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Abstract

Diacylglycerol kinase a (DGKa), by phosphorylating diacylglycerol into phosphatidic acid, provides a key signal driving cell
migration and matrix invasion. We previously demonstrated that in epithelial cells activation of DGKa activity promotes
cytoskeletal remodeling and matrix invasion by recruiting atypical PKC at ruffling sites and by promoting RCP-mediated
recycling of a5b1 integrin to the tip of pseudopods. In here we investigate the signaling pathway by which DGKa mediates
SDF-1a-induced matrix invasion of MDA-MB-231 invasive breast carcinoma cells. Indeed we showed that, following SDF-1a
stimulation, DGKa is activated and localized at cell protrusion, thus promoting their elongation and mediating SDF-1a
induced MMP-9 metalloproteinase secretion and matrix invasion. Phosphatidic acid generated by DGKa promotes
localization at cell protrusions of atypical PKCs which play an essential role downstream of DGKa by promoting Rac-
mediated protrusion elongation and localized recruitment of b1 integrin and MMP-9. We finally demonstrate that activation
of DGKa, atypical PKCs signaling and b1 integrin are all essential for MDA-MB-231 invasiveness. These data indicates the
existence of a SDF-1a induced DGKa - atypical PKC - b1 integrin signaling pathway, which is essential for matrix invasion of
carcinoma cells.
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Introduction

Most cancer-associated mortality is caused by metastatic

dissemination of primary tumors and the outgrowth of secondary

tumors at distant sites. Among the microenvironment signals

sustaining the invasive phenotype of cancer cells, stromal cell-

derived factor-1a (SDF-1a, also named CXCL12), plays a major

role in promoting cancer metastasis in several cancers, including

breast cancer [1]. SDF-1a is a chemokine secreted by tumor-

associated fibroblasts and bone marrow stromal cells, which

through activation of its CXCR4 receptor, promotes migration

and invasion of malignant cells and their homing to target organs

[2,3]. Indeed CXCR4 is a poor prognosis predictor in several

cancer types [4].

In breast cancer, the chemotactic and invasive activity of SDF-

1a/CXCR4 is mediated by both Ga13-mediated activation of

RhoA and Gai-mediated activation of Rac1 via DOCK180/

ELMO, which regulate cytoskeletal remodeling [5,6]. In myeloid

cells, Rac1 mediates SDF-1a-induced increase of integrin affinity,

while RhoA mediates formation of membrane protrusions and

CXCR4 trafficking to the cell surface in Rab11+ endosomes [7,8].

Moreover, in gastric cancer cells SDF-1a invasive and proliferative

activity is also stimulated by Gai- and PI3Kb-mediated activation

of mTOR complex 1, which contributes to Rac1 activation as well

[9]. Finally, atypical protein kinases C (PKCf and i, hereafter

aPKCs), which do not bind diacylglycerol (DG), play a key role in

mediating chemotaxis of bone marrow and muscle stem cells, and

of lymphocytes [10,11]. However neither the mechanisms by

which SDF-1a stimulates aPKCs nor their role in SDF-1a invasive

signaling in breast cancer cells have been elucidated.

DGKs are a multigenic family of ten enzymes phosphorylating

DG to generate phosphatidic acid (PA), thus reciprocally

regulating in a highly compartmentalized manner the concentra-

tion of both lipid second messengers and their signaling activities

[12]. Indeed, activation of DGKs results in the termination of DG-

mediated signals, while triggering PA-mediated ones. Increasing

evidence points to DGKa as a critical node in oncogenic signaling
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and as a putative novel therapeutic target in cancer: inhibition or

silencing of DGKa has been shown to reduce tumor growth and

mortality in glioblastoma and hepatic carcinoma xenograft models

[13,14]. Moreover, we recently showed that DGKa activity

sustains the pro-invasive activity of metastatic p53 mutations, by

promoting the recycling of a5b1 integrin to the tip of invasive

protrusions in tridimensional matrix [15]. DGKa is activated and

recruited to the membrane by growth factors, estrogen and

tyrosine kinase oncogenes through Src-mediated phosphorylation.

Upon growth factor stimulation, activation of DGKa mediates cell

migration, invasion and anchorage-independent growth [16–21].

Indeed, activation of DGKa is a central element of a novel lipid

signaling pathway involving PA-mediated recruitment at the

plasma membrane and activation of aPKCs in a complex with

RhoGDI and Rac1, thus providing a positional signal regulating

Rac1 activation and association to the membrane [22,23].

Altogether these data suggest that DGKa and aPKCs may act

as signaling nodes in the molecular crosstalk between soluble

chemotactic factors and the extracellular matrix, thus prompting

us to investigate the involvement of DGKa in cell migration and

invasion induced by SDF-1a in breast cancer cells. In here we

show that upon SDF-1a stimulation of breast cancer cells, DGKa
activity mediates aPKCs localization at protrusion sites and the

subsequent recruitment of b1 integrin and MMP-9 secretion.

Conversely over-expression of DGKa is sufficient to induce

aPKCs-dependent cell elongation. Finally, we observed that the

DGKa – aPKCs – b1 integrin pathway is an essential mediator of

chemokine-promoted cell migration and matrix invasion.

Materials and Methods

Cells Culture and Reagents
MDA-MB-231 cells were from ATCC, 293FT were from Life

Technologies. Cells were cultured in DMEM (Life Technologies)

with 10% FCS (LONZA) and antibiotics/antimycotics (Sigma-

Aldrich) in humidified atmosphere 5% CO2 at 37uC.

R59949 (Sigma-Aldrich) was dissolved in DMSO; equal

amounts of DMSO were used in the control samples. All reagents

are from Sigma-Aldrich apart: matrigel growth factor reduced (BD

Bioscences), human recombinant SDF-1a and HGF (Peprotech),

Myr-PKCf/i peptide inhibitor (BIOMOL) and NSC23766

(Tokris bioscience).

Antibodies: myc (clone 9E10 Santa Cruz), MMP-9 (2C3 Santa

Cruz for western blotting and immunofluorescence or IC9111F

RDsystems); PKCf/i (P0713 Sigma); b1 integrin (cat. 610467 BD

Transduction Laboratories for western blotting and immunoflu-

orescence or BV7 Abcam for cytofluorimetry); StrepMab-tag II (2-

1507-001 IBA); actin (C-2 Santa Cruz); tubulin (DM1A Sigma-

Aldrich); DGKa (Shaap et al., 1993), human RCP (rabbit in-house

Ab raised against RCP residues 379–649); Cdc42 (2462 Cell

signaling). Secondary antibodies HRP-mouse and HRP-rabbit

were from Perkin Elmer. Secondary antibodies anti-rabbit Ig

Alexa Flour-488 and anti-mouse Ig Alexa Flour-488 were from

Life Technologies as well as Alexa Flour 546-phalloidin, TO-

PRO-3 is from Life Technologies.

Invasion Assay
Invasion assay were performed in BD BioCoat Matrigel

Chambers. 50,000 cells/well were plated in the upper chamber

whereas SDF-1a (100 ng/ml) or 10% FCS were added to the

lower chamber in serum free medium. After 22 hours of

incubation in a humidified atmosphere 5% CO2 at 37uC, non

invading cells were removed from the upper surface of the

membrane and invading cells were fixed and stained with Diff-

Quik (Medion Diagnostic) before counting.

Wound Healing Assay
Cells were grown to confluence in 12 wells plates and the

monolayer wounded with a pipet tip. Cell debris were removed

and monolayer maintained in serum free medium for 24 hours

with or without HGF (50 ng/ml). The cells were stained with Diff-

Quik (Medion Diagnostic) and for each experimental point 8 fields

photographed (Axiovert inverted microscope with a 4x objective

and a digital camera). Cells migrating inside 2.3 mm of wound

were counted.

DGKa Activation Assay
Cells homogenates were prepared by collecting the cells with a

rubber scraper in buffer B (25 mM Hepes (pH 8), 10% glycerol,

150 mM NaCl, 5 mM EDTA, 2 mM EGTA, 1 mM ZnCl2,

50 mM ammonium molibdate, 10 mM NaF, 1 mM sodium

orthovanadate and Protease Inhibitor Cocktail), homogenizing

them with a 23 G syringe and by spinning at 500 g for 15 min.

Protein concentration was determined by the bicinchoninic acid

method (Pierce) and equalized for each point with buffer.

DGKa activity in cell homogenates (25 ml) was assayed by

measuring initial velocities (5 min at 30uC) in presence of

saturating substrates concentration (1 mg/ml diolein, 5 mM

ATP, 3 mCi/ml c32P-ATP (Perkin Elmer), 10 mM MgCl2,

1 mM ZnCl2, 1 mM EGTA in 25 mM Hepes pH 8, final

reaction volume 50 ml). Reaction was terminated with 0.1 M HCl

and lipids were extracted with cloroform methanol (1:1). PA was

separated by TLC in chloroform:methanol:water:25% ammonium

hydroxide (60:47:11:4). 32P-PA was identified by co-migration

with PA standards stained by incubation in iodine chamber.

Radioactive signals were detected and quantified by Molecular

Imager (Bio-Rad).

Immunofluorescence
Cells (30,000/well) were plated on matrigel coated coverlips in

24 wells cell culture plate and serum deprived for 16–24 hours

before stimulation. After stimulation cells were washed with PBS,

fixed in PBS containing 3% paraformaldehyde and 4% sucrose

and permeabilized in cold Hepes-Triton buffer (20 mM Hepes,

300 mM sucrose, 50 mM NaCl, 3 mM MgCl2, 0.5% Triton X-

100, pH 7.4). PBS containing 2% BSA was used as blocking

reagent for 15 minutes and as diluting agent for primary and

secondary antibodies (incubated for at least 1 hour). Intermediate

washing was performed with PBS containing 0.2% BSA.

Antibodies were added directly onto each glass coverslip in a

humidified chamber. Finally, each glass coverslip was washed

briefly in water and mounted onto a glass microscope slide using

Mowiol (20% Mowiol 4–88, 2.5% 1, 4-diazabicyclo [2.2.2] octane

in PBS, pH 7.4).

Confocal images were acquired with Leica confocal microscope

TCS SP2 using a 63x objective, NA = 1.32, equipped with LCS

Leica confocal software. Basal planes are shown. Each experi-

mental point was performed in duplicate. Depending on

preparation quality in each replicate roughly 30 images were

taken, containing between 70 and 100 cells.

Morphometry
For cell length analysis cells were plated in 24 wells plates and

phase contrast images of live cell were acquired with an Axiovert

inverted microscope equipped with a 40x objective and a digital

camera (Carl-Zeiss) and total cell length was measured with
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Image-Pro Plus software (MediaCybernetics). Alternatively in

Fig. 6D and Fig. S5B we used a 10x Plan Fluor objective, NA

0.3, and an inverted microscope (TE200; Nikon) with a digital

camera (CoolSNAP HQ; Photometrics) and Metamorph software

(Molecular Devices). For each experimental condition 5 random

fields were photographed containing more than 100 cells.

Cytofluorimetry
Cells were detached with ice could PBS 4 mM EDTA, fixed

with PBS containing 3% paraformaldehyde and stained as

indicated for 30 min. After washing with PBS containing 0.2%

BSA cells were analyzed with a FACScalibur instrument an

CellQuest software (BD) or Flowing software (Turku Bioimaging).

siRNA for Transient Silencing
Transient silencing was obtained by transfection of siRNA

(Sigma Genosys or Life Technologies). Briefly were plated on

matrigel coated coverlips to 30–50% confluence the day before

transfection and transfected using lipofectamine 2000 (Life

Technologies) according to manufacturer’s instructions. The day

after transfection cells were serum deprived for further 18 hours

before immunofluorescences or western blotting.

Figure 1. DGKa is necessary for SDF-1a-induced cell invasion. MDA-MB-231 cells were infected with lentiviral vectors expressing an inducible
shRNA against DGKa (shRNA-DGKa1) or an inducible control shRNA (shRNA-CTRL). Parental and infected cells were treated with 1 mg/ml doxycycline
for 72 hours to promote shRNA transcription. A) 50,000 cells were plated on matrigel invasion chamber and incubated for 24 hours in presence or in
absence of SDF-1a (100 ng/ml). Histogram reports mean 6 SE of fold over control values from 3 independent experiments with *t-test p,0.05, **t-
test p,0.01. B) The efficiency of DGKa down–regulation by shRNA was verified by quantitative RT-PCR. **t-test p,0.01. A) Cells were lysed and the
efficiency of DGKa down–regulation by shRNA was verified by western blot, tubulin was used as a loading control.
doi:10.1371/journal.pone.0097144.g001
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Validated siRNA DGKa [17] sense 59 GGAUGGCGA-

GAUGGCUAAAtt 39 antisense 59UUUAGCCAUCUCGC-

CAUCCgg 39.

siRNA PKCf sense 59CGUUCGACAUCAUCACCGAtt39an-

tisense 59UCGGUGAUGAUGUCGAACGgg39.

siRNA PKCi sense 59CGUUCGACAUCAUCACCGAtt39

antisense 59UCGGUGAUGAUGUCGAACGgg39.

siRNA b1 integrin sense 59GGAGGAAUGUUACACGGCU39

antisense 59 AGCCGUGUAACAUUCCUCCag 39.

Figure 2. SDF-1a stimulates DGKa activity and localization at protrusions site. A) MDA-MB-231 cells, stably expressing myc-DGKa, were
plated on matrigel-coated coverslips for 20 hours in FCS containing medium and cultured for further 20 hours in serum free medium. Cells were then
stimulated with 50 ng/ml of SDF-1a for the indicated times, fixed and stained for actin (red) and myc-DGKa (green). Representative images at 4 hours
after stimulation. Arrowheads indicate DGKa at protrusions. Histogram (B) reports the percentage of cells displaying myc-DGKa at protrusion as mean
6 SE of 5 independent experiments, *t-test p,0.05, **t-test p,0.005. Scale bar 24 mm. C) MDA-MB-231 cells were infected with a lentiviral vector
expressing inducible OST-tagged DGKa or an empty vector. To induce DGKa expression, cells were treated overnight with doxycycline (1 mg/ml) in
serum free medium. Cell were homogenized with buffer B in absence of detergent and analysed for DGK activity (upper panel). Values are mean 6 SE
of 4 independent experiments with *t-test p,0.05. OST-DGKa and actin protein expression was verified by anti-OST and anti-actin western blot
(lower panel).
doi:10.1371/journal.pone.0097144.g002
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Figure 3. DGKa mediates SDF-1a-induced cell invasion by regulating aPKCs recruitment to cell pseudopods. A) MDA-MB-231 cells
were plated on matrigel-coated coverslips for 20 hours in FCS containing medium, transfected with CTRL or DGKa –specific siRNA and cultured for
further 20 hours in serum free medium. Cells were then stimulated for 6 hours with 50 ng/ml SDF-1a, fixed, and stained for actin (red) and aPKCs
(green). Arrowhead indicates aPKCs at protrusions. Scale bar 24 mm. B) Histogram reports the percentage of cells displaying aPKCs at protrusions as
mean 6 SE of 3 independent experiments with **t-test p,0.005, ***t-test p,0.0005. C) MDA-MB-231 cells were transfected with CTRL or DGKa –
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siRNA RCP: ON-TARGETplus RAB11FIP1 siRNA L-

015968-00-0005 (Dharmacon). Silencer negative control siRNA

AM4611 (Life Technologies) was used as negative control.

Generation of Tet-inducible Strep-tagged DGKa
Construct and Cell Infection

Human DGKa was amplified from pMT2- DGKa [24] by

PCR using the primers DGKa_ScII_fw (59-CCGCGGGCAG-

CATGGCCAAGGAGAGGGGC-39) and DGKa_H3_rv (59-

AAGCTTTTAGCTCAAGAAGCCAAA-39) and cloned into

pEXPR-IBA-105 (IBA GmbH) via SacII and HindIII to generate

pEXPR-Strep-DGKa. In a further step Strep-DGKa was

amplified by PCR using primers IBA_fw_N1 (59-GCGGCCGCA-

GACCCACCATGGCTAGC-39) and 105DGKa_MluI_rv (59-

ACGCGTTTAGCTCAAGAAGCCAAA-39) and cloned via NotI

and MluI to pLVX-Tight-Puro (Clontech). All constructs were

verified by DNA sequencing.

The resulting pLVX-Tight-PURO-OST-DGKa presents OST-

DGKa after a tetracycline controlled promoter and was used with

the Lenti-X Tet-On Advanced Inducible Expression System

(Clontec) according to manufacturer’s instruction. Lentiviral

particles were obtained in 293FT packaging cells co-transfected

with helper vectors. After double infection and selection we

obtained a polyclonal population of MDA-MB-231 cells express-

ing OST-DGKa in a tetracycline inducible manner. A control cell

line was also generated with an empty vector.

Generation of MDA-MB-231 Stably Expressing Myc-DGKa
Myc-DGKa was amplified from PMT2-myc-DGKa [16] by

PCR using the primers sense.

59CTCGAGACCAATGGAACAAAAGTTGATTTCAGAA-

GAAGATTTATTAATGGCCAAGGAGG39, antisense

59GCCCCTCTCCTTGGCCATTAATAAATCTTCTTCT-

GAAACAACTTTTGTTCCATGGCTCGAGTGCA39 and

cloned in the pDONOR211 vector using the Gateway system

(Life Technologies) according to manufacturer’s instructions. The

Gateway Technology (Life Technologies) was also used to

subclone myc-DGKa into pLenti4/V5-DEST lentiviral vector.

Lentiviral particles were obtained in 293FT packaging cells co-

transfected with helper vectors. After infection and selection we

obtained a polyclonal population of MDA-MB-231 cells constitu-

tively expressing myc-DGKa.

Inducible Silencing of DGKa in MDA-MB-231
We used the commercial pTRIPZ Inducible Lentiviral Human

DGKA shRNA Clone ID: V3THS_340705 (shRNA-DGKa1) or

pTRIPZ Inducible Lentiviral Non-silencing shRNA Control

RHS4743 (shRNA-CTRL). Those vectors express shRNA and

turboRFP under a doxycycline regulated promoter (Thermo

Scientific Open Biosystems). Lentiviral particles were obtained in

293FT packaging cells co-transfected with helper vectors. After

infection and selection we obtained a polyclonal population of

MDA-MB-231 cells which upon induction with doxycycline

(1 mg/ml, 72 hours) are 100% RFP positive.

Stable Silencing DGKa in MDA-MB-231
The shRNA for DGKa (forward: 59 GATCCCCGGTCAGT-

GATGTCCTAAAGTTCAAGAGACTTTAGGACATCACT-

GACCTTTTTGGAAA reverse: 59 AGCTTTTC-

CAAAAAGGTCAGTGATGTCCTAAAGTCTCTTGAACTT-

TAGGACATCACTGACCGGG) was cloned with H1-Promoter

within the lentiviral vector pCCL.sin.PPT.hPGK.GFPWpre [25].

The resulting vector co-express shRNA-DGKa and GFP (shRNA-

DGKa2). Empty vector was used as a control. Lentiviral particles

were obtained in 293FT packaging cells co-transfected with helper

vectors (Life Technologies). At 1 week after infection nearly 100%

of cells were GFP+.

Generation of ShRNA- b1 Integrin MDA-MB-231
ShRNA-b1integrin in pLKO were a kind gift of P. Defilippi

[26]. Lentiviral particles were generated with Sigma Mission

Lentivaral packaging mix according to manufacturer’s instruction

in 293FT cells and selected with puromycin. Empty pLKO was

used as a control.

Western Blotting
To verified protein down-regulation cells were lysed 48 hours

after transfection. Cell were washed with ice cold PBS, scraped on

ice in lysis buffer (25 mM Hepes, pH 8, 150 mMNaCl, 0.5/1%

Nonidet P-40, 5 mM EDTA, 2 mM EGTA, 1 mM ZnCl2,

50 mM NaF, 10% glycerol supplemented with fresh 1 mM

Na3VO4, and protease inhibitors) and clarified after centrifugation

of 15 minutes at 12000 rpm at 4uC. Samples were then

resuspended in Laemmli buffer, heat denatured, and separated

by SDS/PAGE. Proteins were then transferred on PVDF

membrane by using semi-dry system. Membrane was then blocked

with 5% BSA in PBS and incubated at 4uC overnight with

primary antibodies diluted in TBS tween 0.1%, BSA 2%, 0.01%

azide. After 4 washes with TBS-Tween 0.1%, membranes were

incubated with secondary antibodies and washed again. Western

blot were visualized using Western Lightning Chemiluminescence

Reagent Plus (Perkin Elmer).

Quantitative RT-PCR
RNA was extracted by TRI-Reagent Solution (Life Technol-

ogies) retrotrascribed with High-Capacity cDNA Reverse Tran-

scription Kits (Life Technologies) and cDNA quantified by real

time PCR using GUSB as normalizer. TaqMan gene expression

assays we from Life Technologies: b1 integrin (Hs 00559595),

GUSB (Hs 00939627), DGKa (Hs 00176278) and MMP-9 (Hs

00234579).

MMP-9 Secretion
MDA-MB-231 cells (250,000 cells/well) were plated in 6-well

cell culture plate and transfected with the indicated siRNA. After

24 hours in serum free media cells were treated with SDF-1a
(100 ng/ml in 500 ml serum-free medium). After 24 hours the

MMP-9 concentration in the supernatants was determined by

ELISA assay (Life Technologies).

specific siRNA and lysed. The efficiency of DGKa down–regulation by siRNA was verified at 48 hours after transfection by western blot, tubulin was
used as loading control. D) MDA-MB-231 cells were plated on matrigel-coated coverslips for 20 hours in FCS containing medium and cultured for
further 20 hours in serum free medium. Cells were then stimulated for 6 hours with 50 ng/ml SDF-1a, in presence or in absence of 1 mM R59949, fixed
and stained for actin (red) and aPKCs (green). Arrowheads indicate aPKCs at protrusions. Scale bar 24 mm. E) Histogram reports the percentage of cells
displaying aPKCs at protrusions as mean 6 SE of 3 independent experiments with ***t-test p,0.0005. F) MDA-MB-231 cells (106/well) were plated on
matrigel invasion chamber and stimulates for 24 hours with SDF-1a (50 ng/ml) in presence or absence of PKCf pseudosubstrate (PS-PKCf, 10 mM).
Histogram reports mean 6 SE of folds over control values from 3 independent experiments with *t-test p,0.05.
doi:10.1371/journal.pone.0097144.g003
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Figure 4. DGKa and aPKCs mediate SDF-1a-induced recruitment of b1 integrin to pseudopods. A) MDA-MB-231 cells were plated on
matrigel-coated coverslips for 20 hours in FCS containing medium, transfected with CTRL or DGKa–specific siRNA and cultured for further 20 hours in
serum free medium. Cells were then stimulated for 6 hours with 50 ng/ml SDF-1a, fixed and stained for actin (red) and b1 integrin (green). Arrows
indicate b1 integrin at protrusions. Scale bar 24 mm. B) Histogram reports the percentage of cells displaying b1 integrin at protrusions as mean 6 SE
values of 3 independent experiments with **t-test p,0.005. C) MDA-MB-231 cells were plated on matrigel-coated coverslips for 20 hours in FCS
containing medium and cultured for further 20 hours in serum free medium. Cells were then stimulated for 6 hours with 50 ng/ml SDF-1a, in
presence or in absence of 1 mM R59949, fixed and stained for actin (red) and b1 integrin (green). Arrow indicates b1 integrin at protrusions. Scale bar
24 mm. D) Histogram reports the percentage of cells displaying b1 integrin at protrusions as mean 6 SE of 3 independent experiments with *t-test
p,0.05, **t-test p,0.005. E) MDA-MB-231 cells were plated on matrigel-coated coverslips for 20 hours in FCS containing medium, transfected with
CTRL or PKCf/i –specific siRNA and cultured for further 20 hours in serum free medium. Cells were then stimulated for 6 hours with 50 ng/ml SDF-1a,
fixed and stained for actin (red) and b1 integrin (green). Arrowheads indicate b1 integrin at protrusions. Scale bar 24 mm. F) Histogram reports the
percentage of cells displaying b1 integrin at protrusions as mean 6 SE of 3 independent experiments with **t-test p,0.005. G) MDA-MB-231 cells
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Statistical Analysis
Data are shown as the mean 6 SEM. For statistical analysis,

Student’s t-test or ANOVA were used. Experiments shown are

representative at least 3 independent experiments.

Results

DGKa Is Necessary for SDF-1a-induced Cell Invasion
We previously showed that DGKa is necessary for matrix

invasion promoted by Epidermal Growth Factor (EGF) [15] or

Hepatocyte Growth Factor (HGF) in MDA-MB-231 breast

carcinoma cells [27]. In order to investigate the role of DGKa
in chemokine invasive signaling in breast cancer, we knocked

down DGKa in MDA-MB-231 using a lentiviral construct

expressing a DGKa-specific shRNA under an inducible promoter

(shRNA-DGKa1). This construct strongly downregulated DGKa
expression when compared with parental cells or a non-targeting

control sequence (shRNA-CTRL, Fig. 1 B and C). The invasive

ability of parental, DGKa-knocked down and control cells were

evaluated in a Matrigel invasion assay. SDF-1a (100 ng/ml)

doubles the number of parental as well as shRNA-CTRL MDA-

MB-231 invading across the matrigel insert (Fig. 1 A). Conversely,

shRNA-DGKa1 cells were unresponsive to SDF-1a stimulation.

We confirmed this finding with an independent shRNA (shRNA-

DGKa2) giving a comparable inhibition of SDF-1a stimulated

matrix invasion (Fig. S1), making off-target effects unlikely.

Those findings indicates that DGKa mediates the pro-invasive

signaling promoted not only by tyrosine kinase receptors [22] but

also by chemokine receptors involved in tumor cells metastatiza-

tion, such as those of SDF-1a.

SDF-1a Stimulates DGKa Activity and Localization at
Protrusions Sites

The previous findings that HGF, EGF and VEGF activate

DGKa and promote its recruitment to the plasma membrane in

epithelial and endothelial cells [15,17,22] suggest that SDF-1a
may promote localized DGKa activation at ruffling sites. Despite

its biological significance, the low level of DGKa expression in

MDA-MB-231 cells hampers activation and localization studies of

the endogenous protein with currently available antibodies.

Thus, for localization studies, MDA-MB-231 cells were stably

infected with a lentiviral vector expressing myc-DGKa and plated

on matrigel-coated coverslip to mimic the epithelial microenvi-

ronment. In unstimulated serum-deprived cells, myc–DGKa was

mainly cytoplasmic, with some cells displaying very little accumu-

lation at cell protrusions (Fig. 2A). Prolonged SDF-1a stimulation

(50 ng/ml; 4 to 6 hours) resulted in the localization of DGKa at

the tip of large protrusions (Fig. 2A and B). No detectable changes

were observed at earlier time points (15 minutes, Fig. 2B).

For enzymatic activation assays, we infected MDA-MB-231

with a lentiviral vector expressing OneStrep-Tagged DGKa
(OST-DGKa) under the control of a doxycycline-inducible

promoter. Upon 48 hours doxycycline treatment (1 mg/ml),

OST-DGKa was strongly overexpressed as compared to endog-

enous protein (Fig. S2A). Under these conditions the enzymatic

activity of OST-DGKa was responsible for almost the entire DGK

activity measured in cell homogenates. Both SDF-1a and HGF (a

well known DGKa activator) induced a further moderate increase

of OST-DGKa activity within 15 minutes of stimulation (Fig. 2C).

Altogether these data indicate that SDF-1a regulates DGKa
activity and localization and suggest that DGKa plays a role in the

formation and/or extension of cell protrusions induced by SDF-

1a.

DGKa Mediates SDF-1a-induced Cell Invasion by
Regulating aPKCs Recruitment to Cell Protrusions

DGKa, by producing PA, mediates aPKCs activation and

recruitment to the cell surface induced by growth factors [23,28].

Thus, we set to investigate whether DGKa mediates SDF-1a-

induced cell invasion by regulating aPKCs. To investigate the role

of DGKa in regulating aPKCs localization, MDA-MB-231 cells

were transiently transfected with control (siRNA-CTRL) or

DGKa-specific siRNA (siRNA-DGKa). Upon 48 hours from

transfection with siRNA-DGKa, the expression of DGKa was

nearly undetectable as compared to its expression in cells

transfected with control siRNA (Fig. 3C). Then, MDA-MB-231

cells were plated on matrigel-coated coverslips, serum starved and

stimulated with 50 ng/ml SDF-1a for 6 hours. In control siRNA

transfected cells, SDF-1a treatment significantly increased the

percentage of cells displaying aPKCs at protrusions, while DGKa
silencing strongly impaired aPKCs recruitment to the membrane

(Fig. 3A and B). In order to verify the requirement for DGKa
enzymatic activity, we carried out aPKCs localization assays in

presence or in absence of 1 mM R59949, a rather specific DGKa
inhibitor [16,29]. R59949 treatment completely abrogated aPKCs

localization at protrusions induced by SDF-1a, while it did not

affect aPKCs localization in unstimulated cells (Fig. 3D and E).

In order to investigate the role of aPKCs in SDF-1a-induced

invasion through extracellular matrix, MDA-MB-231 cells were

treated with 10 mM cell permeable PKCf pseudosubstrate (PS-

PKCf). In a matrigel invasion assay aPKCs inhibition significantly

reduced SDF-1a-induced invasion, while basal invasion was

unaffected in unstimulated cells (Fig. 3F).

Altogether, these data demonstrate that in SDF-1a-stimulated

breast carcinoma cells, localized activity of DGKa at pseudopodial

tips provides a crucial localization lipid signal for aPKCs

recruitment, thus mediating SDF-1a-induced invasive signaling.

DGKa and aPKCs Mediate SDF-1a-induced Recruitment
of b1 Integrin to Protrusions Sites

Recycling and clustering of b1 integrin at the tip of invasive

pseudopods is a key event sustaining the invasive properties of

malignant cells [30]. Conversely, growth factors stimulate invasion

both by inducing integrin clustering at actin-rich adhesive sites and

lamellipodia and by stimulating integrin recycling [26,31]. Thus,

we set to investigate whether the DGKa and aPKCs at protrusions

promote local accumulation of b1 integrin. In serum starved

MDA-MB-231 cells plated on matrigel-coated coverslips b1

integrin is mostly localized in intracellular vesicles in the

perinuclear/Golgi area. Upon SDF-1a stimulation, b1 integrin

also localized in clusters at the tip of cell protrusions (Fig. 4A, C

and E). However, either siRNA-mediated silencing of DGKa or

R59949-mediated inhibition of its enzymatic activity impaired

SDF-1a-induced localization of b1 integrin at cell extensions

were transfected with CTRL and PKCf/i –specific siRNA and lysed. The efficiency of PKCf/i down–regulation by siRNA was verified by western bloting,
tubulin was used as a loading control. H) MDA-MB-231 cells were infected with lentiviral vectors expressing a shRNA against b1-integrin (shRNA-b1)
or a control sequence (shRNA-CTRL). 50,000 cells were plated on matrigel invasion chamber and incubated for 24 hours in presence or in absence of
SDF-1a (100 ng/ml). Histogram reports mean 6 SE of fold over control values from 3 independent experiments with *t-test p,0.05, **t-test p,0.01.
I) The efficiency of b1-integrin down–regulation by shRNA was verified by quantitative RT-PCR.
doi:10.1371/journal.pone.0097144.g004
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Figure 5. DGKa and aPKCs mediates MMP-9 secretion and localization at protrusions. A) MDA-MB-231 cells were transfected with CTRL or
DGKa –specific siRNA and shifted to serum free media. After 24 hours cells were treated with 100 ng/ml SDF-1a in serum free medium for further 20
hours. MMP9 content in the supernatants was measured by ELISA assay, histogram reports secreted MMP-9 as mean 6 SE of 3 independent
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(Fig. 4A, B, C and D). Interestingly SDF-1a stimulation and

DGKa inhibition did not affect the expression of b1 integrin at the

cell surface, as measured by FACS analysis (Fig. S4A). Since

DGKa promotes Rac1 activation and membrane ruffles by

regulating aPKCs [15] and as DGKa mediates SDF-1a-induced

aPKCs recruitment to the membrane protrusions, we assessed

whether aPKCs controls b1 integrin localization. Indeed, siRNA-

mediated silencing of aPKCs (Fig. 4G) impaired SDF1-a-induced

localization of b1 integrin at cell protrusions (Fig. 4E and F).

Altogether these data suggest that SDF-1a, by activating the

DGKa/aPKCs pathway, stimulates the clustering of b1 integrin at

cell protrusions, rather than stimulating its bulk translocation at

the plasma membrane.

Since the expression of constitutively-membrane bound myr-

DGKa stimulates cell invasion by triggering RCP-mediated

recycling of integrin a5b1 [15], we set to investigate the role of

b1 integrin in SDF-1a-promoted cell invasion. To this purpose we

used shRNA mediated knockdown of b1 integrin which resulted in

an 80% reduction of its expression in MDA-MB-231 cells (Fig. 4I).

We found that, b1 integrin knock down severely impaired the

ability of MDA-MB-231 cells to invade through matrigel in

response to SDF-1a stimulation (Fig. 4H).

Altogether these data indicate that DGKa, by regulating

aPKCs, controls chemokine-induced b1 integrin localization at

protrusion sites in breast carcinoma cells, thus confirming the

pivotal role of b1 integrin in SDF-1a-promoted matrix invasion.

DGKa and aPKCs Mediate SDF-1a-induced MMP-
9 Secretion and Localization at Protrusions

Secretion of matrix metalloproteinases (MMPs) is involved in

the extracellular matrix degradation required for invasion of

cancer cells [32,33]. SDF-1a stimulates the secretion of MMP-9 in

several cancer cells, including MDA-MB-231 cells [34,35]. In

migrating cells, MMP-9 is addressed to the cellular extensions

involved in cell migration and accumulates at their tips [36]. Thus,

we investigated whether SDF1-a regulates intracellular localiza-

tion and secretion of MMP-9 through the DGKa/aPKCs axis.

MDA-MB-231 cells presented a low, constitutive secretion of

MMP-9 (40–80 pg/ml in the supernatant), which was not affected

by SDF-1a but was severely reduced by siRNA-mediated silencing

of DGKa (Fig. 5A). However, the mRNA levels of MMP-9 were

not affected by either SDF-1a stimulation or DGKa inhibition,

suggesting that this pathway does not regulate MMP-9 at the

transcriptional level in these cells (Fig. S4C). Conversely, SDF-1a
stimulated MMP-9 accumulation at protrusions of serum-starved

MDA-MB-231 plated on matrigel-coated coverslips (Fig. 5B to E).

We cannot rule out that MMP-9 staining may be associated to the

plasma membrane, indeed FACS analysis of these cells detected

low amounts of membrane-bound MMP-9 with a small increase in

MMP-9 surface positive cells following SDF-1a stimulation (Fig.

S4B). Silencing of DGKa impaired MMP-9 translocation induced

by SDF-1a, while it did not affect its localization in unstimulated

cells (Fig. 5B and C). Similarly, DGKa pharmacological inhibition

with R59949, completely impaired MMP-9 recruitment induced

by SDF-1a (Fig. 5D and E).

Altogether these data suggest that DGKa is essential for MMP-

9 accumulation at protrusions and subsequent release in the

extracellular space. Given the role of DGKa in regulating aPKCs,

we investigated whether aPKCs mediates SDF-1a-induced regu-

lation of MMP-9 localization. Indeed, siRNA-mediated silencing

of aPKCs blunted SDF-1a induced MMP-9 localization at

pseudopodial tips (Fig. 5F and G).

Altogether these data demonstrate that activation of the

DGKa/aPKCs pathway drives both MMP-9 and b1 integrin

localization at the pseudopodial tips, thus regulating the extension

of invasive protrusions and sustaining the invasive behavior of

MDA-MB-231 cells.

DGKa Overexpression Promotes aPKC/Rac Dependent
Cell Elongation

We observed that prolonged SDF1a treatment (6 hours, 50 ng/

ml) of matrigel plated MDA-MB-231 promotes the transition to an

elongated shape with the extension of long protrusions. Interest-

ingly both siRNA downregulation of DGKa and R59949-

mediated inhibition impairs this change in shape (Fig. S3A to C)

indicating the crucial requirement of DGKa activity.

Since the over-expression of membrane-bound myr-DGKa
stimulates cell migration in untransformed cells [18] and

pseudopod extension and invasion in A2780 ovarian cancer cells

[15], we investigated whether wild type DGKa over-expression

was sufficient to further stimulate invasion in MDA-MB-231 cells.

The previously described inducible OST-DGKa construct in

MDA-MB-231 cells allowed us to verify this issue as doxycycline

treatment induced a 30-fold increase in DGKa expression (Fig. 6A

and Fig. S2A), with an increase of about 300-fold of the enzymatic

activity (Fig. 2C). However, over-expression of OST-DGKa was

not sufficient to enhance migration of MDA-MB-231 in wound-

healing assay or to increase invasion through matrigel (Fig. S2B

and C). Nevertheless, over-expression of OST-DGKa led to

elongation of serum-starved MDA-MB-231 cells, while doxycy-

cline did not affect the cell length of empty vector-infected MDA-

MB-231 cells (Fig. 6B and D). Both in elongated and in shorter

cells, OST-DGKa is localized at the tip of cell protrusions (Fig. 6C)

suggesting that despite the absence of cytokines and growth factors

the strong up-regulation of DGKa activity is sufficient to recruit

the signaling machinery for membrane extension and to establish a

feed forward loop recruiting further DGKa.

Consistently, with the reported role of the aPKCs in mediating

DGKa-dependent Rac activation and membrane protrusions

[23], we observed that siRNA-mediated silencing of aPKCs

(Fig. 6G) blunted cell elongation induced by OST-DGKa over-

expression (Fig. 6E). Also the Rac inhibitor NSC23766 completely

experiments normalized for control, with *t-test p,0.05. B) MDA-MB-231 cells were plated on matrigel-coated coverslips for 20 hours in FCS
containing medium, transfected with CTRL or DGKa –specific siRNA and cultured for further 20 hours in serum free medium. Cells were stimulated for
6 hours with 50 ng/ml SDF-1a, fixed and stained for actin (red) and MMP-9 (green). Arrowhead indicates MMP-9 at protrusions. Scale bar 24 mm. C)
Histogram reports the percentage of cells displaying MMP-9 at protrusions as mean 6 SE of 3 independent experiments with ***t-test p,0.0005. D)
MDA-MB-231 cells were plated on matrigel-coated coverslips for 20 hours in FCS containing medium and cultured for further 20 hours serum free
medium. Cells were stimulated for 6 hours with 50 ng/ml SDF-1a, in presence or in absence of 1 mM R59949, fixed and stained for actin (red) and
MMP-9 (green). Arrowhead indicates MMP-9 at protrusions. Scale bar 24 mm. E) Histogram reports the percentage of cells displaying MMP-9 at
protrusions as mean 6 SE of 3 independent experiments with **t-test p,0.005, ***t-test p,0.01. F) MDA-MB-231 cells were plated on matrigel-
coated coverslips for 20 hours in FCS containing medium, transfected with CTRL or PKCf/i –specific siRNA and cultured for further 20 hours in serum
free medium. Cells were then stimulated for 6 hours with 50 ng/ml SDF-1a, fixed and stained for actin (red) and MMP-9 (green). Arrowhead indicates
MMP-9 at protrusions. Scale bar 24 mm. G) Histogram reports the percentage of cells displaying MMP-9 at protrusions as mean 6 SE of 3 independent
experiments with *t-test p,0.05, **t-test p,0.005.
doi:10.1371/journal.pone.0097144.g005

DGKa/aPKCs/b1 Pathway in Matrix Invasion

PLOS ONE | www.plosone.org 10 June 2014 | Volume 9 | Issue 6 | e97144



Figure 6. DGKa overexpression promotes a PKC-dependent cell elongation. MDA-MB-231 cells were infected with lentiviral vector
expressing inducible OST-tagged DGKa or an empty vector. To induce DGKa expression, cells were treated overnight with doxycycline (1 mg/ml) in
serum free medium. A) After cell lysis OST-DGKa induction was verified by western blotting with an antibody recognizing the OST-tag, while the
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blunted OST-DGKa induced elongation indicating the involve-

ment of Rac family GTPases (Fig. 6F). Those findings confirm the

relevance of aPKCs and Rac as DGKa downstream effectors

promoting cytoskeletal remodeling and extension of membrane

protrusions.

The expression of myr-DGKa drives pseudopodial extension by

stimulating RCP-mediated recycling of b1 integrin in A2780

carcinoma cells [15]. However, siRNA-mediated silencing of

either b1 integrin or RCP (Fig. S5C and D) did not affect

protrusion elongation induced by wild type DGKa in serum

starved MDA-MB-231 cells (Fig. S5A and B), suggesting that in

this experimental model b1 integrin and its RCP-mediated

recycling are not required for protrusion elongation.

These data indicate that up-regulation of DGKa activity by

SDF-1a is sufficient to promote the extension of membrane

protrusions through the aPKCs – RhoGDI – Rac pathway

[22,23], but that additional signaling pathways and/or its

localization at specific myrstyoilation-directed membrane com-

partment are required to trigger cells invasion.

Discussion

We and others established the relevance of DGKa activation

and membrane recruitment in growth factors signaling [37]. In

normal epithelia, endothelia and lymphocytes DGKa activity is

required to convey proliferative [17,38,39] and migratory [16–

18,22,23] signaling. Several studies pointed out DGKa involve-

ment in cancer showing that its activity is necessary in vivo for

glioblastoma and hepatocellular carcinoma progression [13], and

in vitro for proliferation and survival of endometrial carcinoma

[21], anaplastic large cell lymphoma [19], and melanoma [40].

Moreover, DGKa activity mediates matrix invasion sustained by

p53 pro-metastatic mutations in cancer cells [15]. However, the

molecular pathways by which DGKa controls carcinoma forma-

tion and metastatization are poorly known.

Inhere we investigated the role of DGKa in invasive signaling of

SDF-1a, one of the key signals driving metastasis [41], whose

receptor, CXCR4, is strongly associated to tumor growth and

spontaneous metastasis formation [1]. We used MDA-MB-231

cells, a highly invasive human breast cancer cell line, whose

invasiveness and tumorigenicity are dependent on the expression

of SDF-1a receptor, CXCR4 [42–44]. In these cells we had

previously shown that DGKa is required for EGF- [15] and HGF-

induced [27] migration in a tridimensional environment.

Interestingly, we show here that DGKa is also regulated by

SDF-1a, which stimulates its enzymatic activity and promotes its

recruitment at ruffling sites (Fig. 2). Moreover, we show that

activation of DGKa provides a key lipid signal required for SDF-

1a pro-invasive activity in MDA-MB-231 cells (Fig. 1).

We previously showed that the PA generated by HGF-induced

activation of DGKa recruits to the plasma membrane and

activates aPKCs in a complex with RhoGDI and Rac1, thus

mediating the release of Rac1 from RhoGDI, and its localization

and activation at ruffle sites [23]. The aPKCs subfamily comprises

the f and i isoforms, which are activated by PA [28] but insensitive

to DG.

Several pieces of evidence show that aPKCs and in particular

PKCi, play a key role in cancer cell invasion and tumor

progression [45]. Interestingly, PKCi is essential for K-Ras-driven

invasion in colon cancer by regulating Rac1 [46], while aPKCs

mediates EGF-induced cell migration of MDA-MB-231 breast

cancer cells [47]. Altogether these data further suggest that the

DGKa/aPKCs signaling axis contributes to pro-invasive signaling.

Accordingly, the finding that SDF-1a induces aPKCs localiza-

tion at protrusion sites through activation of DGKa, indicates that

the DGKa/aPKCs signaling axis mediates chemokine-driven

mammary carcinoma invasiveness (Fig. 3). DGKa-dependent

recruitment of aPKCs at protrusion is an essential signaling event,

since the silencing of either DGKa or aPKCs impairs downstream

events such as accumulation of b1 integrin and MMP-9 at the

plasma membrane (Fig. 4 and 5). The functional relevance of

aPKCs as a DGKa effector is further proved by the observation

that its silencing impairs DGKa-induced cell elongation (Fig. 6E)

and that its inhibition blocks SDF-1a-induced matrix invasion

(Fig. 3F).

The findings that aPKCs, RCP and b1 integrin are all required

for the invasiveness of MDA-MB-231 (Fig. 3F, 4H and ref. [15]),

and that upon SDF-1a stimulation b1 integrin is concentrated at

protrusion tips in a DGKa and aPKCs-dependent manner, are

consistent with our previous data showing that DGKa-generated

PA, through binding to RCP, docks a5b1 recycling vesicles to the

tips of invasive pseudopods. Altogether these findings suggest that

activation of aPKCs may also contribute to integrin recycling

induced by chemokines and growth factors, although there is no

experimental evidence for it.

Several pieces of evidence in different cell types indicate that

activation of aPKCs regulates MMPs production and secretion

[48]. For instance, PKCf activation mediates MMP-9 secretion

induced by SDF-1a in hematopoietic progenitors [11]. MMPs are

key players in the tumor microenvironment and play a major role

in invasion of extracellular matrix [49]. While some MMPs are

transmembrane proteins, most of them are soluble and bind to the

extracellular cell surface by interaction with several membrane

proteins, including b1 integrin and CD44v [50–54].

Our finding that both DGKa and aPKCs are required for SDF-

1a-induced release of MMP9 in the cell medium and for its

accumulation at protrusions, provides further strength to our thesis

that DGKa/aPKCs axis is a major component of chemokine pro-

invasive signaling. Interestingly, in SDF-1a-stimulated cells,

MMP-9 localization at cell surface superimposes with that of b1

integrin, suggesting that their function at protrusion tips is

coordinately regulated by activation of DGKa/aPKCs signaling.

extent of overexpression was verified with anti DGKa antibodies. Tubulin was used as loading control. B) Phase contrast images of control and OST-
DGKa cells cultured in presence or absence of doxycycline. Arrows indicate cells with long protrusions. Scale bar 50 mm. C) Confocal images of
doxycycline induced cells showing OST-DGKa localization, cells were stained for actin (red) and OST (green). Scale bar 24 mm. D) Time course of cell
elongation at 2, 10 and 18 hours with or without doxycycline treatment. Time lapse videos were recorded and total cell length measured. Box and
whiskers plots (black lines show median, whiskers: 5–95 percentile) of data from 3 independent experiments are shown, ***p,0.0001, 1 way ANOVA.
E) MDA-MB-231 cells expressing OST-DGKa were transiently transfected with control or PKCf/i-specific siRNA. After 48 hours DGKa expression was
induced by overnight treatment with doxycycline (1 mg/ml) in serum free medium. Images were acquired with a phase contrast microscope,
representative images are shown. Scale bar 50 mm. Total cell length was measured for at least 100 cells and reported as box and whiskers plot. F)
MDA-MB-231 cells expressing OST-DGKa were induced by overnight treatment with doxycycline (1 mg/ml) in serum free medium with or without
NSC23766 (100 mM). Images were acquired with a phase contrast microscope, representative images are shown. Scale bar 50 mm. Total cell length
was measured for at least 100 cells and reported as box and whiskers plot. MDA-MB-231 cells were transfected with CTRL and PKCf/i –specific siRNA
and lysed. The efficiency of PKCf/i down–regulation by siRNA was verified by western blotting, tubulin was used as a loading control.
doi:10.1371/journal.pone.0097144.g006
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Finally, the observation that DGKa over expression drives by

itself elongation of cell protrusions by regulating aPKCs is

consistent with active PKCf promoting wide cytoskeletal remod-

eling and protrusions in untrasformed cells [23]. The molecular

mechanisms by which aPKCs induces cell elongation downstream

to DGKa is still partially known. In line with our previous

demonstration that activation of the DGKa/aPKCs signaling

module stimulates the RhoGDI driven localization of both Rac1

and Cdc42 at membrane ruffles, we observed that the Rac

inhibitor NSC23766 blunts DGKa induced cell elongation

(Fig. 6G) and that SDF-1a-induced localization of Cdc42 at

protrusions of MDA-MB-231 cells is significantly reduced by

DGKa inhibition (Fig. S3D and E). Conversely, protrusion

extension occurs even in the absence of b1 integrin and RCP,

suggesting that DGKa-dependent activation of aPKCs regulates

cytoskeletal remodeling independently from b1 integrin recycling

and function, which are required, however, to enable cell

migration through a 3D matrix (Fig. 4H). While it is clear that

DGKa/aPKCs activity on cell elongation is independent on b1

integrin recycling, these data cannot rule out that accumulation of

b1 integrin and MMP-9 at protrusion tips depends on DGKa/

aPKCs-induced regulation of Rac1 or Cdc42 and cytoskeletal

contractility [31].

Altogether we showed that activation of the DGKa/aPKCs/b1

integrin pathway plays a key role in chemokine-driven matrix

invasion in breast cancer cells. Those observations suggest that

DGKa inhibition or silencing could be effective not only in

reducing primary tumor growth in vivo [13,14] but could

potentially also reduce the metastatic potential of carcinoma cells.

Supporting Information

Figure S1 DGKa is necessary for SDF-1a-induced cell
invasion. MDA-MB-231 cells were infected with lentiviral

vectors expressing a shRNA against DGKa (shRNA-DGKa2) or

an empty vector. A) Cells were lysed and the efficiency of DGKa
down–regulation by shRNA was verified by western blot, tubulin

was used as a loading control. B) 50,000 cells were plated on

matrigel invasion chamber and incubated for 24 hours in presence

or in absence of SDF-1a (100 ng/ml). Histogram reports mean 6

SE of fold over control values from 3 independent experiments

with *t-test p,0.05, ***t-test p,0.0005.

(TIF)

Figure S2 DGKa overexpression does not affect migra-
tion and invasion of MDA-MB-231 cells. MDA-MB-231

cells were infected with lentiviral vector expressing inducible OST-

tagged DGKa or an empty vector. To induce DGKa expression,

cells were treated overnight with doxycycline (1 mg/ml) in serum

free medium. A) After cell lysis, the extent of DGKa overexpres-

sion was verified with anti DGKa antibodies, long and short

exposures are shown. Actin was used as loading control. B) Cells

were grown to confluence in 12 well plates and subjected to a

wound healing assay for 24 hours in serum free medium. HGF

(50 ng/ml) was used as a positive control. The cells were stained

and those migrating inside 2.3 mm of wound counted. Histogram

reports mean 6 SE of fold over control values from 3 independent

experiments with *t-test p,0.05. C) 50,000 cells were plated on

matrigel invasion chamber and incubated for 24 hours in serum

free medium. Medium with 10% FCS was used as positive control.

Histogram reports mean 6 SE of fold over control values from 3

independent experiments with *t-test p,0.05.

(TIF)

Figure S3 DGKa is required for SDF-1a-induced pseu-
dopod elongation. A) MDA-MB-231 cells were plated on

matrigel-coated coverslips for 20 hours in FCS containing

medium, transfected with CTRL or DGKa -specific siRNA and

cultured for further 20 hours in serum free medium. Cells were

then stimulated for 6 hours with 50 ng/ml SDF-1a, fixed and

photographed at phase contrast. B) Histogram reports protrusions

length in mm as mean 6 SE values of 4 independent experiments

with *t-test p,0.005. C) MDA-MB-231 cells were plated on

matrigel-coated coverslips for 20 hours in FCS containing medium

and cultured for further 20 hours in serum free medium. Cells

were then stimulated for 6 hours with 50 ng/ml SDF-1a, in

presence or in absence of 1 mM R59949, fixed and photographed

at phase contrast. Histogram reports protrusions length in mm as

mean 6 SE of 3 independent experiments with *t-test p,0.005.

D) MDA-MB-231 cells were plated on matrigel-coated coverslips

for 20 hours in FCS containing medium and cultured for further

20 hours serum free medium. Cells were stimulated for 6 hours

with 50 ng/ml SDF-1a, in presence or in absence of 1 mM

R59949, fixed and stained for actin (red) and Cdc42 (green).

Arrowhead indicates Cdc42 at protrusions. Scale bar 24 mm. E)

Histogram reports the percentage of cells displaying Cdc42 at

protrusions as mean 6 SE of 3 independent experiments with *t-

test p,0.05.

(TIF)

Figure S4 SDF-1a is not affecting surface exposition of
b1-integrin and MMP-9. A) Surface expression of b1 integrin

was analyzed before (turquoise) and after (red) SDF-1a stimula-

tion. Flow cytometry histogram overlay comparing the level of b1

integrin expression before and after SDF-1a expression. Isotype-

matched controls mAb staining are given as dashed lines. MFI,

median fluorescence intensity. B) Surface expression of MMP-9

was analyzed before (turquoise) and after (red) SDF-1a stimula-

tion. Flow cytometry histogram overlay comparing the level of

MMP-9 expression before and after SDF-1a expression. Isotype-

matched controls mAb staining are given as dashed lines. MFI,

median fluorescence intensity. C) MDA-MB-231 cells were plated

on 6 wells dish for 20 hours in FCS containing medium and

cultured for further 20 hours serum free medium. Cells were

stimulated for 24 hours with 100 ng/ml SDF-1a, in presence or in

absence of 1 mM R59949. MMP-9 mRNA was quantified by

quantitative RT-PCR. Histogram reports the mean 6 SE of 3

independent experiments.

(TIF)

Figure S5 DGKa promoted cell elongation is indepen-
dent from b1 integrin and RCP. MDA-MB-231 cells were

infected with lentiviral vector expressing inducible OST-tagged

DGKa or an empty vector. A) Cells were transiently transfected

with control or b1 integrin-specific siRNA. After 48 hours DGKa
expression was induced by overnight treatment with doxycycline

(1 mg/ml) in serum free medium. Images were acquired with a

phase contrast microscope, representative images are shown. Scale

bar 50 mm. Total cell length was measured for at least 100 cells

and reported as box and whiskers plot. B) Cells were transiently

transfected with control or RCP-specific siRNA. After 48 hours

DGKa expression was induced by overnight treatment with

doxycycline (1 mg/ml) in serum free medium. Images were

acquired with a phase contrast microscope, representative images

are shown. Scale bar 50 mm. Total cell length was measured for at

least 100 cells and reported as box and whiskers plot. C) MDA-

MB-231 cells were transfected with CTRL and b1 integrin-specific

siRNA and lysed. The efficiency of b1 integrin down–regulation

by siRNA was verified by western blotting, tubulin was used as a
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loading control. D) MDA-MB-231 cells were transfected with

CTRL and RCP-specific siRNA and lysed. The efficiency of RCP

down–regulation by siRNA and of OST-DGKa induction was

verified by western blotting, actin was used as a loading control.

(TIF)
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