
This is a repository copy of International inequality of environmental pressures: 
decomposition and comparative analysis.

White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/91993/

Version: Accepted Version

Article:

Teixidó-Figueras, J, Steinberger, JK, Krausmann, F et al. (5 more authors) (2016) 
International inequality of environmental pressures: decomposition and comparative 
analysis. Ecological Indicators, 62. 163 - 173. ISSN 1470-160X 

https://doi.org/10.1016/j.ecolind.2015.11.041

© 2015, Elsevier. Licensed under the Creative Commons 
Attribution-NonCommercial-NoDerivatives 4.0 International 
http://creativecommons.org/licenses/by-nc-nd/4.0/

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse 

Unless indicated otherwise, fulltext items are protected by copyright with all rights reserved. The copyright 
exception in section 29 of the Copyright, Designs and Patents Act 1988 allows the making of a single copy 
solely for the purpose of non-commercial research or private study within the limits of fair dealing. The 
publisher or other rights-holder may allow further reproduction and re-use of this version - refer to the White 
Rose Research Online record for this item. Where records identify the publisher as the copyright holder, 
users can verify any specific terms of use on the publisher’s website. 

Takedown 

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by 
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request. 

mailto:eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/


 

 1 

International inequality of environmental pressures: 

decomposition and comparative analysis 

 

Jordi Teixidó-Figueras a, b,  

a. FSR-Climate, Robert Schuman Centre for Advanced Studies, European University Institute, 
Via Boccaccio 151, Florence, Italy  

b. Departament d’Economia and CREIP, Universitat Rovira i Virgili, Av. de la Universitat, 1, 
43204 Reus, Spain. 

Julia K. Steinberger c, 

c. Sustainability Research Institute, School of Earth and Environment, University of Leeds, 
Leeds, LS2 9JT, UK. 

Fridolin Krausmann d,  

d. Institute of Social Ecology (Vienna), Faculty for Interdisciplinary Studies, Alpen-Adria 
Universität Klagenfurt, Wien, Austria. 

Helmut Haberl d,  

d. Institute of Social Ecology (Vienna), Faculty for Interdisciplinary Studies, Alpen-Adria 
Universität Klagenfurt, Wien, Austria. 

Thomas Wiedmann e, f,  

e. Sustainability Assessment Program (SAP), School of Civil and Environmental Engineering, 
UNSW Australia, Sydney, NSW 2052, Australia 

f. ISA, School of Physics A28, The University of Sydney, NSW 2006, Australia 

Glen P. Peters g,  

g. Center for International Climate and Environmental Research (Oslo), N-0318 Oslo, Norway. 

Juan A. Duro b 

b. Departament d’Economia and CREIP, Universitat Rovira i Virgili, Av. de la Universitat, 1, 
43204 Reus, Spain. 

Thomas Kastner d,  

d. Institute of Social Ecology (Vienna), Faculty for Interdisciplinary Studies, Alpen-Adria 
Universität Klagenfurt, Wien, Austria. 

 



 

 2 

 

ABSTRACT 

Natural resource scarcity is no longer merely a remote possibility and governments 

increasingly seek information about the global distribution of resource use and related 

environmental pressures. This paper presents an international distributional analysis of 

natural resource use indicators. These encompass both territorial (national production) and 

footprint (national consumption) indicators for land-related pressures (human appropriation 

of net primary production, HANPP, and embodied HANPP), for material use (domestic material 

extraction and consumption and material footprint), and for carbon emissions (territorial 

carbon emissions and carbon footprints). Our main question is "What, both from a territorial 

and a footprint perspective, are the main driving factors of international environmental 

inequality?". We show that, for the environmental indicators we studied, inequality tends to be 

higher for footprint indicators than for territorial ones. The exception is land use intensity (as 

measured by HANPP), for which geographical drivers mainly determine the distribution 

pattern. The international distribution of material consumption is mainly a result of economic 

drivers whereas, for domestic extraction, demographic drivers can explain almost half of the 

distribution pattern. Finally, carbon emissions are the environmental pressure that shows the 

highest international inequality because of the larger contribution of economic drivers. 

 

 

1. INTRODUCTION  

Natural resource scarcity is no longer a remote, hypothetical possibility. Today, global 

human economic activities require more natural resources than ever before: 

globalization connects distant regions of the world through trade flows, and emerging 

economies claim their part of the natural resource pie in order to support their economic 

growth (UNEP, 2011; Wiedmann et al, 2015). International competition for the control 

of more or less scarce natural resources use has sharply increased (Schaffartzik et al, 

2014, Giljum et al, 2014b). The ongoing combination of resource depletion and 

increased international competition brings distributional issues of natural resources to 

the top of the agenda. 

Recent decades have seen a flourishing of research interest, both in the development of 

new environmental indicators and in the improvement of traditional ones. In particular, 

some environmental indicators can be approached both on a territorial basis 

(environmental pressures within national boundaries) and on a footprint basis (pressures 

anywhere on earth related to national consumption) (Peters 2008). This is the case for 

CO2 emissions (territorial vs. consumption-based emissions), material flow indicators 
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(domestic extraction vs. domestic material consumption vs. material footprint), and land 

use intensity indicators (HANPP, vs. embodied HANPP)1. Many studies suggest that 

reductions of territorial environmental pressures in developed countries are at least 

partially related to increasing imports from developing and emerging economies (Peters 

et al 2011). The availability of robust trade-adjusted environmental indicators allows a 

more comprehensive analysis of resource use distribution and consequently provides 

additional insights for global environmental governance. The first aim of this article is 

to compare the international inequality of territorial-based indicators with that of 

footprint-based indicators. The results shed light on the role of international trade in 

environmental equity issues, as well as giving greater insight into the environmental 

indicators themselves. 

There have been many studies that consider distributional issues related to resource use 

and related ecological pressures. The topics and indicators investigated range from the 

distribution of CO2 emissions (Strazicich and List, 2003; Nguyen Van, 2005; Aldy, 

2006; Padilla and Serrano, 2006; Duro and Padilla, 2006; Ezcurra, 2007; Duro and 

Padilla, 2008; Criado and Grether, 2011; Cantore, 2011; Steinberger et al. 2012), to 

energy efficiency distribution (Alcantara and Duro, 2004; Miketa and Mulder, 2005; 

Duro et al. 2014), of the ecological footprint (Dongjing et al. 2010, White, 2007; Wu 

and Xu, 2010, Duro and Teixidó-Figueras 2013; Teixidó-Figueras and Duro 2014, 

2015a, 2015b), material flow indicators (Steinberger et al., 2010, Bruckner et al., 2012; 

Giljum et al., 2014a; Wiedmann et al., 2015), water (Chen and Chen, 2013; Hoekstra 

and Mekonnen, 2012) and land (Bruckner et al., 2015; Weinzettel et al., 2013; Yu et al., 

2013). These analyses provide information on how resource use is currently shared 

among nations. They discuss equity issues involved in sustainability concepts or policy 

implications where resource inequality might play a critical role. These include climate 

change negotiations for CO2 studies or political economy involved in trade relationships 

for material flows indicators or Ecological Footprint (Moran et al. 2013). But, why do 

these international inequalities in resource use among countries exist? And why are 

some environmental pressures more unequally distributed than others? The second aim 

                                                 
1 There are other environmental indicators that also consider the territorial versus footprint dichotomy 
whose inclusion to the analysis would certainly be of interest. This is the case of virtual water (Chen and 
Chen, 2013; Hoekstra and Mekonnen, 2012) or other land area indicators (Bruckner et al., 2015; 
Weinzettel et al., 2013; Yu et al., 2013). However, the set of indicators used was chosen reflecting the 
availability of data and their accessibility to the authors. 
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of this article is to answer these two questions by analysing the drivers of environmental 

pressures. 

We use the term “drivers” to describe the range of factors that may influence the 

distribution of environmental pressure indicators across countries: drivers can be socio-

economic (income, trade), geographical or historical (climate, population density), 

demographic (urbanization), or biophysical (resource endowment) (Rosa and Dietz, 

2012). The study of drivers of environmental pressures has been of widespread interest 

to researchers and policy makers. Typically, by the use of multiple linear regressions 

(York et al., 2003), these analyses reveal a driver’s elasticity ( coefficients in the 

regressions), and the amount of variability in their indicator captured by all drivers 

taken together (R2 statistic). Consider the case where an environmental pressure can be 

explained by selected drivers, such as income and climate, for example. It then stands to 

reason that we can expect the inequality in its distribution to be related not only to the 

inequality of these drivers, but also to the strength (elasticity) with which these drivers 

are coupled to the environmental pressure. In this analysis, we apply a method which 

allows us to perform this decomposition (Fields 2003, Teixidó-Figueras and Duro, 

2015b): it explains international inequality in environmental pressures in terms of the 

inequality and strength in the driving components of these pressures. 

Hence, the objective of this study is firstly to analyse the international inequalities of a 

set of environmental indicators, with special emphasis on comparing the distribution of 

territorial and footprint indicators and, secondly to decompose the inequality of the 

indicators in terms of their drivers. The analysis is applied to three families of 

environmental indicators, each family consisting of a territorial indicator and a footprint 

indicator. The first family covers land use intensity: Human appropriation of net 

primary production; HANPP, (Krausmann et al 2009), and embodied HANPP; 

eHANPP (Erb et al 2009, Haberl et al 2012). The second family covers three indicators 

related to material use: domestic extraction; DE, domestic material consumption; DMC 

(Krausmann et al 2008), and the material footprint; MF (Wiedmann et al 2015). The 

third family refers to carbon emissions with territorial CO2 emissions and consumption-

based CO2 emissions (Peters and Hertwich 2008, Boden et al 2013). 
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2. MATERIALS AND METHODS 

Our comparative analysis proceeds in three stages: first, we calculate the distribution 

dispersion through inequality indices to determine unambiguously the distribution 

pattern of environmental indicators and determine which of those are the most 

unequally distributed. In a second stage, we estimate linear regressions in order to 

determine the relationship between proposed drivers and the environmental indicators 

considered. In a third stage, we decompose the inequality measured in stage one in 

terms of the drivers estimated in stage two. Such information might be critical for policy 

making, since it could indicate where the source of the total inequality lies and at the 

same time which drivers are more important in determining the variability of 

environmental indicators. 

Territorial (or production-based) indicators refer to the environmental pressures taking 

place within national (including administered) territories and offshore areas over which 

the country has jurisdiction, whereas footprint indicators (or consumption-based) add 

imports to, and subtract exports from, territorial indicators (see Peters, 2008). All data 

refers to the year 2000, the only year for which all indicators were available and 

accessible. This analysis is entirely novel, since very few studies have done comparative 

analysis across different resources/indicators and even fewer have considered both 

territorial and footprint indicators. The research question of our analysis is not 

particularly time-specific, but focuses on a comparative view of a broad set of 

environmental indicators revealing fundamental differences. The basic findings of this 

analysis, therefore, are of current significance, despite the focus on the year 2000. It is 

also clear, however, that given the major changes in the global economy since 2000, in 

particular the rising significance of emerging economies in global resource use, the 

observed patterns in global inequalities may have changed since 2000 (Wiedmann et al. 

2015; Schaffartzik et al. 2013; Giljum et al. 2014). This may encourage future research 

in this issue when further data is available. The countries sampled comprise between 

88%–97% of the world population, depending on the availability of data for each 

indicator considered (see Table 1). As in Steinberger and Roberts (2010), countries are 

weighted by their population, so that global population is better represented in both 

inequality measurement and regressions. 
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Table 1. Environmental indicators database 

Territ. / 
Footp. Indicator Unit(s) Source 

Countries 
sampled 

% world 
pop  

T CO2 emissions (*) metric tonnes CO2/cap Peters et al. (2011) 86 88% 

F CO2 consumption based  metric tonnes CO2/cap Peters et al. (2011) 86 88% 

T Domestic extraction  tonnes/cap Steinberger et al. (2010) 152 97% 

(T) Domestic material consumption tonnes/cap Steinberger et al. (2010) 152 97% 

F Material footprint tonnes/cap Wiedmann et al. (2015) 148 97% 

T HANPP tonnes of dry matter/cap Kastner et al. (2015) 150 97% 

 F Embodied HANPP  tonnes of dry matter/cap Kastner et al. (2015) 152 97% 

 (*) We used two data sources to analyse territorial CO2 emissions for robustness issues: one from World 
Bank data (141 countries) and the other from the Peters et al. (2011) database (86 countries). However, 
the results obtained are not sufficiently different to merit inclusion of both datasets in the main text of this 
article. Despite it being a smaller sample, we decided to include the sample of Peters et al. (2011) in the 
main text with a view to keeping inequality comparisons with consumption-based emissions more 
consistent. 

2.1 Environmental indicators 

In this section, in order to allow the reader a proper interpretation of their international 

distribution, we briefly describe the environmental indicators used. Further details on 

the indicators, and how they are calculated, can be found in the literature cited. 

Notice, however, that some methodological issues need to be considered here in the way 

footprint indicators are calculated (CO2 consumption-based, MF and eHANPP). 

Whereas CO2 consumption-based and MF are derived using a EE-MRIO approach, 

eHANPP was calculated based on physical accounting methods. This might involve 

different logics among footprint indicators on how to allocate environmental factors 

along supply-chains (see Kastner et al. 2014; Hubacek and Feng, 2016). Also, the EE-

MRIO approach uses different databases; the CO2 consumption-based uses GTAP 

datasets whereas MF uses Eora. Owen et al (2014), for example, found that variations in 

carbon footprint calculations between Eora and GTAP can be attributed to differences in 

the IO table structure and emissions data, whereas variations between Eora and WIOD 

are mainly due to differences in final demand and the IO structure. Research into 

understanding differences between MRIO databases continues (Inomata & Owen 2014). 

2.1.1 Emissions: Territorial and consumption-based CO2 emissions 

CO2 is the primary emission of human economies. CO2 emissions from the combustion 

of fossil fuels and other activities increase the concentration of CO2 in the atmosphere 
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and contribute to human induced climate change. Nearly all national and global climate 

policies, such as the Kyoto protocol, focus on CO2 emissions that occur within national 

territories (Peters 2008; Peters et al 2009). Territorial-based emissions (also referred to 

as production-based emissions) are reported by most nations and by several 

international organisations (Andres et al 2012). 

In the last few decades, territorial-based emissions in developed countries (the so-called 

Annex B countries in the Kyoto protocol) have stabilized, while emissions have grown 

rapidly in developing countries. This called for methods to quantify consumption-based 

CO2 emissions which correct standard territorial emissions for emissions embodied in 

international trade (Peters and Hertwich 2008). This enables the allocation of emissions 

to the goods and services consumed, rather than those produced (Hertwich and Peters 

2009). 

2.1.2 Material use: domestic extraction, domestic material consumption and material 

footprint 

Material flow accounts (MFA) provide comprehensive information about the material 

inputs and outputs of national economies (i.e. their metabolism) (Fischer-Kowalski et 

al. 2011). Material flow indicators measure the annual tonnage of aggregate material 

flows (biomass, fossil energy carriers, metals and non-metallic minerals) through 

national economies, and are considered comprehensive macro-indicators for the overall 

environmental pressure exerted by the economy (OECD 2008). 

We use three MFA-derived pressure indicators, two of which can be considered 

territorial indicators: the first, domestic extraction (DE), measures all materials 

extracted within an economy's boundaries for further socio-economic use. The second, 

domestic material consumption (DMC), measures apparent consumption (the total 

amount of materials directly used in an economy) and is defined as the annual quantity 

of materials extracted from the domestic territory (DE), plus all physical imports, minus 

all physical exports (Eurostat, 2012). DMC does not measure the materials used 

upstream (embodied) in traded goods and services. DMC is not only a measure for 

apparent consumption of resources but it can also be understood as the domestic waste 

potential of an economy (as argued by Weisz et al. 2006). DMC indicates the amount of 

material that ultimately turns into end of life waste within the country, i.e. the amount of 
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waste material the country has to handle and in that sense is indeed equivalent to e.g., 

territorial carbon emissions. Its inclusion to the analysis is in further justified as it is 

indeed the most widely used MFA derived headline indicator, e.g. in the context of EU's 

Resource Efficiency Roadmap (European Commission, 2011). In contrast, the third 

indicator, the material footprint, is purely consumption-based. It includes all upstream 

raw materials related to imports and exports into account and quantifies the materials 

embodied in a country's final demand (Wiedmann et al. 2015). 

2.1.3 Land use intensity: HANPP and eHANPP. 

The human appropriation of net primary production (HANPP) is a socio-ecological 

indicator that measures the intensity with which human society uses terrestrial 

ecosystems (Haberl et al., 2012; Haberl et al., 2014). Net Primary Production (NPP) is 

the amount of CO2 fixed by autotrophs such as green plants through photosynthesis net 

of the plant’s own metabolic needs (i.e. plant respiration). NPP provides the trophic 

energy supply of all food chains in an ecosystem. HANPP measures the amount of NPP 

appropriated by humans through both land change and harvest (Haberl et al., 2014). 

Hence, HANPP (measured in tons of dry matter or carbon) carries information on the 

intensity of land use in the territory of a country: The higher the average HANPP per 

unit of land in a country, the higher the pressures on the land systems in its own 

territory. Recent research has shown that HANPP varies strongly across countries and is 

influenced by both bio-geographic (e.g. climate) and socio-economic factors (e.g. 

agricultural technology, population density) (Krausmann et al. 2009). Our aim here is to 

quantify to what extend such factors (drivers) determine the international differences in 

HANPP. 

HANPP is a territorial indicator and measures the effect of domestic land use on 

domestic NPP, but not the pressures related to its consumption level—countries that 

import a high proportion of biomass-based products might register a lower HANPP than 

countries that produce and export large amounts of biomass products. This can be 

captured by the embodied HANPP (eHANPP) indicator which considers the HANPP 

associated with imported goods and subtracts the HANPP of exported goods. For details 

on this indicator and its operationalization, see Haberl et al. (2012, 2014), Kastner et al. 

(2015) and Krausmann et al. (2013). Data were taken from the study by Kastner et al. 

(2015). 
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2.2 Drivers 

Regarding the socio-economic and geophysical drivers of the environmental indicators 

above, we apply the same empirical model for all environmental pressures. The model 

should capture the common drivers shared by all the environmental indicators 

considered, hence permitting a clear comparative analysis. In order to find such a 

common model,2 we refer to the main literature focused on the estimation of such 

drivers (York et al 2003, Dietz et al 2007, Rosa and Dietz, 2012; Lamb et al. 2014). As 

in Lamb et al (2014), our drivers can be divided into three broad and overlapping 

categories: economic (income and active population share), demographic (urbanization 

and population density) and geographic (climate and bioproductivity of land). Table 2 

describes drivers and also provides international inequality as measured by the Gini 

index: this is useful in understanding that the distributional pattern of drivers will play a 

central role in the decomposition analysis. 

Table 2. Common drivers of environmental pressures 

 Variables Unit(s) Mean Gini (rank.) Source 

ECO 
Income (GDP/ capita) 1000 constant 2000 US$ /cap 5.322 0.75 (1) World Bank Group 

Active Population (% Pop. Ages 15-64)  % of total population 62.872 0.05 (6) World Bank Group 

DEM 
Population density (Pop./ Km2) people per sq. km of land area 186.045 0.50 (3) World Bank Group 

Urbanization rate (Urban pop/total Pop) % of total population 46.587 0.25 (5) World Bank Group 

GEO 
Ecosystem Productivity (NPPpot) 1000 tonnes of dry matter/cap 11.089 0.66 (2) Haberl et al. (2012) 

Climate (Daily min. temperature)  Celsius. Average 1961-1990 10.686 0.45 (4) World Bank Group 

We should note here that population is well known to be a key driver of overall resource 

use and environmental pressures: however, since we are interested here in international 

differences, we use per capita measures throughout to remove the effects of population 

size.  

Economic: Income, as measured by GDP per capita, accounts for the economic activity 

of nations and is one of the most widely used indicators for affluence3. It is considered 

the main macro-driver of environmental pressure (Rosa and Dietz, 2012). Higher GDP 

                                                 
2 The authors have estimated several models by trying different sets of independent variables and the 
results obtained are always virtually equivalent. The chosen model is the one that yields the highest 
overall significance.   
3 GDP per capita is a measure of national income that measures economic performance. It must not be 
confused with either measures of actual household income in an economy or measures of a society’s 
welfare. 
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per capita entails, on the one hand, higher consumption and hence higher resource use 

and, on the other, higher economic activity which also increases resource use. 

Additionally, it is the most unequally distributed driver. This link between income and 

resource might drive resource use inequality (Weinzettel et al 2013). Active Population: 

Age structure is also widely used in the environmental pressure driver literature 

(O’Neill et al 2010, Rosa and Dietz, 2012); in particular, the fraction of the population 

aged 15 to 65, considered economically active, might affect environmental pressure 

through (income-independent) lifestyle patterns: populations with larger fraction of 

working age population will consume more than populations with larger proportions of 

children or elderly (Zagheni, 2011, Lugauer et al., 2014). On the other hand, a higher 

share of active population affects labour supply through higher labour productivity and, 

ceteris paribus, higher environmental pressure (O’Neill et al 2010). 

Demographic: Population density has been argued to have a significant impact on 

countries resource use patterns: countries with low population densities tend to have a 

high level of resource use per capita, while countries with high population density will 

use fewer resources per capita (Krausmann et al 2008). Population density (or its 

inverse, the land area availability per person) is considered a proxy of per capita 

resource endowment (as a higher population density decreases the probability of per 

capita resource availability in a country) and thus may have an impact on the resource 

intensity of the economies’ mode of production (Haberl et al 2012, Steinberger et al 

2010, Wiedmann et al 2015, Krausmann et al 2009, Lamb et al 2014). Urbanization; 

development is related to the migration of rural population to urban areas in search of 

jobs and subsequent urban growth. The sprawl of growing cities with large suburbs is 

associated with construction activities, expansion of supply, discharge and 

communication infrastructures, commuter travel, freight transport to connect urban 

centres with the hinterland and so forth. This all drives increases in resource 

consumption (Liddle and Lung 2010). Nonetheless, cities might also provide economies 

of scale and more efficient use of resources and also contribute to reductions in 

environmental pressure (Weisz and Steinberger, 2010). Urbanization is measured 

through the percentage of a country's population living in urban areas. 

Biogeography and climate; as a proxy for climate, we use the national average 

minimum temperature. The climate driver consists of a climatic normal (minimum 
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temperature averaged over 30 years). Climate has an impact on resource use and 

environmental pressures (e.g. through higher heating necessities; Lamb et al 2014). We 

further use potential net primary production (NPPpot) per capita (i.e. the NPP that would 

prevail in the absence of land use) as a proxy for natural ecosystem productivity. NPPpot 

per capita is probably the exogenous regressor that best captures land qualitative 

characteristics available per capita. 

2.3 Inequality measurement 

The analytic approaches employed are derived from methods commonly used in 

economics. Inequality is traditionally measured by the use of the Lorenz curve, a graph 

which plots the cumulative proportion of total available resource (usually income or 

wealth, but in our case environmental pressure) against the corresponding cumulative 

population using this resource, ranked from poorest to richest (Cowell, 2011). Lorenz 

curves are used to rank distributions: when one distribution curve lies completely above 

a second (closer to equality line), the first is unambiguously more equal than the second. 

However, Lorenz curves might intersect, what would indicate that a distribution is more 

equalitarian than the other (closer to equality line) according to which part of the 

distribution we focus on. Only inequality indices allow for consistent comparisons 

among different distributions. We propose using a set of different inequality indices 

with different underlying assumption (see equations in the Annexes): Theil index T(0) 

and Theil index T(1) give more importance to the observations in the lower percentiles 

of the distribution, whereas the Gini index gives symmetrical weight to both distribution 

extremes, but gives more importance to those observations closer to the distributional 

mode. The Theil index T(2) is argued to be neutral index since it does not weight any 

part of the distribution differently (Duro 2012). 

Inequality indices are a widely used tool to compare the dispersion exhibited by a 

distribution. To do so, however, some basic axioms are indispensable, namely: 

anonymity, population principle, scale independence, and Pigou-Dalton principle of 

transfers (see the Annexes for technical details). The decomposability axiom allows us 

to account for the underlying structure of the observed inequality. Decomposing an 

index consists of determining which part of the total inequality observed is attributable 

to each of its components. Regression-based decomposition (Fields, 2003) informs us 

about the contribution of those drivers to international environmental inequality. 
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2.4 STIRPAT model and regression-based decomposition 

The value added by regression-based decomposition (RBD) of inequality is easy to see 

if we compare its research question with those asked by other regressions, such as the 

Stochastic IPAT (STIRPAT) model. The results of a STIRPAT model are the regression 

coefficients, their value, sign and statistical significance4: the primary question asked in 

STIRPAT models is "What is the effect of one unit change in GDP per capita (or any 

other driver) on CO2 emissions, holding all other drivers constant?". A secondary 

question in the same regressions is "How much of the variance in the CO2 emissions is 

accounted for by the drivers taken together (the R2 statistic)?". However, the regression-

based decomposition applied here answers a third question: "How much of the variation 

in the distribution of CO2 emissions is accounted for by each driver?". Hence, 

decomposing international inequality of environmental pressures in terms of its drivers 

is not only useful for studying international equity issues, but also enables the 

determination of which drivers contain more information in explaining each 

environmental pressure and which ones can be safely ignored. 

Firstly, a multiple least squares regression is applied to the drivers described. In this 

RBD approach, the model is restricted to a semi-log linear function5 for country i: 

i

K

k
ikki XY   0ln  (1) 

where Yi is its environmental indicator and Xi represents the different k drivers 

considered. k is the estimated semi-elasticity of driver k while i stands for the error 

term with typical assumptions involved, |X N(0, 2). 

Once the semi-log model is estimated, variances on both sides of the equation must be 

taken: 

                                                 
4 See York et al., 2003 
5 The semi-log model ikk FFFY   ...)ln( 22110 is equivalent to: 

)exp()exp()exp()...exp(
1

022110 ikk

k

k
ikk FFFFY   



. Then, the 

contribution 0 is null since it is a constant of each observation.  
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







 

2

var)var(ln
K

k
kk XY   (2) 

On the right hand side, we obtain the variance of logarithms, an inequality measure. 

Since the variance is already a measure of inequality, this equation decomposes the 

inequality into components describing the STIRPAT model’s drivers. Rearranging 

Expression (2), we obtain: 





2

)ln,cov()var(ln
K

k
kk YXY   (3) 

which is an analogue of the expression of the natural decomposition rule of the variance 

(Shorrocks 1982, 1983). Therefore, the relative contribution of Y’s drivers, Xk, to total 

environmental indicator inequality is defined by: 

 
 

 
)var(ln

ln,cov
)(ln

Y

YX
Ys kk

k


  (4) 

Under this decomposition rule, the contribution of each component corresponds to 

cov(ȕkXk, Y) and its relative contribution is defined as cov(ȕkXk,Y) / var(Y). Note 

that





2

1

%100)(ln
K

k
k Ys , so that sk answers the question of how much of each 

environmental indicator total inequality is accounted for by the driver k. If we removed 

the residual term, then what we would get is the R2 of the regression 





1

1

2)(ln
K

k
k Res (ln 

Y). 

Then, since we have that corr(x, y)=cov(x, y)/(sd(x)sd(y)), it can be shown that: 

 
 

)(ln

)ln,()(

)var(ln

ln,cov
)(ln

Y

YXcorrX

Y
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Ys kkkk

k 
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 k  (5) 

Hence, the contribution of each driver k to the international inequality of Y is based on 

considering the product of the estimated coefficients (), the dispersion in the driver 

ı(Xk), and the existing correlation between dependent variable and driver. 
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Figure 1. Lorenz Curves of Environmental indicators 
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3. RESULTS 

3.1 International Inequality in Environmental Pressure 

Figure 1 shows Lorenz curves for all the environmental pressures considered and 

reveals a first insight concerning differences in inequality: carbon indicators are the 

most unequally distributed. However, the rest of Lorenz curves intersect, which prevents 

an unambiguous ranking. We thus complement this analysis with a set of inequality 

indices to allow a consistent ranking of distribution inequalities (see Table 3). 

Table 3 shows a set of inequality indices for each indicator: the family of carbon 

emission indicators are the least equally distributed; the consumption-based CO2 

emission showing the highest level of international inequality according to most indices. 

Notice however that var(ln) from Table 3 reverses this relation and assigns higher 
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inequality to the territorial emissions indicator. This is because this index gives more 

weight to the low part of the distribution (see Figure 1), i.e. the carbon transfers 

between low carbon emitters and low carbon consumers have greater weight than 

similar transfers in other parts of the distribution. These greater weights are enough to 

change the ranking in comparison to the other inequality indices. Material consumption 

also registers a higher inequality in its footprint indicator (MF), whereas the apparent 

consumption (DMC), and domestic extraction (DE), exhibit a similar and more 

egalitarian distributional pattern. In contrast, the HANPP and eHANPP distributions 

behave differently: eHANPP, a footprint type indicator, shows a lower inequality than 

territorial HANPP. Hence, while international trade tends to increase resource use 

inequality for carbon and material (Wiebe et al., 2012), it seems to play an equalizing 

role for land use intensity, as it makes HANPP more equitable. In contrast, NPP, which 

measures ecosystem productivity (Krausmann et al 2009), appears to be rather 

unequally distributed with a Gini of 0.659 (see Table 2). This remarkable progressive 

redistribution must be related to the fact that basic human needs are more connected to 

this indicator than to any other one, as already suggested by previous studies 

(Krausmann et al 2009, Hertwich and Peters 2009, Steinberger et al 2010): trade will 

thus by necessity be used to supply NPP-deficient countries from countries with NPP 

surpluses. 

Table 3. Environmental indicators considered ranked by inequality indices. 

T/F Variable T(2) ranking Gini ranking T(0) ranking T(1) ranking var(ln) ranking 

F Consum. CO2  0.87 1 0.579 1 0.655 1 0.613 1 1.298 2 

T Territ. CO2  0.698 2 0.546 2 0.61 2 0.528 2 1.369 1 

F MF  0.533 3 0.479 3 0.421 3 0.4 3 0.820 3 

T HANPP 0.41 4 0.423 4 0.316 4 0.306 4 0.667 4 

T DE 0.343 5 0.359 7 0.215 7 0.237 6 0.386 7 

F DMC 0.31 6 0.373 5 0.226 5 0.242 5 0.409 6 

F eHANPP 0.239 7 0.362 6 0.218 6 0.209 7 0.442 5 

Note: all indicators are referred to in per-capita terms. 

In the next section, we decompose the observed patterns of international inequality in 

terms of the proposed drivers. 

3.2 Decomposition Results 



 

 16 

First, the regression results show the estimated semi-elasticities that allow, in a second 

stage, the relative contribution of the drivers of global distributions of environmental 

pressures to be obtained. 

3.2.1 The regression results 

Our empirical model6 is in a semi-logarithmic form. Hence, coefficients should be 

interpreted as semi-elasticities (the increase in one unit of X, imply an increase of 

100% in y); e.g. an increase of one unit in GDP per capita (1000$) or an additional 1% 

of active population involves a cross sectional increase of 2.47% and 3.98% of DMC 

per capita, respectively (Table 4). Multi-collinearity is not a substantial problem in any 

of the models: the highest Variation Inflation Factor (VIF) for any of the drivers 

considered is safely below accepted standards. 

Table 4. Regression results (OLS) 
 

 Land Use Intensity Material Use Carbon Emissions 

  (1) (2) (3) (4) (5) (6) (7) 

VARIABLES HANPP eHANPP DE DMC MF CO2 Territ. 
CO2 

Consump. 

          

Income 0.007 0.015*** 0.008*** 0.025*** 0.038*** 0.028*** 0.038*** 

 (0.007) (0.005) (0.003) (0.002) (0.005) (0.006) (0.005) 

Active Population 0.007 0.005 0.038*** 0.040*** 0.066*** 0.117*** 0.090*** 

 (0.014) (0.010) (0.005) (0.005) (0.010) (0.014) (0.012) 

Pop. density -0.0012*** -0.0009*** -0.0011*** -0.0008*** -0.0004 -0.0004 -0.0002 

 (0.0004) (0.0003) (0.0001) (0.0001) (0.0003) (0.0003) (0.0003) 

Urbanization 0.002 0.008*** 0.011*** 0.008*** 0.011*** 0.019*** 0.021*** 

 (0.004) (0.003) (0.002) (0.001) (0.003) (0.004) (0.003) 

Ecosystem Productivity  0.021*** 0.014*** 0.005*** 0.004*** -0.001 -0.003 -0.004 

 (0.003) (0.002) (0.001) (0.001) (0.002) (0.003) (0.003) 

Climate 0.021** 0.023*** -0.005 -0.007** -0.004 -0.016** -0.017** 

 (0.008) (0.006) (0.003) (0.003) (0.006) (0.008) (0.007) 

Constant 0.270 0.247 -0.900** -0.890*** -2.991*** -21.243*** -19.716*** 

 (0.865) (0.607) (0.345) (0.298) (0.652) (0.930) (0.785) 

          

R-squared 0.471 0.607 0.853 0.896 0.759 0.874 0.906 

Mean VIF 1.93 1.93 1.93 1.93 1.94 2.04 2.04 

Observations 150 150 152 152 148 86 86 

Standard errors in parentheses       

*** p<0.01, ** p<0.05, * p<0.1       

                                                 
6 It is important to keep in mind that we do not attempt to provide any evidence of causality, but we use 
the estimated coefficients to weight the drivers’ contribution to environmental indicators international 
inequality 



 

 17 

For HANPP and eHANPP indicators, the drivers showing strongest explanatory power 

are those related to geographical factors; NPPpot and minimum temperature. Consistent 

with previous analyses (Krausmann et al 2009, Haberl et al 2012), population density 

has a negative effect on HANPP. The main difference between HANPP and eHANPP is 

due to the contrasting drivers GDP per capita and NPPpot (purely economic and purely 

biophysical, respectively). GDP per capita is non-significant for HANPP, but positive 

and strongly significant for eHANPP. On the contrary, NPPpot has a higher semi-

elasticity for HANPP than for eHANPP. Also remarkable is the urbanization driver, 

which is significant for eHANPP but not for HANPP; per capita HANPP tends to be 

low in countries with high urbanization rates, however, the increase of global urban 

population delinks local patterns of production from patterns of consumption 

(Krausmann et al 2009). 

For the material flow indicators, the first result to highlight is the increasing role of 

economic variables from DE to DMC and MF. That is, with indicators becoming more 

consumption-based, the always significant income coefficient increases its semi-

elasticity as we shift to footprint accounting. We can thus expect that the income 

contribution indicator’s inequality will also increase—the same pattern is observed for 

active population. On the other hand, population density exhibits an inverse pattern, 

presenting a lower semi-elasticity as the indicator shifts to consumption-based. Hence, 

when other factors are held constant, land availability per person explains less material 

pressure once trade is taken into account. Urbanization presents a significant and more 

strongly positive coefficient for DE and MF than for DMC. 

Finally, some stylized facts can also be observed for the carbon family. Results obtained 

show that the shift from territorial to footprint measures involves an increase of 

income’s explanatory power (as in Steinberger et al 2012). However, the other socio-

economic variable, active population, changes its coefficient in the opposite direction, 

being lower for the consumption-based emissions. The three carbon models show a 

similar relationship between urbanization and emissions (an additional 1% of urban 

population involves a cross-country variation of 2% in CO2 emissions per capita, either 

territorial or footprint). Finally, the last significant driver is climate, approximated by 

the mean minimum temperature of a country; as temperature gets colder, emissions 

increase due to higher heating energy demand. Differences in the empirical model aside, 
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our results are in the same direction as those found by Lamb et al (2014) who also 

compared territorial and footprint carbon emissions. 

In the next section, we use the estimated coefficients as weighting factors to decompose 

the international inequality of the environmental indicators in terms of their drivers. 

3.2.2 RBD decomposition results 

In this section, we decompose international inequality of indicators into driver 

contributions, which in turn consist of the product of several elements (Equation 5). 

Table 5 shows the results obtained (only significant contributions are shown). 

 
Table 5. Regression-based decomposition. Contributions (%) to environmental 
indicators distribution for the year 2000 
 
 

  Land Use Intensity Material Use Carbon Emissions 

   (1) (2) (3) (4) (5) (6) (7) 

 

Distributional contributors HANPP eHANPP DE DMC MF 

CO2 

Territ.  

CO2 

Consum. 

ECO 
Income - 8.2 7.6 28.3 30.3 16.9 26.3 

Active Population  - - 18.9 20.9 24.9 36.2 26.7 

DEM 
Population density 10.8 10.7 17.9 9.7 - - - 

Urbanization rate - 13.8 30.3 20.4 17.2 25.4 29.9 

GEO 
Ecosystem Productivity  32.5 27.1 7.1 4.9 - - - 

Climate 1.2 0.9 - 5.4 - 7.6 8.1 

 Residual 52.9 39.3 14.7 10.4 24.1 12.6 9.4 

 

Total 100 100 100 100 100 100 100 

 

 Inequality ʹ GINI 0.423 0.362 0.359 0.373 0.479 0.546 0.579 

 

3.2.2.1 Land use intensity distribution 

Geographical drivers, in particular NPPpot per capita, determine most of the international 

differences in land use intensity. This driver alone explains 32.5% of the total observed 

HANPP inequality and 27% of eHANPP. This high contribution is mostly explained by 

the high inequality of per capita NPPpot (see Table 2) rather than by the coefficient 

estimated (which weights the driver inequality contribution). To see this, we can 

compare NPPpot with the other significant geographical factor, minimum temperature. 

Despite both drivers being statistically significant, their importance in the variation of 
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land use intensity differs considerably. Population density has the same influence in 

both territorial and footprint indicator’s distribution. This suggests that land use 

intensity distribution is more a matter of land quality availability (NPP0 per capita) 

rather than just land availability (inverse of population density). However, the main 

difference between territorial and footprint inequality drivers is the significant 

contribution of income and urbanization rate for eHANPP. Once trade is taken into 

account, income and urbanization rate have an influence on land use intensity 

distribution. 

As mentioned earlier, and in contrast to the other environmental indicators considered, 

the footprint indicator (eHANPP) shows a lower inequality than the territorial indicator 

(HANPP). This contrasting result might be explained by the geographical importance of 

its distribution. The statistically significant contribution to eHANPP of the most 

unequal driver, GDP per capita, is not sufficient to compensate the higher contribution 

of NPP0 per capita. In other words, the footprint of land use intensity is more equally 

distributed because land use intensity is much more determined by geographic factors 

(e.g. resource endowment) than economically based (a result that cannot solely be 

inferred from the regression). 

3.2.2.2 Material use distribution 

The distribution of material use indicators is strongly determined by the two economic 

drivers: income and active population. The total contribution of both economic drivers 

accounts for 26% of the DE distribution, 49% of DMC and 55% of MF. Both income 

and active population contributions increase as the indicator is more consumption-

based. The inverse behaviour is found for inequality contributions of demographic 

drivers (population density and urbanization) whose contribution shrinks since the 

indicator is more consumption-based: the most important drivers of DE distribution are 

the demographic ones (48.3% in total): population density contributes 17.9% to DE’s 

inequality and reduces its contribution until not differing from zero for MF’s inequality. 

The more land is available, the more territorial extraction of minerals, crops, etc., occurs 

(as the regression results show). Consequently, the DE distribution is noticeably 

influenced by the land availability distribution, whereas consumption indicators’ 

distributions are rather delinked from this initial endowment. Urbanization rate is the 

major contributor to DE distribution and despite being lower for DMC and MF remains 
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important. Following from this, we note that geographical drivers become less 

important as trade allows further disconnection from a country's own geographical 

characteristics. For DE, NPPpot is responsible for part of its distribution pattern (7%); 

however, for DMC such contribution shrinks (4.9%) and becomes not significantly 

different from zero for MF, where the indicator captures physical quantities that actually 

have not even been directly imported/exported by the country: this makes this last 

indicator even more delinked from its own geographical characteristics. 

3.2.2.3 Emissions distribution 

Finally, economic drivers are again the main contributors to the international inequality 

of carbon emissions: both income and active population explain more than 50% of the 

total carbon inequality for both production and consumption emissions. As in material 

indicators, income contribution to the CO2 inequality increases as the indicator shifts 

from production-based to consumption-based, reaching 26.3% for the distribution of 

consumption-based CO2 emissions. The active population driver contributes to 

territorial emissions’ distribution at a level of 36.2% and reduces its contribution to a 

similar level as income for the consumption-based emissions. According to this result, 

the distribution of active population is more than twice as important as that of income in 

determining the distribution of territorial emissions. This high contribution is the result 

of the high strength (large regression coefficient) with which this driver is coupled to 

carbon emissions, which makes its relative low inequality of the distribution of active 

population more important in determining carbon distribution. Regarding demographic 

variables, the urbanization driver shows a significant contribution which is rather stable 

across both carbon indicators, at the 25–30% level. Population density and geographic 

characteristics account for little in carbon distributional terms; only climate accounts for 

7.6% of the territorial CO2 emissions and 8.1% of the consumption-based emissions. 

Hence, our results show that the carbon emissions distribution follows an opposite 

direction than the land use intensity distribution: carbon distribution is more unequally 

distributed because it is more linked to a country’s economy than to its geography. 

The differences in the contributions made by the residual to all indicators should also be 

noted (Table 5 and Figure 2). This residual can be interpreted as the drivers not captured 

by the proposed model, which is in particular of importance for the family of land use 

intensity indicators, whereas for material and carbon indicators it is much lower. This 
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phenomenon indicates the part of international distribution of the resource use that is 

not identified by our proposed model, for instance international differences in 

technology. In the case of HANPP, the applied model can only explain the 47.1% of the 

distribution (R2). This residual component is higher in the inequality decomposition for 

HANPP than eHANPP, again reflecting the higher contribution of socio-economic 

factors in explaining eHANPP. 

 

Figure 2. Inequality contributions grouped by economic, demographic and 

geographic factors 
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4. DISCUSSION 

From this analysis, we gain new insights regarding the international distributional 

patterns of the different environmental indicators considered, and the factors 

contributing to their inequality. This is particularly interesting in the context of the 

strong prevailing international competition for natural resources. Firstly, the results 

show that footprint indicators for material use and carbon emissions tend to be more 

unequally distributed than territorial indicators. This suggests that international trade 

exacerbates the inequality of material and carbon rather than contributing to its 

reduction. This is evident in the decomposition analysis: this higher inequality for 
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footprint indicators is accompanied with a higher contribution of economic drivers (and 

lower contribution of geographic drivers) in explaining the indicator’s distributional 

pattern (see Figure 2). Hence, regardless of other endowments, income distribution is 

the main contributor to the distribution of materials and fossil energy. Insofar as global 

governance is to be framed within a resource-constrained world, international trade does 

no favours to environmental equity goals. 

In contrast, land use intensity distribution behaves differently; eHANPP, the footprint 

indicator, is more equally distributed than is territorial HANPP. This is the only one of 

the indicators considered for which trade does not increase environmental inequality, 

but rather alleviates it. In future research (depending on availability of data), it would 

interesting to contrast this result with area-based indicators (actual land use and land 

footprint). Since HANPP and eHANPP considers both land-use intensity and area, a 

comparison with pure area-based indicators would allow to better understand of the 

underlying processes of this particular result. The distribution of both land use intensity 

indicators is highly linked to the distribution of countries’ ecosystem productivity 

(NPPpot); this geographic endowment is rather unequally distributed, however much less 

than income, and for HANPP economic factors have no influence on its international 

distribution. From this we infer that the difference between HANPP and NPPpot 

distributions is a consequence of the international differences in countries’ land use 

technologies, i.e. how intensively the productive potential of land is used. This 

technological driver is captured in the residual contribution of both land use indicators. 

Nonetheless, the most interesting aspect of this family of indicators is that international 

trade makes human appropriation (eHANPP) more equally distributed. This can be 

explained by the stronger connection that land use has with basic human needs, as 

already suggested elsewhere (Krausmann et al 2009, Hertwich and Peters 2009, 

Steinberger et al 2010): income has a significant semi-elasticity in explaining eHANPP, 

however, this driver only contributes some 8.2% of its international distribution, as our 

results show. This lower contribution is in part due to its low semi-elasticity (regression 

result): An additional income of 1000$ increases eHANPP by only 1.5%, but increases 

MF or consumption-based CO2 emissions by 3.8%. This is consistent with Hertwich 

and Peters (2009) who showed lower elasticity for food than for other consumables. We 

learn here that income distribution is only responsible for a small part of international 

eHANPP distribution (decomposition result). Also remarkable is that urbanization rates 
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contribute to eHANPP inequality, but not to HANPP (although significant). This 

indicates that, for the eHANPP distribution, the fraction of the population which is 

actually separated from land (living in cities), although their basic needs (food supply) 

are still connected to the land, is of high relevance. Countries with higher urbanization 

rates will tend to have a greater necessity to import such basic resources.  

The analysis shows that environmental indicators become more unequally distributed as 

they are more economically based and less dependent on geographical and 

demographical drivers7. However, for carbon emissions indicators, the distribution 

appears to be highly determined by economic factors, suggesting that carbon emissions’ 

higher inequality is in fact a consequence of it being a sink resource: the sink (the 

atmosphere) is equally distributed across the planet, all countries have the same access 

to it, but it is the distribution of income, active population and urbanization rate that 

drives the actual distribution of emissions. In this regard, since active population 

approximates the labour supply of an economy, an indispensable factor of production, 

results point out this driver as the main contributor of territorial (production-based) 

emissions. Indeed, active population’s distribution is more than two times more 

important than income’s distribution in determining territorial emissions. On the other 

hand, since income approximates consumption, it is a main contributor of consumption-

based emissions. Finally, urbanization rates appear virtually equivalent between both 

indicators, indicating that this variable contribution to emissions distribution is beyond 

the footprint-territorial basis for the carbon family. 

The three MFA indicators reflect a gradual shift from territorial to footprint 

(consumption-based) type indicators, which enables a simple interpretation of the 

results described: the more consumption-based the indicator, the larger its international 

inequality, the larger the contribution of economic drivers, and the lower that of 

                                                 
7 As indicated in section 2.1, footprint indicators are derived using different methodologies. CO2 
consump. based and MF are calculated with MRIO models whereas eHANPP is calculated  with physical 
accounting. This methodological difference has an influence on the results: MRIO approaches follow a 
monetary allocation and product homogeneity is assumed (i.e. the same price and quality for all 
countries). This may lead to a higher allocation of footprints to wealthy countries compared to physical 
approaches, reflecting the value that is placed on satisfying the countries' final demand. This is consistent 
with the dichotomy of economic versus physical allocation in Life Cycle Assessment. The lower link of 
eHANPP to income compared to other footprint indicators might be in part explained by its underlying 
physical accounting. However, although we acknowledge that the underlying methodologies of footprint 
indicators might play a role in the findings of this analysis, we do not consider them to be distorting the 
results obtained. 
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demographic and geographic drivers. Trade not only tends to increase environmental 

inequality, but also delinks resource use from its territorial characteristics. The MF 

international distribution is mainly determined by economic drivers (income and active 

population); 55.2% in total. Economic factor contribution accounts for 49.2% for DMC 

distribution and only 26.5% for DE. Income captures consumption scale distribution 

whereas active population can be interpreted as consumerist behaviour of different age 

structures once income is controlled for (in line with Zagueni (2011) and Lugauer et al. 

(2014)); i.e. two countries with the same income level, and different age structures will 

consume differently. 

On the contrary, whereas the DE distribution lies also on active population, the main 

contributors are demographic ones (population density and urbanization) plus active 

population: Active population accounts for 18.9% and can be interpreted as countries’ 

labour supply contribution (in line with O’Neill et al (2010)). In fact, the importance of 

this particular driver can be explained by the concentration of the labour force in 

agriculture (one important extractive sector) in least developed countries, where DE 

tends to be higher. This also explains why, in part, income only explains 7.6% of DE 

distribution. All together makes an important part of international DE distribution to be 

dragged by active population. The contribution of population density is also remarkable 

and it can be seen as the importance that land availability distribution has on per capita 

DE extraction distribution: a sizeable 17.9%. Finally, urbanization is the most important 

driver for DE’s international distribution (30.33%) and is still important for DMC 

(20.42%) and MF (17.16). Urban areas contain massive stocks of materials in buildings 

and infrastructure such as bricks, aggregates or cement, which usually come from 

national mineral production (Douglas and Lawson, 2000, Steinberger et al 2010). 

Besides, material flows from the agricultural biomass support life in urban areas. Hence, 

urbanization rate appears as an important contributor of inequality in international DE. 

This driver, however, loses importance as the material indicator is adjusted for 

international trade, and hence economic drivers become dominant in explaining their 

international distribution. 

 

5. CONCLUSIONS 
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Environmental indicators provide critical information for managing the environmental 

pressure caused by modes of production and consumption. This article has focused on 

comparing the international distribution of three families of physical environmental 

indicators: land use intensity, material use, and carbon emissions. Special attention has 

been given to the different distributional patterns between territorial-based indicators, 

which measure pressure within national boundaries, and footprint-based indicators, 

which measure pressures related to consumption, i.e. corrected for international trade. 

Between the three families of environmental pressures considered, carbon emissions are 

unambiguously more unequally distributed across countries. As it is not tied to any 

geographic endowment, nothing prevents this distribution from being influenced by 

economic factors: this makes these indicators especially unequal. 

The main conclusion of this article can be framed in the ongoing debate on whether or 

not international trade harms or preserves the environment. Our analysis shows 

unequivocally that international trade worsens environmental equity in terms of energy 

and material use. When resource use is measured on a territorial basis, environmental 

inequality tends to be lower and more tied to geographic endowments and demographic 

characteristics. However, once the resource use indicator is trade-corrected, i.e. 

measured as a footprint including elements embodied in goods and services, then its 

international inequality tends to be higher and more linked to economic factors. This is 

true for material and fossil energy (carbon emissions) indicators. 

In contrast, land use intensity indicators exhibit a higher inequality for the territorial-

based indicator than for its trade-corrected indicator: land use intensity indicators 

remain tied to differences in countries’ geographic endowments and in technologies of 

land productivity. Income driver contributes to a part of the trade-adjusted eHANPP 

distribution, but not enough as to dominate its distribution pattern; this is because of the 

indicator’s connection with basic needs and food supply. 
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Supplementary Information. 

Annexes: 

A1. Correlation Matrix for drivers 
 

 
GDP per 

capita 
% Pop. ages 

15-64  
Population 

density  
Urban 

pop/total Pop NPPpot 
Daily min. 

temperature  

GDP per capita 1.000      

% Pop. ages 15-64  0.335 1.000     

Population density  -0.101 -0.072 1.000    

Urban pop/total Pop 0.635 0.397 -0.402 1.000   

NPPpot per capita 0.099 -0.033 -0.391 0.377 1.000  

Daily min. temperature  -0.299 -0.648 0.317 -0.293 -0.058 1.000 

 
 
 
A2. Inequality indices for drivers 
 
 Gini Rkg T0 Rkg T1 Rkg T2 Rkg 

GDP per capita 0.749 1 1.330 1 1.152 1 1.804 1 

NPPpot per capita 0.659 2 0.869 2 0.862 2 1.620 3 

Population density  0.503 3 0.562 3 0.544 3 1.627 2 

Daily min. temperature  0.450 4 0.522 4 0.303 4 0.327 4 

Urban pop/total Pop 0.250 5 0.103 5 0.100 5 0.102 5 

% Pop. ages 15-64  0.046 6 0.004 6 0.004 6 0.004 6 

 
 
A3. Regression results for CO2 emissions with Carbon Dioxide Information Analysis 
Center (CDIAC) dataset included 
 
  (6) (7) (8) 

VARIABLES 
CO2 Territ. 

(CDIAC) 
CO2 Territ. 
(G.Peters) 

CO2 Consum 
based 

(G.Peters) 

     

Income 0.023*** 0.028*** 0.038*** 

 (0.006) (0.006) (0.005) 

Active Population 0.121*** 0.117*** 0.090*** 

 (0.012) (0.014) (0.012) 

Pop. density -0.0004 -0.0004 -0.0002 

 (0.0003) (0.0003) (0.0003) 
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Urbanization 0.025*** 0.019*** 0.021*** 

 (0.003) (0.004) (0.003) 

Ecosystem Productivity  -0.007*** -0.003 -0.004 

 (0.003) (0.003) (0.003) 

Climate -0.018** -0.016** -0.017** 

 (0.007) (0.008) (0.007) 

Constant -7.897*** -21.243*** -19.716*** 

 (0.762) (0.930) (0.785) 

     

R-squared 0.843 0.874 0.906 

Mean VIF 1.93 2.04 2.04 

Observations 150 86 86 

Standard errors in parentheses 

*** p<0.01, ** p<0.05, * p<0.1 
 
A4. Regression-based decomposition. Contributions (%) CO2 emissions distribution 
with CDIAC dataset included 
 
   (6) (7) (8) 

 

Distributional contributors 

CO2 

Territ. 

(CDIAC) 

CO2 Territ. 

(G.Peters) 

CO2 

Consump. 

(G.Peters) 

ECO 
Income 10.71 16.92 26.27 

Active Population  38.08 36.22 26.68 

DEM 
Population density - - - 

Urbanization rate 27.92 25.41 29.88 

GEO 
Ecosystem Productivity  -0.75 - - 

Climate 7.03 7.57 8.11 

 Residual 15.69 12.57 9.43 

 

Total 100 100 100 

 

 Inequality ʹ GINI 0.569 0.546 0.579 

 
 
 
A5. Graph Environmental inequality decomposition by drivers’ contributions 
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A6. Inequality measurement and traditional decomposition 

The development of distributional analysis in economics has been traditionally tackled 

in the context of social justice theories through the analysis and evaluation of income 

distribution and related features of economic inequality. Inequality indices are a widely 

used tool to compare the dispersion a distribution exhibits, and allow for consistent 

comparisons among different distributions. To do so, however, some basic axioms are 

indispensable: anonymity, population principle, scale independence, and Pigou-Dalton 

principle of transfers (see Cowell 2011): 

1-Anonymity. This assumption states that all permutations of individual labels are 

regarded as distributionally equivalent. (x1, x2, x3…xn)  (x2, x1, x3…xn). 

2-Population principle: the inequality index remains unchanged with replications of the 

population. (x1, x2, x3…xn) (x1, x1, x2, x2, x3, x3…xn, xn) … 

3-Scale independence (homotheticity): the inequality measure remains unaltered by 

changes of the same proportion in all the observations. This means that the measured 

inequality of the slices of the cake should not depend on the size of the cake. (x1, x2, 

x3…xn)  (Ȝx1, Ȝ x2, Ȝ x3…Ȝxn).4-Pigou-Dalton Principle of transfers: any transfer from 

an observation (country) with a high level of a variable to an observation (country) at a 

lower level (which does not invert the relative rankings) should reduce the value of the 

inequality index. Consider an arbitrary distribution xA:= (x1,…, xi,…, xj,… xn) and a 
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number such that 0<<xi xj; then being xB:= (x1,…, xi-,…, xj+,… xn), the latter is set 

as more unequal than the former. This axiom is probably the most essential one, insofar 

as the inequality approach is concerned. 

One fourth additional desirable axiom for any inequality index is the decomposability, 

which allows to account for the underlying structure of the observed inequality. 

Decomposing an index consists of determining which part of the total inequality 

observed is attributable to each of its components. Such information might be critical 

for policy making, since it could indicate where the source of the total inequality lies. In 

our context, we will use a STIRPAT model (York et al 2003) to determine the driver’s 

(table 2) contribution to the different environmental indicators, and then apply 

Regression-Based Decomposition (Fields, 2003). Specifically, our STIRPAT will 

consist in using the different environmental indicators described (table 1) as dependent 

variables and drivers (table 2) as independent variables: environmental indicator = 

f(economic factors, demographic factors, geographic factors). 

Shorrocks (1982, 1983) demonstrated that independently of the inequality index used to 

measure a distribution’s dispersion, decomposing its inequality in terms of its additive 

contributors could be done through the decomposition of the variance 





K

k
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kj
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K

k
kk
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k j
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yyyY ),(cov)(var)(var)(var
11

    (1) 

where Y is the variable of interest, k stands for the additive sources,  for the analytical 

weight and  the source’s relative share within the y. The first term accounts for the 

direct contribution of source k whereas the second term accounts for the correlation 

among sources. Shorrocks argued that the only unambiguous way of allocating such 

indirect contributions of sources (correlations), in absence of further information, was 

by the use the natural decomposition of the variance which consisted in attributing to 

each source half of the covariances in which such source is involved (in other natural 

decompositions such as those interaction effects are arbitrarily allocated to 

contributors). This results in that, independently of the inequality index used, the 

contribution of source k can be expressed: 
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which divided by the varȦ(Y) yields the proportion of the total variance explained by 

source k. The rule of natural decomposition of the variance benefits from persuasive 

axioms. According to Shorrocks (1982) the natural decomposition of the variance is the 

only non-ambiguous decomposition of inequality by sources independently of the 

inequality measure used. The main reason is that correlation among components is 

allocated in an explicit and rational way without violating the basic axioms of inequality 

measurement (1- the inequality index and the sources are continuous and symmetric. 2- 

The contributions do not depend on the aggregation level. 3- The contributions of the 

factors add up to the global inequality. 4- The contribution of source k is zero if factor k 

is evenly distributed. 5- With only two factors, where one of them is a permutation of 

the other, the contributions must be equal.).  

Following Fields (2003) we will use this result to be used in a regression instead of a 

sum of components. Typical application of this Regression-Based decomposition is in 

economic inequality; so that it can be shown whether income inequality is driven by 

race, sex, education access, etc. (access to education is usually the one that more 

contributes to income inequality). In our case, we can disentangle to what extent 

international distribution of environmental indicators considered is linked to its 

anthropogenic drivers. 

A7. Inequality indices: 

Index Formula Transfer-Sensitivity 
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Bottom of distribution. 

Notes: pi is the population share of country i, yi is the environmental indicator per capita, or the per capita value of 
any variable of interest; ȝ is the mean of such a variable and ȝ* is the mean of the logartim of y 

Source: Teixidó-Figueras and Duro (2015a) 
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Table A7. Decomposition according to Expression (5). 
 
 Env. Ind. Drivers  Coeff. sd(Xk) corr(Xk,lnY) sd(Y)  sk(lnY) 

HANPP GDP per capita - - - - - 

  % Pop. ages 15-64  - - - - - 

  Population density  -0.001 173.269 -0.418 0.817 10.80% 

  Urban pop/total Pop - - - - - 

  NPPpot per capita 0.021 20.177 0.629 0.817 32.50% 

  Daily min. temp. 0.021 8.680 0.040 0.817 0.90% 
         

eHANPP GDP per capita 0.015 10.122 0.369 0.665 8.20% 

  % Pop. ages 15-64  - - - - - 

  Population density  -0.001 173.269 -0.440 0.665 10.70% 

  Urban pop/total Pop 0.008 21.011 0.574 0.665 13.70% 

  NPPpot per capita 0.014 20.177 0.624 0.665 27.10% 

  Daily min. temp. 0.023 8.680 0.030 0.665 0.90% 

DE GDP per capita 0.008 10.122 0.555 0.621 7.60% 

  % Pop. ages 15-64  0.038 5.274 0.585 0.621 19.00% 

  Population density  -0.001 173.269 -0.583 0.621 17.90% 

  Urban pop/total Pop 0.011 21.011 0.803 0.621 30.40% 

  NPPpot per capita 0.005 20.154 0.435 0.621 7.20% 

  Daily min. temp. - - - - - 
         

DMC GDP per capita 0.025 10.100 0.726 0.639 28.30% 

  % Pop. ages 15-64  0.040 5.297 0.638 0.639 21.00% 

  Population density  -0.001 173.262 -0.463 0.639 9.80% 

  Urban pop/total Pop 0.008 20.993 0.800 0.639 20.50% 

  NPPpot per capita 0.004 20.154 0.353 0.639 4.90% 

  Daily min. temp. -0.007 8.682 -0.576 0.639 5.40% 
         

MF GDP per capita 0.038 10.124 0.721 0.906 30.30% 

  % Pop. ages 15-64  0.066 5.273 0.651 0.906 24.90% 

  Population density  - - - - - 

  Urban pop/total Pop 0.011 21.013 0.697 0.906 17.10% 

  NPPpot per capita - - - - - 

  Daily min. temp. - - - - - 

CO2 WB GDP per capita 0.023 10.101 0.615 1.319 10.70% 

  % Pop. ages 15-64  0.121 5.297 0.783 1.319 38.00% 

  Population density  - - - - - 

  Urban pop/total Pop 0.025 20.963 0.711 1.319 27.90% 

  NPPpot per capita -0.007 20.163 0.073 1.319 -0.80% 

  Daily min. temp. -0.018 8.682 -0.610 1.319 7.00% 
         

CO2 GP GDP per capita 0.029 10.478 0.663 1.170 16.90% 

  % Pop. ages 15-64  0.117 4.672 0.775 1.170 36.20% 

  Population density  - - - - - 

  Urban pop/total Pop 0.019 21.004 0.735 1.170 25.50% 

  NPPpot per capita - - - - - 

  Daily min. temp. -0.016 8.744 -0.638 1.170 7.60% 
         

CO2 

consump GDP per capita 0.038 10.478 0.750 1.139 26.30% 

  % Pop. ages 15-64  0.090 4.672 0.723 1.139 26.70% 

  Population density  - - - - - 

  Urban pop/total Pop 0.021 21.004 0.779 1.139 29.90% 

  NPPpot per capita - - - - - 

  Daily min. temp. -0.017 8.744 -0.610 1.139 8.10% 

 


