runs, each spanning 15 model years and conducted
with an initial lake depth of 30m (hL at t=0), a constant
lake-water input Qin = 10m3 s–1, a constant background
water supply to cavities MC= 1�10–3m2 s–1, and several
values of the parameter Rk between 0 and 1. Rk = 0 and
Rk = 1 refer to total hydraulic isolation and the hydraulic
coupling used by Hewitt and Fowler (2008), respectively.
The coupled lake–channel–cavity system oscillates in time,
yielding asymmetric filling and draining cycles of lake depth
(Fig. 2a, c, e and g) and corresponding floods in the channel
discharge (Fig. 2b, d, f and h). In all runs, initially, the
volume and peak size of successive floods increase with
time in a transient response to initial conditions. When
Rk�0.3, the lake’s post-flood ‘lowstand’ level decreases
until the lake empties completely, interrupting the simu-
lation (Fig. 2a–d). In contrast, when Rk�0.6, the cycles
become periodic and stable without emptying the lake
(Fig. 2e–h). Runs using 0.3 <Rk < 0.6 (not shown) show that
increasing Rk delays the emptying of the lake as peak
discharge is suppressed by increased cavity-to-channel
water transfer.

These results go beyond Fowler’s to show that stable limit
cycles occur when high T values allow the channel to
capture water efficiently from the cavities and a water divide
(or seal) to form between floods. The stabilizing effect of this
transfer is evidenced also by the impact of Rk on the cycles:
the higher is Rk, the shorter is their period and the smaller
the flood volumes. Furthermore, we show that the channel
can drain water into the lake at low lake levels and stable
flood cycles can occur even if the basic hydraulic gradient is
positive everywhere: a topographic seal is not a necessary
condition for water divide formation.

3.2. Spatio-temporal evolution of sliding and drainage
The periodicity of stable cycles provides us with a common
basis for studying individual floods and how their character-
istics depend on model parameters, without the obstacles
associated with initial conditions. Here we analyse the
spatio-temporal behaviour of subglacial drainage and ice
flow in the (�1.5 year long) flood cycle highlighted by the
boxes in Figure 2g and h.

Figure 3 shows the simulated lake depth hL(t) and lake
outflow QR(s=0, t) (Fig. 3a), basal sliding velocity ub(s, t)
(Fig. 3b) and rate of cavity-to-channel water transfer T(s, t)
(Fig. 3c) through the cycle. Figure 3c is a map of T over time
and distance; a similar map is also used to plot ub(s, t) in
Figure 4c, studied in Section 3.3. The hydrographic
sequence here has been discussed by Fowler (1999). In
Figure 3b, the time before point A (and after point E of the
last cycle) is the lake-refilling phase between successive
floods. At point A, high lake level moves the subglacial ‘seal’
(water divide in the channel) back to the lake, initiating the
flood and allowing Nye’s positive feedback to enlarge the
channel. B marks the time of the lake-level highstand when
the flood’s growing discharge instantaneously matches the
lake-water input. C and D mark the flood peak and the post-
flood lake lowstand, respectively.

Regarding ice motion, Figure 3b shows similar responses
in ub at different positions on the glacier. ub rises gradually
as the lake fills, but accelerates rapidly after flood initiation
(A) to peak soon after the time of the lake highstand (B). ub
drops during the main flood (B to D) to a much lower
velocity than during lake refilling, then increases again after

Fig. 2. Modelled lake level, hL(t) (left), and channel discharge at the
lake, QR(0, t) (right), for Rk = 0, 0.3, 0.6 and 1. Cavity water supply,
MC =1� 10–3m2 s–1.
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flood termination (D to E). The durations of elevated and
depressed ub are comparable. Spatially, ub rises mono-
tonically with distance down-glacier, but its time variations
at different positions are not precisely synchronous.
Figure 3b shows that the peak and trough in ub propagate
down-glacier at �250md–1 and �450md–1, respectively
(see the dashed lines in Fig. 3c).

This sliding response can be explained by considering our
model’s physics and is the direct result of the full coupling
between the lake and the drainage system. Equation (11b)
shows that ub varies directly with cavity size, SC. In turn, SC
depends on how much water the cavities gain from the
background supply MC and lose to the channel via water
transfer, whose rate T increases with channel effective
pressure, NR (Eqns (12) and (4)). The sliding response thus
stems ultimately from changes in lake level, which, through
its effect on the channel pressure, governs how fast the
channel draws water from the cavities. The timing associa-
tions in Figure 3 between hL, T and ub confirm this

explanation. When the lake fills between floods (E to A),
reducing NR at the channel inlet, its hydrostatic pressure is
not transmitted past the seal (located in Fig. 3c by the black
line) to modulate T and ub directly far down-glacier (further
simulations show that this effect would be diminished if the
cavities and lake were coupled hydraulically); there is a
slight increase in ub only because the lake level weakly
affects the distributions of NR and T in the channel through
its control on the migrating seal position. However, after the
flood starts at t�11.4 years, the seal’s absence means that
the pressure transmission is unimpeded and able to reduce
NR and T markedly down most of the channel (see descent
into the dark trough in Fig. 3c); this causes the cavities to
expand and accelerates sliding (A to B; 11.4 < t<11.7 years).
Later, as flood discharge grows, peaks, and recedes under
Nye’s mechanisms (B to D, 11.7 < t<12 years), the lake level
drops rapidly, raising NR along the channel so that enhanced
water transfer out of the cavities shrinks their size and
decelerates sliding. After the seal re-forms at flood termina-
tion (E, t �12.2 years) we enter a new cycle. During the
flood when the lake strongly modulates the cavity-to-
channel water transfer, the nonlinear wave properties of
Eqns (1–3) determine the propagation of changes in T and ub
down the channel.

3.3. Sensitivity to the cavity background supply, MC

Finally, we study how the ice-flow and flood evolution
depends on the supply MC, which is the other control on
cavity drainage beside T. For temperate glaciers, MC likely
encompasses water reaching the bed from the surface, so it
can be viewed as a proxy for weather conditions.

Figure 4a–d plot the maps of ub(s, t) and time series of lake
outflow from four model runs that assumed different values of
MC between 2�10–4 and 2� 10–3m2 s–1. Each plot’s
duration is one flood cycle. The third run (Fig. 4c), identical
to that discussed in Section 3.2, serves as the control. An
enduring pattern in these runs is that the ice flow speeds up
after flood initiation and begins to decelerate before the flood
peaks. In the run with the lowestMC (Fig. 4a), the speed-up is
very sudden and a strong compression wave (@ub/@s<0)
propagates down-glacier some 70 days prior to the flood
peak (around 12.5 < t<12.7 years).

Fig. 3. Evolution of (a) lake level, hL(t), and channel discharge at the
lake, QR(0, t); (b) sliding velocity, ub(s, t); and (c) cavity-channel
water transfer rate, T(s, t) in the limit cycle indicated by the boxes in
Figure 2g and h. MC=1� 10–3m2 s–1, Rk = 1.

Fig. 4. Sliding velocity ub(s, t) (filled contour maps) and channel discharge at the lake QR(0, t) (white dashed lines and right-hand vertical
axis) in one limit cycle for (a) MC =2� 10–4m2 s–1, (b) MC =4� 10–4m2 s–1, (c) MC=1� 10–3m2 s–1 and (d) MC =2� 10–3m2 s–1.
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Physically, we expect that decreasing MC reduces cavity
size and discharge via mass conservation (Eqn (12)), and
hence reduces the sliding velocity ub (Eqn (11a)). We see this
trend in Figure 4a–d (note their different scales) as we move
from right to left; however, the percentage variation in ub in
the cycles increases. Figure 5 quantifies both trends by
plotting the mean, maximum and minimum values of ub at
4 km from the lake in each cycle, including results from
extra runs where MC is varied within the same range. As MC

is raised, the mean value of ub increases but its maximum-to-
mean ratio decreases.

We expect two outcomes of decreased MC on cavity–
channel interaction. One is increased dominance of the
transfer term in the cavity mass conservation equation (Eqn
(12)). This explains the variable maximum-to-mean ub ratio;
when MC is large, the remaining, time-varying terms in Eqn
(12), @QC/@s and T, are comparatively small and SC and ub
vary less than when MC is small; then, SC and ub are
modulated strongly because T dominates the mass balance.
In addition, when MC�4� 10–4m2 s–1, the cavities collapse
after the lake reaches its highstand due to high effective
pressure in the channel, preventing significant reduction of
ub below its mean value (Fig. 5); then, most of the back-
ground water supply to the cavities reaches the channel, and
the cavity area is controlled by MC = k(NR –NC) and
Eqn (11a). In the case where MC= 2�10–4m2 s–1, the cavity
system does not recover until after the divide reaches the lake
(Fig. 4a; t�12.3 years). These model results imply that under
cold weather conditions when subglacial water is less
abundant, glacier flow velocities would be lower during
quiescence but respond more strongly in absolute and
relative magnitudes to subglacial floods.

The other expected outcome of decreasing MC is that the
cavity effective pressure NC increases (Eqn (11a)), reducing
water transfer T to the channel (Eqn (4)). Analysis of channel
equations (1–3) shows that the seal then migrates more
slowly towards the lake as it refills; this delays flood
initiation, so the lake reaches a higher highstand – a higher
flood initiation threshold, to cause a higher flood peak
discharge, QPK. Figures 4 and 5 show that the negative
dependence of QPK on MC is nonlinear and becomes
sensitive only for MC <6�10–4m2 s–1.

4. DISCUSSION AND CONCLUSIONS
We have presented the first fully coupled and consistent
jökulhlaup model capable of explaining the broad pattern of
observed sliding velocity changes during jökulhlaups. At
Gornergletscher, Switzerland, and the Grı́msvötn and Skaftá
subglacial cauldrons, Iceland, sliding velocity increases
during flood growth and, at Gornergletscher and Skaftá, it
decreases during flood recession (Magnússon and others,
2007; Sugiyama and others, 2010). At Gornergletscher, ice
surface motion has been observed to reverse following the
slowdown (Sugiyama and others, 2007), with maximum
sliding velocity occurring before peak flood discharge. Our
model reproduces this timing and the marked post-flood
sliding deceleration (e.g. in Fig. 3a and b). In contrast, at
Hidden Creek Lake, Alaska, maximum sliding velocity peak
occurs after peak discharge (Anderson and others, 2005;
Bartholomaus and others, 2011).

These observations reveal variability in the hydrodynamic
behaviour of jökulhlaup systems that stems from their
glaciological and environmental factors, factors which may
be difficult to constrain with field data. However, future
work can use our model to investigate whether differences in
drainage system connectivity, lake and glacier geometry,
cavity water supply, lake input, sliding parameterization or a
combination of these can account for observed variability.
For example, our assumed basal shear stress, �b, is relatively
low (�b�9 kPa; based on the thin ice dam at Merzbacher
Lake). Preliminary study shows that increasing �b results in a
monotonic increase in ub and decrease in maximum-to-
mean ub ratio. Also, the duration of our simulated floods is
unrealistically large, lasting months rather than weeks. This
is due to our assumed model parameters; model runs using
lake and glacier geometries, and lake and cavity water
supplies, derived from observations at Gornergletscher
(Sugiyama and others, 2010) and Hidden Creek Lake,
Alaska (Bartholomaus and others, 2011), simulate more
realistic, shorter-duration floods. These modelling explora-
tions will be reported elsewhere.

Observed flood initiation thresholds provide another
example of jökulhlaup variability (Ng and Liu, 2009).
Modelled flood thresholds vary with the cavity water supply
(Fig. 2; Section 3.1) and the lake input. This behaviour
reveals a link between weather and flood timing. We are
exploiting this link during ongoing work, aimed at quantify-
ing the predictability of jökulhlaup timing, by implementing
a suite of lower-order models that account for weather-
induced variations in the flood-initiation threshold.

Like previous work (e.g. Hewitt and Fowler, 2008;
Pimentel and Flowers, 2011; Hewitt and others, 2012), we
model drainage one-dimensionally. This ignores lateral
propagation of variations in NC within the cavity system,
the velocity of which may be comparable to their down-
glacier propagation velocities. Hewitt (2011) recently used a
two-dimensional channel-distributed system model to in-
vestigate the steady-state spacing of channels beneath ice
sheets. It may be possible to extend our present model with
his formulation to study the lateral processes in distributed
drainage during our subglacial floods.

What are the implications of our model for the coupling
between subglacial drainage and ice motion in an ice-sheet
setting? Our results introduce the possibility that supra-
glacial lake drainage in Greenland could, depending on
basal conditions, cause both ice speed-up and slowdown.
This awaits further exploration, using parameters associated

Fig. 5. Mean sliding velocity at 4 km from the lake, ub (circles and
left axis), and peak lake discharge, QPK (crosses and right axis), for
MC =2� 10–4m2 s–1 to 2� 10–3m2 s–1. The top and bottom ends of
the vertical lines indicate maximum and minimum ub at 4 km from
the lake.
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with the thicker ice, reduced basic hydraulic gradients, and
lower basal shear stress typical of ice sheets while treating
Greenland supraglacial lake and moulin drainage as
analogues of alpine jökulhlaup systems.
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