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Abstract

Choosing the numerical value for the time-to-build parameter in models with one cap-

ital good is not trivial because capital includes for example stock of plant, equipment and

consumer durables, each of them characterized by different gestation lags. In this paper we

shed some light on this issue by proving under which conditions, the long-run dynamics of

a Ramsey model with one capital good and of the same model with N capital goods with

heterogeneous gestation lags are equivalent.
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1 Introduction

Since the seminal article of Kydland and Prescott [5], several contributions have investigated

models where capital takes time to be built. These contributions have provided a sound under-

standing of the qualitative dynamics of exogenous growth (e.g. Asea and Zak [1]) and endogenous

growth (e.g. Bambi [2], Bambi et al. [3], Collard et al. [4]) models with time-to-build.

On the other hand, a quantitative analysis of these models is indeed far from obvious. To

explain this point, it is illustrative to mention the following argument in Kydland and Prescott

([5], page 1361) “Capital for our model reflects all tangible capital, including stocks of plant

and equipment, consumer durables and housing. (...) Different types of capital have different

construction periods and patterns of resource requirements. (...) Having but one type of capital,

we assume, as a compromise, that four quarters are required.” In other words, Kydland and

Prescott choose, in their calibration, a value of the gestation lag by “averaging” across the

different gestation lags of the different types of capital included in tangible capital.

While such a “compromise” seems sound and reasonable, it is, nevertheless, based on the

implicit assumption that a model with one capital good and time-to-build can be analogous

(at least in its long-run dynamics) to a model with multiple capital goods and heterogeneous

lags. However, this analogy is not proved, but rather assumed, and it is not clear under which

conditions, if any, it may indeed hold. Furthermore, it is probably even less clear that such a

connection may still exist in an AK endogenous growth model since the presence of constant

∗I thank Fausto Gozzi and Sara Eugeni for their helpful comments and suggestions.
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return to scale in the accumulating factor of production could imply all the resources to be

invested in the capital good with the lowest time-to-build.

In this contribution, we address these issues and, in particular, we identify conditions under

which the long-run dynamics of an economy with one capital good and time-to-build is equal

to that one of another economy with N capital goods and heterogeneous gestation lags. Most

importantly, we provide an analytical ground to the Kydland and Prescott’s suggestion by

showing that one of these conditions requires the gestation lag parameter in the model with one

capital good to be a weighted average of the gestation lags in the model with multiple capital

goods.

2 A Ramsey model with one capital good and time-to-build.

Consider the social planner version of a Ramsey model with time-to-build:

max
c̃(t)

∫ ∞

0
e−ρt log c̃(t)dt (P1)

subject to

Zk̃(t)α = c̃(t) + ĩ(t) (1)

ĩ(t) =
˙̃
k(t+ d) (2)

All the variables appear with a˜to differentiate them from those in the economy described in

the next section. Furthermore Z > 0 and d > 0 indicate the level of technology and the (finite)

time-to-build parameter respectively. Using a modified version of the Pontryagin’s Maximum

Principle, we may write the Hamiltonian H = e−ρt log c̃(t) + ̺(t)
[

Zk̃(t− d)α − c̃(t− d)
]

where

̺(t) is the costate variable, and derive the first order conditions:

1

c̃(t)
e−ρt = ̺(t+ d) (3)

̺(t+ d)αZk̃(t)α−1 = − ˙̺(t) (4)

An optimal plan is defined as it follows:

Definition 1 An optimal plan is any path (c̃(t), k̃(t))t≥0 which solves the capital accumulation

equation
˙̃
k(t+ d) = Zk̃(t)α − c̃(t) (5)

the Euler equation
˙̃c(t)

c̃(t)
= αZ

c̃(t)

c̃(t+ d)
e−ρdk̃(t+ d)α−1 − ρ (6)

a standard transversality condition, given the initial history of capital.

3 A N capital goods with heterogeneous gestation lags model

Consider now an economy with N capital goods used as inputs to produce a final good through

a constant return to scale Cobb-Douglas production function. In intensive form, the production
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function, the resource constraint and the net investments write respectively

y(t) = A

N
∏

j=1

xj(t)
αj , y(t) = c(t) +

N
∑

j=1

ij(t) and ij(t) = ẋj(t+ dj)

with
∑N

j=1 αj = α ≤ 1, and dj > 0 indicating the time-to-build of capital good j. Consistently

with what previously done, we assume δj = 0 for any j.1 The initial conditions of the capital

goods are also given. The social planner problem of this economy is:

max
c(t)

∫ ∞

0
e−ρt log c(t)dt (P2)

subject to

A

N
∏

j=1

xj(t)
αj = c(t) +

N
∑

j=1

ij(t) (7)

ij(t) = ẋj(t+ dj) ∀j = 1, ..., N (8)

whose Hamiltonian is

H = e−ρt log c(t) +

N
∑

j=1

vj(t)ij(t− dj) + w(t)



A

N
∏

j=1

xj(t)
αj − c(t)−

N
∑

j=1

ij(t)





where vj(t), with j = 1, ..., N and w(t) are the multipliers. The first order conditions with

respect to c(t), ij(t) and xj(t) are respectively:

1

c(t)
e−ρt = w(t) (9)

vj(t+ dj) = w(t) ∀j = 1, ..., N (10)

w(t)αjxj(t)
−1A

N
∏

j=1

xj(t)
αj = −v̇j(t) ∀j = 1, ..., N (11)

The following transversality conditions are also required for the Maximum Principle to hold:

lim
t→∞

xj(t)

c(t)
e−ρ(t−dj) = 0 ∀j = 1, ..., N

Considering two generic types of capital, xm(t) and xκ(t), it follows immediately by combining

the last two equations that
αmxκ(t)

ακxm(t)
=

ẇ(t− dm)

ẇ(t− dκ)
(12)

and, therefore, the production function can be rewritten as follows

y(t) = A

N
∏

j=1

xj(t)
αj =



A

N
∏

j=1

(

αjẇ(t− dm)

αmẇ(t− dj)

)αj



xm(t)α (13)

while the dynamics of the costate variables is described by the following equation

αm



A

N
∏

j=1

(

αjẇ(t− dm)

αmẇ(t− dj)

)αj



xm(t)α−1 = −
ẇ(t− dm)

w(t)
(14)

Therefore the Euler equation can be obtained combining (9) with (14).

1All the results still hold as long as δj = δ for any j.
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Definition 2 An optimal plan is any path (c(t), xm(t))t≥0 which solves the Euler equation

gc(t) = αm

c(t)

c(t+ dm)
e
−ρdm

[

A

N
∏

j=1

(

αj · (gc(t) + ρ) · c(t− dj + dm)

αm · (gc(t− dj + dm) + ρ) · c(t)
e
ρ(dm−dj)

)αj

]

xm(t+ dm)α−1
− ρ (15)

the capital accumulation equation

Ax
α
m(t)

N
∏

j=1

[

αj · (gc(t− dm) + ρ) · c(t− dj)

αm · (gc(t− dj) + ρ) · c(t− dm)
e
ρ(dm−dj)

]αj

=

N
∑

j=1

αj · (gc(t− dm + dj) + ρ) · c(t)

αm · (gc(t) + ρ) · c(t− dm + dj)
e
ρ(dm−dj) ·

xm(t+ dj)

[

gxm(t+ dj) +

(

ġc(t− dm + dj)

gc(t− dm + dj) + ρ
− gc(t− dm + dj)−

ġc(t)

gc(t) + ρ
+ gc(t)

)]

+ c(t) (16)

and the transversality conditions, given the initial history of capitals. In the equations above

we have used the notation gz(t) =
ż(t)
z(t) , with z = c, xm. Furthermore, the optimal path of all the

other capital goods xκ(t) with κ 6= m can be derived by the optimal path (c(t), xm(t))t≥0 using

equations (9) and (12).

In the next section we investigate in which extent the long-run dynamics of (P1) and (P2)

are analogous.

4 Long-run dynamics: comparing economy (P1) with (P2)

We distinguish two cases: no economic growth (0 < α < 1) and endogenous growth (α = 1).

Steady state and stationary optimal plan

In the case of 0 < α < 1 and capital goods with different time-to-build, the unique, strictly

positive steady state (x∗m, c∗) of problem (P2) is the unique solution of the capital accumulation

equation (16) and the Euler equation (15) evaluated at the steady state:

c∗ =



A

N
∏

j=1

(

αj

αm

)αj



 · (x∗m)α · eρ(αdm−
∑N

j=1 αjdj) (17)

ρ = e−ρ[(1−α)dm+
∑N

j=1 αjdj ] · α





αmA

α

N
∏

j=1

(

αj

αm

)αj



 · (x∗m)α−1 (18)

The steady state is a stationary optimal plan of problem (P2) when xm(0) = x∗m and the

exogenously given initial conditions of the other capital goods are set to satisfy αmxκ(0) =

ακxm(0) for any κ = 1, ..., N .

Furthermore, equations (17) and (18) coincide with the two corresponding equations of

problem (P1) under the following conditions:

d = dm =

∑N
j=1 αjdj

α
, Z =

αmA

α

N
∏

j=1

(

αj

αm

)αj

,

c(t) =
α

αm

c̃(t), and k̃(t) = xm(t) (19)

In fact, under these conditions, equations (17) and (18) rewrite:

c̃∗ = Z(k̃∗)α (20)

ρ = e−ρdαZ(k̃∗)α−1 (21)
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which are respectively the capital accumulation equation (5) and Euler equation (6) evaluated

at the steady state of problem (P1). Crucially, the first of the conditions (19) requires that one

of the time-to-build parameter in the economy with N capital goods, i.e. dm, is a weighted

average of all the gestation lags.2 If conditions (19) hold then, starting from (P1) we may derive

the long-run dynamics of (P2) and viceversa.

Endogenous growth and balanced growth paths

In the case of α = 1, endogenous growth is possible. A balanced growth path (BGP) of the

economy is defined as a solution of the capital accumulation equation and Euler equation such

that, for a suitable g > 0, all the aggregate variables are purely exponential function, i.e.

c(t) = c0e
gt, xm(t) = xm(0)egt, etc. and the initial conditions are respected.

The growth rate of the economy (P2) is g = −gw − ρ with gw real root of the characteristic

equation associated to (14):

αZegw
∑N

j=1 αjdj = −gw

On the other hand, the growth rate of the economy (P1) is g = −g̺ − ρ with g̺ the real root of

the characteristic equation associated to (10):

αZe−g̺d = −g̺

Observe that the two characteristic equations coincide and lead to the same result, i.e. gw = g̺,

and, therefore, the economic growth is the same in the two models, if

d =

N
∑

j=1

αjdj

which was one of the relations identified before in (19). Based on this result, it follows that the

condition on Z to have positive economic growth in problem (P1), which has been already proved

by the existing literature (e.g. Lemma 2 in Bambi [2]), can be used to find the corresponding

condition on parameters for problem (P2). From conditions (19), we can also find that ỹ(t) =

αmy(t).

Main result and numerical examples

We can now summarize these findings in the following theorem

Theorem 1 Consider two economies (P1) and (P2) characterized respectively by one capital

good with a gestation lag, d, and N capital goods with different gestation lags, namely d1, ..., dN .

Then the long-run dynamics of economy (P2) can be derived by the long-run dynamics of econ-

omy (P1) and viceversa when the relations found in (19) hold.

Two numerical examples are now proposed to illustrate this result.

2It is worth noting that a dm such that dm =
∑N

j=1
αjdj

α
always exists when i) d ∈ [0, d̄], ii) dj ∈ [0, d̄] with

dj 6= di for all i 6= j, and iii) N → ∞; in fact, under these assumptions, the sum converges to a real number in

[0, d̄]. Such a result depends on the fact that, by construction, limN→∞

∑N

j=1 αj is still equal to 1.
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Example 1 Consider as in Kydland and Prescot [5] that the capital stock in the economy

(P1) includes plants, housing and consumer durables characterized respectively by the time-to-

build parameters d1 = 8, d2 = 4 and d3 = 1 quarters. Suppose also that the capital share

α = 1
3 . Then the “compromise” of dm = 4 quarters suggested by the authors can be achieved,

for example, when α1 =
1
12 , α2 =

5
36 and α3 =

5
9 .

Example 2 (Endogenous growth) Consider an economy with N = 3 capital goods with

heterogeneous delays d1 = 1, d2 = 3
2 , d3 = 2, capital shares α1 = α2 = α3 = 1

3 , and A = 0.42.

Taking into account conditions (19), if we set d = dm = α1d1 +α2d2 +α3d2 =
3
2 and Z = 1

3A =

0.14 then the growth rate the two economies is the same. Suppose, instead, that the capital

shares are α1 = α3 =
1
4 and α2 =

1
2 . Then again we should set d = 3

2 but now Z = 1√
2
.
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