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Electrospray ionisation-ion mobility spectrometry–mass spectrometry (ESI-IMS–MS) is a powerful
method for the study of conformational changes in protein complexes, including oligomeric species pop-
ulated during protein self-aggregation into amyloid fibrils. Information on the mass, stability,
cross-sectional area and ligand binding capability of each transiently populated intermediate, present
in the heterogeneous mixture of assembling species, can be determined individually in a single experi-
ment in real-time. Determining the structural characterisation of oligomeric species and alterations in
self-assembly pathways observed in the presence of small molecule inhibitors is of great importance,
given the urgent demand for effective therapeutics. Recent studies have demonstrated the capability of
ESI-IMS–MS to identify small molecule modulators of amyloid assembly and to determine the mecha-
nism by which they interact (positive, negative, non-specific binding, or colloidal) in a
high-throughput format. Here, we demonstrate these advances using self-assembly of Ab40 as an exam-
ple, and reveal two new inhibitors of Ab40 fibrillation.

� 2015 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Amyloidosis contributes to more than 50 human disorders
including Alzheimer’s disease (AD) [1], the most common form of
dementia worldwide [2]. The accumulation of the amyloid-b pep-
tide (Ab) in extracellular plaques in the form of highly ordered
amyloid fibrils is a hallmark of AD, but it is the pre-fibrillar oligo-
mers that are thought to be the major neurotoxic species [3]. Due
to the complex mechanisms involved in AD and other amyloid dis-
eases, there are currently few therapies available. Indeed, as the
toxic species in many of these disorders remain elusive, current
therapies focus on ameliorating symptoms, rather than preventing
disease progression [4]. The identification and characterisation of
the potentially toxic oligomers populated en route to amyloid fib-
rils is a significant challenge due to the heterogeneous, transient
and lowly-populated nature of these species. ESI-IMS–MS has the
unrivalled ability to study such systems given its unique potential
to detect and identify multiple ions present at low concentrations
within the same sample, based on their mass-to-charge ratio (m/z)
[5–9]. When coupled to IMS, further separation of ions of the same
m/z ratio but different collision-cross sectional areas (CCS) is
enabled, allowing different conformational states of isobaric pro-
tein oligomers to be characterised simultaneously [5,9–14].
Changes in protein conformation, and appearance and subsequent
disappearance of oligomeric states, can be monitored over time
[5,13,15–17]. Furthermore, as native ESI-IMS–MS allows the
preservation of protein-ligand complexes, the binding interactions
of small molecules to amyloid peptides/proteins can be observed,
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Fig. 1. Schematic of the ESI-IMS–MS experimental procedure. The protein of interest is mixed individually with small molecules from a compound library in 96-well plate
format. Via a Triversa NanoMate automated nano-ESI interface, the samples are infused into the mass spectrometer, wherein separation occurs based on the mass to charge
ratio (m/z) and collisional cross-sectional area (CCS). A non-interacting small molecule will produce a spectrum the same as that generated by the peptide alone (black). A
small molecule that specifically interacts with the peptide will produce a binomial distribution of bound peaks (blue) [45]. A non-specific ligand will bind but result in a
Poisson distribution of bound peaks (pink) [45]. A colloidal inhibitor will produce a range of overlapping peaks due to self-association of the small molecule (green).
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concomitant with changes in the relative abundances and distribu-
tions of oligomeric species present. These changes can then be cor-
related to alterations in fibril formation rate or yield [5,7,9,17–20]
allowing identification of novel inhibitory compounds. The specific
conformational states to which inhibitors bind can also be deter-
mined [5,13,17], and the mode of inhibition can be elucidated by
simple analysis of the resulting spectra [18].

Here we demonstrate the power of ESI-IMS–MS as a method
able to provide rapid and accurate analysis of protein aggregation
and its inhibition, using self-assembly of Ab40 into amyloid fibrils
as an example system. The basis of the experimental set up is
shown in Fig. 1. A further example, using amylin involved in type
II diabetes mellitus, can be found in Young et al. [18].
2. Methods

2.1. Sample consideration

The most important parameter to consider in sample prepara-
tion for analysis by ESI–MS is the buffer in which the aggregation
process is to be studied. Most in vitro biochemical techniques used
to study amyloid assembly utilise involatile buffers that are incom-
patible with ESI–MS. This leads to issues with efficient ionisation of
the sample and extensive adduct formation [13], reducing the
quality of the resulting spectra. It is necessary, therefore, to con-
duct MS experiments in aqueous, volatile buffers such as ammo-
nium acetate, ammonium formate or ammonium bicarbonate.
Note: Simply replacing a non-volatile buffer with an
MS-compatible buffer at the same pH and ionic strength may not
yield the same rate of, and/or products of, aggregation. Ion compo-
sition, as well as ionic strength and pH, can influence aggregation
parameters. We suggest, therefore, that the aggregation process
under these conditions should be characterised prior to analysis
by ESI–MS, using solution assays (e.g. dye binding assays, light
scattering, or imaging of aggregates via electron microscopy
(EM)/atomic force microscopy (AFM) (reviewed in [21])), to con-
firm that the assembly mechanism is similar in the non-volatile
and ESI–MS-compatible buffers of equivalent ionic strength and
pH.

Proteins stored or purified in non-volatile buffers, such as
Tris�HCl, should be stringently buffer-exchanged, and concentrated
if necessary, prior to analysis by ESI–MS. Working protein concen-
trations of low micromolar range are typical.

2.2. Sample and small molecule preparation

For the current study, an ESI-IMS–MS screen of the interactions
of small molecules with Ab40 at pH 6.8 was undertaken.

1. Ab40 was expressed recombinantly and purified as described
previously [18,22]. Note: Synthetic peptide could be used in
place of recombinant peptide [6,9], which yields similar results
(data not shown). However many preparations contain impuri-
ties that may complicate MS-based analyses and affect aggrega-
tion [23]. Therefore, care should be taken in ensuring sufficient
sample clean-up.

2. Importantly, in the context of this screen, the final stages of
purification involved size exclusion chromatography
(Superdex™ 75 GL 10/300 column, GE Healthcare, UK) with a
volatile mobile phase (50 mM ammonium bicarbonate, pH
7.8) and peptide-containing fractions were lyophilised. This
step yields pure peptide, free from buffer salts, which can be
diluted directly into MS compatible buffers and therefore
requires no further buffer exchange. Pure recombinant Ab40
peptide (containing an additional N-terminal methionine not
present in wild-type Ab40 produced by the cleavage of amyloid
precursor protein) was then resolubilised in DMSO at 3.2 mM
and diluted into 200 mM ammonium acetate, pH 6.8, 1% (v/v)



Fig. 2. Analysis of Ab40 oligomer distribution and collision-cross section (CCS). (a) ESI–MS mass spectrum of Ab40. Numbers above peaks denote oligomer order, with the
positive charge state of ions in superscript. Inset: negative stain TEM image of Ab40 fibrils after 5 days in 200 mM ammonium acetate buffer, pH 6.8 (25 �C, quiescent) (scale
bar = 500 nm). (b) ESI-IMS–MS Driftscope plot of the Ab40 oligomers present 2 min after diluting the monomer to a final peptide concentration of 32 lM in 200 mM
ammonium acetate, pH 6.8, 25 �C. ESI-IMS–MS Driftscope plots show IMS drift time versus m/z versus intensity (z = square root scale); (c) CCSs of Ab40 oligomers measured
using ESI-IMS–MS versus oligomer order; the CCS of the lowest charge state of each oligomer is shown (black triangles). The green dashed line represents a fit based on
globular oligomers and the average density of a protein (0.44 Da/Å3) [28], the purple dashed line represents a linear growth model [8] and the blue dashed line represents an
isotropic growth model [8].
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DMSO at a final peptide concentration of 32 lM. The sample
was centrifuged at 13,000g (4 �C, 10 min) prior to MS analysis
to remove any insoluble aggregates that may have formed.

3. Caesium iodide solution, for mass calibration, was prepared by
dissolving the compound in 50% (v/v) water/isopropanol to a
concentration of 2 mg/mL.

4. The small molecules selected for screening for binding to Ab40
were prepared freshly on the day of analysis. Compounds were
solubilised in the relevant solvent (H2O, ethanol or DMSO) to
create stock solutions of 10 mM small molecule. The solvent
chosen must solubilise the compounds completely at room
temperature.

5. In a 96-well plate format, small molecules (final concentration
of 320 lM) were added individually to Ab40 to give a molar
ratio of 1:10 peptide to small molecule. The distribution
of monomer, monomer-ligand and oligomer species populated
in the presence of each small molecule was analysed
immediately (within 2 min of addition, at room temperature),
using ESI-IMS–MS.
2.3. ESI-(IMS)–MS

A Synapt HDMS quadrupole-time-of-flight mass spectrometer
(Waters Corpn., Wilmslow, Manchester, UK), equipped with a
Triversa NanoMate (Advion Biosciences, Ithaca, NY, USA) auto-
mated nano-ESI interface, was used for these analyses. The instru-
ment has a travelling-wave IMS device situated between the
quadrupole and the time-of-flight analysers (Fig. 1). The instru-
ment has been described in detail elsewhere [24].

Ab40 samples were analysed using positive mode nanoESI
(nESI) with a capillary voltage of 1.7 kV and a nitrogen nebulising
gas pressure of 0.8 psi. The following instrumental parameters
were used: cone voltage 30 V; source temperature 60 �C; backing
pressure 1.6 mBar; ramped travelling wave height 7–20 V; travel-
ling wave speed 300 m/s; IMS nitrogen gas flow 20 mL/min; IMS
cell pressure 0.55 mBar. Data were acquired over the range m/z
200–6000. Data were processed by use of MassLynx v4.1 and
Driftscope software supplied with the mass spectrometer. The
m/z scale was calibrated with aq. CsI cluster ions.



Fig. 3. Focused high-throughput screen (HTS) results. Mass spectra labels indicate number of ligands (L) bound to each charge state of Ab40. Binding modes as determined
from the mass spectra are denoted as positive, negative, non-specific or colloidal. Molecule numbers 3 and 16 exhibit positive (specific) binding to Ab40 (purple peaks);
compounds 15 and 17 exhibit non-specific binding (pink peaks) and compound 9 exhibits colloidal binding (green peaks; each multimer of the small molecule is denoted nL,
where n = oligomer number. The interaction of each small molecule with hIAPP is also shown [18].
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CCS measurements were estimated by use of a calibration
obtained by analysis of denatured proteins (cytochrome c, ubiqui-
tin, lysozyme) and peptides (tryptic digests of alcohol dehydroge-
nase (ADH) and cytochrome c) with known CCSs obtained
elsewhere from drift tube ion mobility measurements [25].
Isotropic, linear and spherical oligomer growth models were
estimated by the use of relevant equations. In isotropic growth,
rn = rmonomer * n2/3, where n = oligomer number, rn is the CCS of
the oligomer number n and rmonomer is the monomer CCS [8].
Linear growth in one direction can be estimated by rn = a * n + k,
where a describes the CCS of a monomer within a fibril and k is
the size of the fibril cap. In the spherical growth model, a spherical
oligomer shape is assumed and expected CCSs are calculated based
on a typical density q (in Da/Å3) of proteins and their complexes
under comparable conditions [26]. Here, CCSs were calculated for
a range molecular weights assuming a perfect sphere of density
0.44 Da/Å3 [12].

2.4. Transmission electron microscopy (TEM)

The TEM images of each peptide or peptide: ligand solution
were acquired after 5 days incubation at 25 �C in low binding tubes
(MAXYMum Recovery™ tubes, Axygen), using a JEM-1400 (JEOL
Ltd., Tokyo, Japan) transmission electron microscope. Carbon grids
were prepared by irradiation under UV light for 30 min and stained
with 4% (w/v) uranyl acetate solution as described previously [27].



Fig. 3 (continued)
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3. Results

3.1. Ab40 forms an array of oligomers early in amyloid assembly

Prior to performing inhibition studies, information regarding
the aggregation process (number, identity and timescale of oligo-
mer formation) of amyloidogenic proteins is required. To achieve
this, oligomeric intermediates need to be identified and charac-
terised. Here, by exploiting the separative powers of ESI-IMS–MS,
we first describe higher order oligomeric states populated by
Ab40, under conditions compatible both with ESI–MS and fibril for-
mation (as judged by TEM), and elucidate their CCSs. Ab40 was dis-
solved initially in 100% DMSO to remove any preformed aggregates
and diluted 100-fold into 200 mM ammonium acetate buffer, pH
6.8 before centrifugation (13,000g, 4 �C, 10 min) to remove any
larger order species that may persist. The distribution of soluble
oligomeric species was analysed immediately (within 2 min, post
centrifugation), using ESI-IMS–MS. The data obtained
(Fig. 2a and b) showed that high order oligomers are formed within
2 min of dilution of Ab40 into buffer, consistent with previous ana-
lyses [6,9,18]. Co-populated oligomers with the same m/z can be
separated using IMS–MS, for example, the dimer4+ and trimer6+

ions (Fig. 2b). Multiple charge states, predominantly triply and
quadruply charged, and different conformers, both compact
and expanded, are observed for the Ab40 monomer [6,9,18]
(data not shown). Ab40 oligomer CCSs were estimated from the
ESI-IMS–MS arrival time distributions and compared with CCSs
estimated for theoretical oligomer growth models including a fit
assuming isotropic growth [8], a fit assuming globular oligomers
based on the average density of a protein under similar conditions



Fig. 4. Positive, colloidal and non-specific binding molecules from focused HTS. (a) Molecule numbers 3 (i) and 16 (ii) exhibit ‘positive’ (specific) binding to Ab40 monomer
(purple peaks) according to the ESI-IMS–MS classification system and negative stain TEM images of Ab40 incubated with 10:1 molar ratios of molecule: Ab40 for 5 days in
200 mM ammonium acetate buffer, pH 6.8 (25 �C, quiescent) show the absence of fibrils after incubation. (b) Compound 9 (i) exhibits colloidal binding to itself (peaks
denoted nL where n is the number of small molecules present in the aggregate) and to Ab40 + nL (green peaks). (c) Compounds 15 (i) and 17 (ii) exhibit non-specific binding
to Ab40 (pink peaks). Compounds 9, 15 and 17 fail to prevent fibrillation of Ab40 (scale bar in nm is indicated at the foot of each TEM image). Circles in ESI-IMS–MS Driftscope
images indicate the number of small molecules bound to each ion.
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Fig. 5. Structural comparison of Ab40 inhibitors with their parent compounds in ROCS analysis. (a) Compound 3 (blue) and the parent molecule resveratrol (green). (b)
Compound 16 (blue) and the parent molecule Cl-NQTrp (green).
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(0.44 Da/Å3) [28], and a model that assumes growth in a single
dimension (linear growth) [8]. CCS determination suggests that
Ab40 oligomers P trimer in size adopt relatively extended confor-
mations rather than spherical or isotropic growth conformations
(Fig. 2c). Ultimately, long, straight fibrils typical of amyloid form
(Fig. 2a inset).
3.2. Focused screen for the identification of novel inhibitors of amyloid
formation

Using the ESI-IMS–MS-based screening approach described
above and in Young et al. [18], 20 compounds were selected from
a library of novel molecules with structural similarity to five known
inhibitors of Ab40 aggregation previously reported. This focused
screening method used the structural information from the known
Ab40 bioactive ligands o-vanillin [29], resveratrol [30], curcumin
[31], chloronaphthoquinine-tryptophan (Cl-NQTrp) [32] and
(�)-epigallocatechin gallate (EGCG) [5,33] to identify novel com-
pounds with related structural properties, but different chemistry
and hence higher potential biological activity. This approach gives
a higher hit-rate compared with random screening [34]. A subset
of 20 compounds (Fig. 3) was chosen from a library of 50,000
lead-like small molecules for analysis using the comparator Rapid
Overlay of Chemical Structures (ROCS) Combiscore [35], as
described in [18]. These 20 compounds (named molecules 1–20)
were added to monomeric Ab40 and the binding mode of each was
assessed by analysis of the resulting ESI-IMS–MS spectra. In parallel,
the ability of the molecules to inhibit fibril formation was deter-
mined using negative stain TEM, after 5 days incubation at a 10:1
molar ratio of small molecule to Ab40.

The compounds were categorised according to the binding
mode classification system described in Fig. 1 and in Young et al.
[18]. A ‘positive’ small molecule that specifically interacts with
the peptide will produce a binomial distribution of bound peaks.
Conversely, a non-specific ligand will bind, but result in a
Poisson distribution of bound peaks. A colloidal inhibitor will pro-
duce a range of overlapping peaks due to self-association of the
small molecule and non-interacting ‘negative’ small molecules will
not bind to the target peptide [18]. Of the 20 compounds screened,
two were found to inhibit Ab40 aggregation (compound 3 and
compound 16, Figs. 3 and 4a), one exhibited colloidal binding
(compound 9) (Figs. 3 and 4b) and two demonstrated
non-specific binding, (compounds 15, and 17) (Figs. 3 and 4c).
The remainder did not bind to Ab40 (Fig. 3). Despite interacting
with Ab40, non-specific and colloidal binding of small molecules
to target proteins is not useful therapeutically. The newly discov-
ered inhibitors, compound 3 and compound 16 are structurally
similar to, but chemically distinct from (as determined by ROCS
Combiscore), the known inhibitors of Ab40 aggregation, resveratrol
[30] and Cl-NQTrp [32], respectively (Fig. 5). In the presence of a
10-fold molar excess of either compound, Ab40 shows evidence
of specific ligand binding and depletion of higher order oligomers
such that only dimers and trimers are observed. Neither of the lat-
ter species is detected to bind the small molecule. TEM analysis
confirms that fibril formation is inhibited and amorphous or short
fibrillar aggregates accumulate (Fig. 4a). The low levels of binding
observed for the ‘positive’ inhibitors, despite complete inhibition of
fibrillation, are consistent with the fact that hydrophobic interac-
tions are not wholly maintained in the gas-phase. Similar low
levels of binding have been observed for ‘positive’ inhibitors of
hIAPP, including EGCG [5,18]. Gas-phase analysis of hydrophobic
interactions between protein and ligands could lead to underesti-
mation of binding affinity and/or false negative results [36]. For
this reason, we would recommend that fibril formation is moni-
tored over the time-course using ThT fluorescence and the mor-
phologies of the resulting peptide aggregates are assessed using
negative stain TEM, in addition to gas-phase analyses.
Remarkably, 18 of the 20 lead compounds screened exhibit similar
interactions with human islet amyloid polypeptide (hIAPP) [18]
and Ab40. The two exceptions are compound 3 (specific binding
to Ab40, non-specific binding to hIAPP [18]) and compound 9 (col-
loidal binding in the presence of Ab40, no binding in the presence
of hIAPP [18]). Interestingly, compound 16 binds specifically to
both hIAPP and Ab40, and inhibits fibrillation of both peptides
in vitro [18]. Although hIAPP and Ab40 share only 24% sequence
identity and 46% sequence similarity, the core sequences of both,
believed to key for self-assembly [37,38], share 57% identity and
86% similarity (NNFGAIL in hIAPP, SNKGAII in Ab40). The ability
of compound 16 to interrupt the fibrillation process of both these
peptides suggests that this small molecule may be either interact-
ing directly with these comparable amyloidogenic sequences, or
with an early oligomeric species with interaction interfaces com-
mon to both fibrillation pathways.
4. Conclusions

There is a pressing need both for a better understanding of the
mechanisms of amyloid assembly and for new compounds able to



L.M. Young et al. / Methods 95 (2016) 62–69 69
halt the progression of amyloid diseases. Screening libraries of
small molecule compounds and determining their mechanism of
action is vital in the search for inhibitors of protein aggregation.
The conventional screening method using Thioflavin T binding
has resulted in several small molecules being erroneously
described as inhibitors whereby, in fact, they were only inhibitors
of the dye binding to the fibrils formed [39–42]. Furthermore,
many small molecules act in a promiscuous manner, binding
non-specifically to many unrelated proteins [43]. This interaction,
as well as colloidal binding, is undesirable in a proposed therapeu-
tic [44], thus additional effort is required to eliminate these
false-positive hits in conventional screens. ESI-IMS–MS enables
the visualisation and quantification of oligomeric species popu-
lated early during amyloid formation, the specific species with
which the small molecule binds and the consequences of binding
on the course of aggregation [5,17,18,20]. Identification of
specific-binding at an early stage of screening efficiently rules
out non-specific or colloidal ligands, providing leads for further
analysis and development. A further advantage of the ESI-IMS–
MS method described here (and in [18]) is that it is also amenable
to high-throughput format, enabled by automation of the ESI-IMS–
MS inlet and/or studying mixtures of small molecules in combina-
tion, as detailed elsewhere [18]. Although not employed in this
instance, using robotic automation and assaying mixtures of 5
compounds within one sample, as described in Young et al. [18],
would allow �5000 compounds to be screened in less than 24 h.

Here, we highlight the approach showing how, combined with
ROCS Combiscore analysis, two new inhibitors of Ab40 have been
identified from 20 virtual hits. Combined with previous success
in the discovery of new inhibitors of hIAPP aggregation [18], we
envision that ESI-IMS–MS will play a pivotal role in future com-
pound discovery in the anti-amyloid therapeutic field.
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