This is a repository copy of Temperature and Pressure Studies of the Reactions of CH3O2, HO2, and 1,2-C4H9O2 with NO2.

White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/91542/

Version: Accepted Version

Article:

https://doi.org/10.1021/acs.jpca.5b06306

Reuse
Unless indicated otherwise, fulltext items are protected by copyright with all rights reserved. The copyright exception in section 29 of the Copyright, Designs and Patents Act 1988 allows the making of a single copy solely for the purpose of non-commercial research or private study within the limits of fair dealing. The publisher or other rights-holder may allow further reproduction and re-use of this version - refer to the White Rose Research Online record for this item. Where records identify the publisher as the copyright holder, users can verify any specific terms of use on the publisher's website.

Takedown
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.
Temperature and Pressure Studies of the Reactions of

CH_3O_2, HO_2 and 1,2-$\text{C}_4\text{H}_9\text{O}_2$ with NO_2

Kenneth McKee a Mark A. Blitz, a,b,* and Michael J. Pilling a

a School of Chemistry, University of Leeds, Leeds, LS2 9JT, UK

b National Centre for Atmospheric Science, University of Leeds, Leeds, LS2 9JT, UK

*E-mail: m.blitz@leeds.ac.uk

ABSTRACT

A novel technique has been developed for the detection of peroxy radicals in order to study their kinetics with NO_2. Peroxy radicals (RO_2, where $R = \text{H, CH}_3$ and 1,-,2- C_4H_9) were produced by laser flash photolysis and were probed by photo-dissociation of the RO_2 and the subsequent detection of either OH or CH_3O photo-fragments by laser induced fluorescence. Reaction (1), $\text{CH}_3\text{O}_2 + \text{NO}_2 + M \rightleftharpoons \text{CH}_3\text{O}_2\text{NO}_2 + M$ ($M = \text{N}_2$), was studied between 25-400 Torr at 295K giving results in excellent agreement with the literature. At temperatures between 333 - 363 K equilibration was observed and yielded $\Delta h^\circ_{298}(1) = -93.5 \pm 0.3$ kJ mol$^{-1}$. Reaction (2), $\text{HO}_2 + \text{NO}_2 + M \rightleftharpoons \text{HO}_2\text{NO}_2 + M$ ($M = \text{N}_2$), was studied at 295 K and showed kinetics in fair agreement with the literature. Equilibration at higher temperatures was obscured by an additional loss of HO_2NO_2 from the system. In addition, the OH quantum yield from photolysis of HO_2NO_2 at 248nm
was determined to be 0.15 ± 0.03. Reaction (3), \[\text{1-,2-C}_4\text{H}_9\text{O}_2 + \text{NO}_2 + \text{M} \rightleftharpoons \text{1-,2-C}_4\text{H}_9\text{O}_2\text{NO}_2 + \text{M} \ (\text{M} = \text{He}) \], was studied between 241 – 341 K and at the higher temperatures equilibration was observed, which yielded \(\Delta H^\circ_{298}(3) = -93.5 \pm 0.6 \text{ kJ mol}^{-1} \). The low uncertainties in the enthalpies of formation for both CH\(_3\)O\(_2\) and 1-,2-C\(_4\)H\(_9\)O\(_2\) are a result of using a master equation method that allows global analysis of all the available rate data (present measurements and literature values) for forward and reverse reactions under all conditions of temperature and pressure.

Introduction

Peroxy species are important intermediates in the oxidation of volatile organic compounds (VOC) in the atmosphere and combustion systems. In polluted atmospheres, the reaction with NO\(_x\) to form peroxynitrates becomes an important factor in the eventual fate of the RO\(_x\) species. If the RO\(_2\)NO\(_2\) lifetime is long enough they may act either as a sink, transporting NO\(_x\), or may react with OH, effectively removing HO\(_2\) radicals. The atmospheric lifetime of peroxynitrates is dependent on their thermal stability, photo-stability and their rates of reaction with reactive species such OH and via heterogeneous reactions. For instance peroxyacetyl nitrate (PAN) can have a long enough lifetime in the troposphere to allow transport from polluted to clean air\(^{[1,2]}\). The RO\(_2\)NO\(_2\) species studied here are less stable than PAN but they play a significant role in the speciation of NO\(_y\).
Accurate kinetic, thermodynamic, and photochemical data are needed to predict the effect of peroxynitrate species on NO$_x$, OH and O$_3$ concentrations. Due to the inherent instability of RO$_2$NO$_2$ species at room temperature and the difficulty in isolating them, it is hard to gain accurate thermodynamic information.

$$\text{CH}_3\text{O}_2 + \text{NO}_2 \rightleftharpoons \text{CH}_3\text{O}_2\text{NO}_2 \quad (1), (-1)$$

Early studies of (1) by Sander and Watson3 and Ravishankara et al.4 used UV-Vis absorption to detect CH$_3$O$_2$. Both of these studies gave similar results of $k_1 \infty = 7.0 \times 10^{-12}$ cm3 molecule$^{-1}$ s$^{-1}$ and $k_1^0 = 2.2 \times 10^{-30}$ cm6 molecules$^{-2}$ s$^{-1}$ at 298K. Ravishankara et al. also varied the temperature but no reverse reaction was observed even at 353K. Bridier et al.5 also studied reaction (1) using UV-Vis absorption to detect CH$_3$O$_2$ over the temperature range 333-373K. The approach to equilibrium was observed and analysis gave $\Delta_r H_{298}^o (1) = -92$ kJ mol$^{-1}$. More recently Wallington et al.6 completed a high pressure study, using an SF$_6$ bath gas with UV-Vis detection of CH$_3$O$_2$, which resulted in a much higher $k_1 \infty$ of 1.8×10^{-11} cm3 molecule$^{-1}$ s$^{-1}$.

Zabel et al.7 have studied reaction (-1) using FTIR spectrometry to observe the decay of CH$_3$O$_2$NO$_2$ over the temperature range 245 - 273K. These data, combined with the information on the forward reaction by Sander et al.3 and Ravishankara et al.4 were used to calculate an enthalpy of dissociation of 92 kJmol$^{-1}$. The thermal lifetime of CH$_3$O$_2$NO$_2$ at the tropopause was estimated to be 12 days.

$$\text{HO}_2 + \text{NO}_2 \rightleftharpoons \text{HO}_2\text{NO}_2 \quad (2), (-2)$$
Reaction (2) is one of the most widely studied RO$_2$ + NO$_2$ reactions. Until 2000 the most widely accepted results were the determinations by Kurylo and Ouellette. They measured the pressure and temperature dependence of the reaction over the range 25 - 600 Torr of N$_2$, O$_2$ and temperatures between 228 – 353K. These studies probed HO$_2$ by UV-Vis spectroscopy. Values of $k_2^\infty = 4.7 \times 10^{-12}$ cm3 molecule$^{-1}$ s$^{-1}$ and $k_1^0 = 1.8 \times 10^{-31}$ cm6 molecule$^{-2}$ s$^{-1}$ were obtained for the forward reaction. Very little difference was observed between O$_2$ and N$_2$ as a third body. More recently there have been two studies by Christensen et al. and Bacak et al. who used more precise experiments to explore the reaction over an even larger temperature and pressure range, where Bacak et al. observed a significantly lower rate coefficient at 200 K.

The reverse reaction has also been studied, most recently by Zabel at low temperatures (<292K) using FTIR detection of HO$_2$NO$_2$ (Pernitric acid or PNA). These results were combined with the data of Kurylo and Ouellette obtaining $\Delta H_{298}^r(2) = -99.6 \pm 3.1$ kJ mol$^{-1}$. A recent study by Gierczak et al. observed equilibrium between 331 and 350 K and determined $\Delta H_{298}^r(2) = -100.4 \pm 2.1$.

Also relevant to this study is the work on the photolysis of PNA at 248nm by Macleod et al. and Roehl et al. Both studies used the photolysis of a synthetic sample of PNA and detected the photolysis product by LIF. McLeod et al. observed OH production obtaining $\phi_{OH,PNA} = 0.34 \pm 0.16$ and also suggested that OH was formed vibrationally and rotationally cold. Roehl et al. carried out a similar study which looked at NO$_2$ fluorescence and found $\phi_{NO_2,PNA} = 0.56 \pm 0.17$. More recently Jimenez
et al. \cite{24} measured both $\phi_{\text{OH,PNA}}$ (0.09) and $\phi_{\text{HO2,PNA}}$ (0.89), which questioned the validity of the measurements of Macleod et al. \cite{22}

$$1\text{-}2\text{-}C_4H_9O_2 + NO_2 \rightarrow 1\text{-}2\text{-}C_4H_9O_2NO_2 \quad (3)$$

No studies have been carried out into the kinetics of the forward reaction, but measurements have been made for $(\text{CH}_3)_3\text{CO}_2$. As with the other RO_2NO_2 molecules in this study Zabel et al. \cite{25} has measured its decomposition kinetics.

Most previous studies used UV-Vis spectroscopy as a detection method for peroxy species. A significant flaw is that the products and reactants have overlapping spectra so that corrections have to be made to the spectral time profiles to extract kinetics. The more recent studies by Christensen et al. \cite{18} and Bacak et al. \cite{19} overcame this difficulty by using near infra-red (NIR) and mass spectroscopies to monitor RO_2 kinetics. In the present study we apply another technique to study RO_2 kinetics: RO_2 radical photolysis at 248 nm, to generate either OH or CH_3O, followed by probing the photo-fragment with laser induced fluorescence before any subsequent chemistry can occur. Detection of peroxy radicals in the near-infrared is possible using cavity ring down spectroscopy but their small absorption cross-sections for $R \neq H$ means that this method is relatively insensitive, and hence only the kinetics of peroxy self-reactions have been reported \cite{26}.

In this paper we report kinetics on the reaction of RO_2 ($R=\text{H}, \text{CH}_3, \text{C}_4\text{H}_9$) + NO$_2$ where the temperature was tuned over a range where the approach to equilibrium was observed. Master equation analysis using MESMER \cite{27} was then used to fit the kinetic data, together with the literature data, in order to assess the kinetics and to best define
the thermodynamics of the reaction. For R = CH\textsubscript{3} and C\textsubscript{4}H\textsubscript{9} the kinetics are straightforward and there is good agreement with the literature. However, for R = H the kinetics are more complicated because interferences occur.

METHODS

Experimental

The experimental technique consists of laser flash photolysis (LFP) coupled with time resolved laser induced fluorescence (LIF); the system similar to one previously described,28-29 except for the addition of a second photolysis laser, which fires approximately 100-200 ns before the probe laser. This second photolysis laser photodissociates the peroxy radical to generate either OH or CH\textsubscript{3}O, which is then detected by the probe (LIF) laser. The time delay between the second photolysis laser and the probe is short enough such that no chemistry can occur, so that the detected signal provides a measure of the RO\textsubscript{2} radical concentration at a delay time defined by the second photolysis laser.

The set-up consisted of a six way stainless steel cross, with the time-zero photolysis and probe lasers at right-angles and with their beams overlapping in the centre of the cell. Fluorescence was detected perpendicularly to the plane defined by the lasers. The time-zero photolysis laser was either a 248 nm or 351 nm (Lambda Physik, LPX105) excimer outputting ca. 150mJ / pulses. The second photolysis excimer laser (Lambda Physik, MINEX, 10-25 mJ/pulse at 248 nm) was at right angles to the time-
zero laser and its beam counter-propagated that from the Nd-YAG pumped dye laser (Spectron, SL803 / SL4000, ~3mJ/pulse) that excited the LIF at 282 or 298.5 nm. These wavelengths were generated by doubling the dye laser output at 564 nm (Rhodamine 6G) and 597 nm (Rhodamine B) using a KDP doubling crystal and were used to probe OH and CH$_3$O, respectively. The lower intensity of the MINEX excimer laser was increased by focusing with a 70 cm focal length lens, which was positioned 40 – 60 cm away from the centre of the cell. To check this focusing had no effect on the kinetics, traces were taken with and without the lens at distances 10-60 cm away from the cell. Comparison of these traces returned the same kinetics.

The OH($A^2Σ^+-X^2Π$) and CH$_3$O ($A^2A_1-X^2E$) bands were excited by 282 nm and 298.5 nm light, respectively. The fluorescence signal was collected and filtered before being detected with a photomultiplier (Electron Tubes QKB9813); a 310nm interference filter (Corion) and a 350nm cut-off filter (Schott BG7) were used for the detection of OH and CH$_3$O, respectively. The collection optics consisted of two plano-convex lenses, focal length 4cm, located inside the reaction cell. A Stanford Research Systems SR250 boxcar was used to integrate the PMT signal, which was subsequently outputted to a home built analogue to digital converter before being stored on a Personal Computer for further processing. The firing of the lasers was controlled by a home built timer card, which fired the time-zero laser and scanned the LIF laser over 100 time points, where each time point was the average of between 4 -12 laser samples. The second photolysis laser was fired between 100 – 200 ns before the LIF laser. This time difference was set using the variable time output of the Spectron laser, which was synchronized with respect to the Q-switch.
For experiments above 295K, the cell was heated by 4 cartridge heaters, which allowed the temperature to be controlled to ±2K. The low temperature study was carried out using a reaction cell surrounded by a methanol bath. The methanol was cooled by a low temperature element, Labplant RP-100, which controlled the temperature to ±2K. Gas flows were controlled by MKS (1160 and 1159) and Tylan (FC280 and FC260) mass flow controllers, which were calibrated against bubble flow meters.

Generation of RO\(_2\) Species

\(\text{HO}_2\)

Oxalyl chloride was used as a chlorine radical source, and in the presence of CH\(_3\)OH and O\(_2\), HO\(_2\) was produced by the following well-known reaction scheme:

\[
\begin{align*}
\text{Cl} + \text{CH}_3\text{OH} &\rightarrow \text{HCl} + \text{CH}_2\text{OH} \quad (4) \\
\text{CH}_2\text{OH} + \text{O}_2 &\rightarrow \text{HO}_2 + \text{CH}_2\text{O} \quad (5)
\end{align*}
\]

The photolysis of oxalyl chloride at 248nm produces Cl via two pathways:

\[
\begin{align*}
\text{(ClCO)}_2 + \text{hv} &\rightarrow \text{Cl} + \text{CO} + \text{ClCO} \quad \text{(P1a)} \\
\text{(ClCO)}_2 + \text{hv} &\rightarrow \text{Cl} + \text{Cl} + \text{CO} + \text{CO} \quad \text{(P1b)}
\end{align*}
\]

A recent study by Gosh et al.\(^{[30]}\) has shown that P1a/(P1a+P1b) is equal to 0.79 ± 0.15 at 248 nm, but the reaction

\[
\text{ClCO} \rightarrow \text{Cl} + \text{CO} \quad (6)
\]

is sufficiently fast (microseconds), that the yield of Cl from oxalyl chloride is essentially 2. Typical gas concentrations for the HO\(_2\) experiments were: 5 Torr oxygen, 30 - 50 mTorr of oxalyl chloride, 100 - 300 mTorr of methanol and 0 - 40 mTorr of NO\(_2\). Concentrations of HO\(_2\) were typically less than 1 ×10\(^{13}\) molecule cm\(^{-3}\).
Under these experimental conditions all HO$_2$ was produced within 3 μs of the initial photolysis pulse. Nitrogen was used as the buffer gas for the kinetic experiments and 400 Torr of helium was used while investigating equilibrium at the higher temperatures.

\[\text{CH}_3\text{O}_2 \]

CH$_3$I + hv $\xrightarrow{248\text{nm}}$ CH$_3$ + I \quad (7)

CH$_3$ + O$_2$ + M \rightarrow CH$_3$O$_2$ \quad (8)

248nm photolysis of methyl iodide was used for the production of CH$_3$ radicals which, in the presence of excess O$_2$, produces CH$_3$O$_2$. In order to keep the rate of reaction (8) fast enough to ensure most of the CH$_3$ reacted with O$_2$, concentrations of O$_2$ had to be kept at about 10 Torr regardless of the bath gas pressure. Even at 25 Torr total pressure the lifetime of CH$_3$, 19μs, is far shorter than the time scale of the experiments. Nitrogen was used as the buffer gas.

\[\text{C}_4\text{H}_9\text{O}_2 \]

The following scheme was used to generate C$_4$H$_9$O$_2$ radicals from n-butane:

\[\text{Cl}_2 + \text{hv} \xrightarrow{351\text{nm}} \rightarrow 2\text{Cl} \quad \text{P2} \]

C$_4$H$_{10}$ + Cl \rightarrow C$_4$H$_9$ + HCl \quad (9)

C$_4$H$_9$ + O$_2$ + M \rightarrow C$_4$H$_9$O$_2$ \quad (10)

Reaction 9 produces both 1-C$_4$H$_9$ and 2-C$_4$H$_9$ alkyl radicals, therefore any kinetics obtained are for a mixture of both 1-C$_4$H$_9$O$_2$ and 2-C$_4$H$_9$O$_2$ radicals. Tyndall et al.\[31\] studied the partitioning between the two isomers in reaction 9 and found a ratio for production of 1-C$_4$H$_9$ to 2-C$_4$H$_9$ of 0.3:1.0. The majority of the kinetics measured was
therefore due to 2-C₄H₉O₂. For the C₄H₉O₂ experiments typical gas concentration were: 12 - 20 mTorr of Cl₂, 300 - 400 mTorr of O₂, 0 - 30 mTorr of NO₂ and 80-100 mTorr of n-C₄H₁₀. Helium was used as the buffer gas.

Oxygen, nitrogen and helium were CP grade (BOC, 99.999%), methanol (Analar grade), chlorine was 5% in helium (BOC), oxalyl chloride was 99% purity (Avocado Research), methyl iodide was 99% purity (Aldrich) and n-butane was Meiser Griesheim, 99.95%.

Master Equation Analysis

A major aim of this paper is the determination of the pressure dependence of the forward and reverse rate coefficients, \(k_{bim} \) and \(k_{rev} \) and the enthalpy of reaction for reactions of the type:

\[
RO_2 + NO_2 \rightleftharpoons RO_2NO_2 \quad (k_{bim}), (k_{rev})
\]

We employ a master equation analysis using the code MESMER\(^{27,32}\). The application of the master equation to reactions in the gas phase has been extensively discussed elsewhere\(^{32-36}\). Here, the main points are summarized and the manipulations required to accommodate second order systems are discussed. Typically the energy spaces of the species involved in a reaction are partitioned into a number of contiguous intervals or grains that are assigned values for the numbers of states they contain, average energies, and, where appropriate, average values of microcanonical rate coefficients. These grains form the basis of the master equation representation of the system, an equation of motion of the grain probabilities, which is usually represented as,
\[
\frac{dp}{dt} = Mp
\]

where \(p \) is a vector containing the probability densities of the populations of the grains and the matrix \(M \) contains the transition rates between the grains either because of collisional activation/deactivation or because of reaction. The evolution of \(p \) is limited by two constraints, mass (or density) conservation and detailed balance.

The solution to Eq. (1) can in general be written as,

\[
p = U e^{\Lambda t} U^{-1} p_0
\]

where \(\Lambda \) is a diagonal matrix containing the eigenvalues of \(M \), \(U \) is a matrix of the corresponding eigenvectors and \(p_0 \) is a vector containing the initial grain population densities. The number of eigenvalues is equal to the total number of grains; all the eigenvalues are negative. They can be divided into two types, internal energy relaxation eigenvalues (IEREs), which relate to the collisional relaxation of the internal energy of the system and chemically significant eigenvalues (CSEs); the magnitudes of the reciprocal CSEs relate to the timescales of the chemical reactions and the number of CSEs is related to the number of chemical species included in the master equation. Generally, and certainly in the reactions analysed here, the CSEs are significantly smaller in magnitude than the IEREs – energy relaxation occurs on timescales that are shorter than those of chemical reaction. Under these circumstances, the rate coefficients for the chemical reactions can be determined from an analysis of the eigenvalues and eigenvectors of the CSEs. In the present system, there are two CSEs, one of which, \(\lambda_1 \), relates to the establishment of equilibrium and is zero. The non-zero eigenvalue, \(\lambda_2 = - (k_{\text{bim}}[\text{NO}_2] + k_{\text{rev}}) \), and \(K_{\text{eq}} = k_{\text{bim}} / k_{\text{rev}} \).
MESMER includes a facility which allows pressure and temperature dependent forward and reverse rate coefficients to be fitted to a reaction model. The molecular constants for the reactants and product are fed into the model and are listed in the Supporting Information. The limiting high-pressure rate coefficient for association, \(k^\infty,\text{bim} \), is parameterised as \(A(T/298\text{~K})^n \) and the microcanonical rate constants for dissociation of \(\text{RO}_2\text{NO}_2^* \), \(k(E) \) are determined by inverse Laplace transformation. The rates of reaction from \(\text{RO}_2 + \text{NO}_2 \) into a particular grain of \(\text{RO}_2\text{NO}_2 \) are determined by detailed balance. An exponential down model, coupled with detailed balance, is used for the probabilities of collisional energy transfer between the grains, based on the parameterization \(<\Delta E>_{\text{down}} = <\Delta E>_{\text{down,298}}(T/298\text{~K})^m \). All of the available data were fitted to the master equation model, using the minimization of \(\chi^2 \):

\[
\chi^2 = \sum_{i=1}^{N} (k_{i,\text{exp}} - k_{i,\text{model}})^2 / \sigma_i^2
\]

as the criterion of best fit. Here \(k_{i,\text{exp}} \) is the \(i \)th experimental rate coefficient, \(k_{i,\text{model}} \) is the model result under the same conditions of \(T \) and \(p \), \(\sigma_i \) is the standard deviation of the experimental rate coefficient and \(N \) is the total number of experimental measurements. The analysis was conducted, as were the experiments, under pseudo first order conditions (\([\text{NO}_2] >> [\text{RO}_2])\). The bimolecular forward rate constant, \(k_{\text{bim}} \) was used in the fits and \([\text{NO}_2] \) was given a fixed value of \(10^{15} \) molecule cm\(^{-3}\). The variable parameters in the fitting process were \(\Delta H_{0}^{e} \), \(A \), \(n \), \(<\Delta E>_{\text{down,298}} \) and \(m \). The best available experimental data (literature values of the forward and reverse rate coefficients and the values determined here, including measurements of rate coefficients made under equilibrating conditions) were used in a global fit for \(R = \text{CH}_3 \) and \(1,2\text{-C}_4\text{H}_9 \) (see below).
Results and Discussion

\[\text{CH}_3\text{O}_2 + \text{NO}_2 \rightleftharpoons \text{CH}_3\text{O}_2\text{NO}_2 \]

The products of the 248 nm photolysis of CH$_3$O$_2$ have not been fully characterised and many products are energetically possible:

\[
\begin{align*}
\text{CH}_3\text{O}_2 + \text{hv} &\rightarrow \text{CH}_3\text{O} (X^2\Sigma^+) + \text{O} (\text{A}^1\Sigma^+) \quad (P3a) \\
\text{CH}_3\text{O}_2 + \text{hv} &\rightarrow \text{CH}_3\text{O} (X^2\Pi) + \text{O} (\text{A}^1\Sigma^+) \quad (P3b) \\
\text{CH}_3\text{O}_2 + \text{hv} &\rightarrow \text{OH} (X^2\Pi) + \text{CH}_2\text{O} (X^1\text{A}_1) \quad (P3c) \\
\text{CH}_3\text{O}_2 + \text{hv} &\rightarrow \text{OH} (X^2\Sigma^+) + \text{CH}_2\text{O} (X^1\text{A}_1) \quad (P3d) \\
\text{CH}_3\text{O}_2 + \text{hv} &\rightarrow \text{OH} (X^2\Pi) + \text{CH}_2\text{O} (\text{A}^1\text{A}^\prime) \quad (P3e) \\
\text{CH}_3\text{O}_2 + \text{hv} &\rightarrow \text{CH}_3 (X^2\text{A}_2^\prime) + \text{O}_2 (X^1\Sigma_g^+) \quad (P3f) \\
\text{CH}_3\text{O}_2 + \text{hv} &\rightarrow \text{CH}_3 (X^2\text{A}_2^\prime) + \text{O}_2 (\text{a}^1\Delta_g) \quad (P3g) \\
\text{CH}_3\text{O}_2 + \text{hv} &\rightarrow \text{CH}_3 (X^2\text{A}_2^\prime) + \text{O}_2 (\text{b}^1\Sigma_g) \quad (P3h)
\end{align*}
\]

Although the complete product distribution is not known at 248 nm, the quantum yields for OH and CH$_3$O have been measured by Hartmann et al.\cite{40} to be $\phi_{\text{OH}} = 0.06$ and $\phi_{\text{CH}_3\text{O}} = 0.20$. They found that methoxy radicals, CH$_3$O, are only formed in the ground state and suggested that OH was formed by isomerisation of CH$_3$O$_2$ to CH$_2$OOH, followed by cleavage of the O-O bond. If this is the case then larger alkyperoxy species might also be expected to have an OH channel, (see section on C$_4$H$_9$O$_2$). Therefore our observation of fluorescence from CH$_3$O is consistent with Hartmann et al.\cite{40} and implies our technique is a sensitive probe for methyl peroxy.
Pressure dependence at room temperature

The reaction was studied at room temperature over the pressure range 25 –400 Torr, using N\textsubscript{2} as the bath gas. The experimental conditions of this study, [CH\textsubscript{3}O\textsubscript{2}] \ll [NO\textsubscript{2}], mean pseudo-first order kinetics were observed, and an example of a kinetic trace is shown in Figure 1. As noted in the experimental ≥ 10 Torr of O\textsubscript{2} was added to the system to ensure that reaction 8 was fast. This effectively suppresses the formation of CH\textsubscript{3}O from the radical-radical reaction:

\[
\text{CH}_3\text{O}_2 + \text{CH}_3 \rightarrow 2\text{CH}_3\text{O} \quad (11)
\]

However, when NO\textsubscript{2} is added to the system CH\textsubscript{3}O can be formed from the reaction:

\[
\text{CH}_3 + \text{NO}_2 \rightarrow \text{CH}_3\text{O} + \text{NO} \quad (12)
\]

and the amount of CH\textsubscript{3}O will increase as more NO\textsubscript{2} is added. However, under all conditions [CH\textsubscript{3}O\textsubscript{2}] > [CH\textsubscript{3}O] and therefore the kinetics from reaction 1 will be little affected. However, the viability of the detection technique may be compromised. The method used to monitor CH\textsubscript{3}O\textsubscript{2} involves photolysis and then the use of CH\textsubscript{3}O as a proxy for CH\textsubscript{3}O\textsubscript{2}, using LIF detection. The CH\textsubscript{3}O LIF signal will be affected by the occurrence of reaction 12 which leads to the formation of a small amount of CH\textsubscript{3}O in the system which may be comparable to the small fraction of the CH\textsubscript{3}O\textsubscript{2} that is photolysed to CH\textsubscript{3}O. A rough estimate indicates that about > 10% of the CH\textsubscript{3}O\textsubscript{2} is photolysed to CH\textsubscript{3}O, based on σ\textsubscript{CH\textsubscript{3}O\textsubscript{2},248nm} ≈ 5 \times 10^{-18} \text{ cm}^{-2} \text{ cm}^{-2} and a photon intensity of 1017 photon cm-2. In practice it was found that the three-laser CH\textsubscript{3}O signal was always significantly larger than the signal from just two-lasers (initial photolysis + LIF detection laser). Subtracting the two-laser signal from the three-laser experiment yields a signal that is a proxy for CH\textsubscript{3}O\textsubscript{2} alone and allows its kinetics to be determined. This procedure was followed throughout before kinetic analysis and leads to increased noise in the CH\textsubscript{3}O\textsubscript{2} traces, see Figure 1. It is also noted that CH\textsubscript{3}O is
more reactive than CH$_3$O$_2$ towards NO$_2$ therefore at longer times the three-laser signal is nearly exclusively due to CH$_3$O$_2$.

The CH$_3$O$_2$ kinetic data were fitted to a single exponential:

$$[\text{CH}_3\text{O}_2] = [\text{CH}_3\text{O}_2]_0 \exp(-k_1' t)$$ \hspace{1cm} (E1)

where k_1' is the pseudo-first-order rate constant, $k_1' = k_1[\text{NO}_2]$. An example of the fit to the data is shown in Figure 1. [NO$_2$] was varied up to 35 mTorr, and the bimolecular rate coefficient, k_1, for the reaction was obtained from a plot of k_1' versus [NO$_2$]. An example of such a plot is shown in Figure 2, where the slope is equal to the bimolecular rate constant; the results are summarised in Table 1.

![Figure 1](image-url)

Figure 1. Kinetic trace for CH$_3$O$_2$ + NO$_2$ at 295 K and 32.1 mTorr of NO$_2$ at 400 Torr total pressure. The solid line is the best fit first-order decay, eq E1, to the data, where $k_1' = 4505 \pm 421$ s$^{-1}$.
Figure 2. Bimolecular plot for the CH$_3$O$_2$ + NO$_2$ kinetic data at a total pressure of 51 Torr (N$_2$) and at 295 K.

<table>
<thead>
<tr>
<th>Pressure /Torr</th>
<th>$10^{12} k_i$ / cm3 molecule$^{-1}$s$^{-1}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>26</td>
<td>0.82 ± 0.08</td>
</tr>
<tr>
<td>51</td>
<td>1.15 ± 0.16</td>
</tr>
<tr>
<td>99</td>
<td>1.50 ± 0.14</td>
</tr>
<tr>
<td>230</td>
<td>2.26 ± 0.18</td>
</tr>
<tr>
<td>399</td>
<td>3.05 ± 0.24</td>
</tr>
</tbody>
</table>

Table 1. Values of the bimolecular rate constant for CH$_3$O$_2$ + NO$_2$ at 295 K, as a function of the pressure of the N$_2$ buffer gas. The errors are ±2σ, from the analysis of second order plots, c.f. Figure 2.

The results from Table 1 are plotted together with values from the literature in Figure 3. From this figure it can be concluded that the results from the study are in excellent agreement, confirming the validity of the current experimental method. Included in
Figure 3 is a master equation fit to the data, see below for further details, where the limiting high-pressure rate coefficient, k_1^∞, is equal to $(8.8 \pm 2.5) \times 10^{-12}$ cm3 molecule$^{-1}$ s$^{-1}$, where the uncertainty is ± 2σ. This result conflicts with the study of this reaction by Wallington et al., where at 14 bar of SF$_6$, k_1 was measured to be $1.3 \pm 0.1 \times 10^{-11}$ cm3 s$^{-1}$. This conclusion is further supported by global master equation analysis of the literature data for association and dissociation, discussed below. The reason for the inconsistency in this study is not clear but it is more likely to be related to the experimental technique rather than an additional reaction channel operating at higher pressure.

Temperature Dependence Studies

The equilibrium behaviour of this reaction was studied over the temperature range 333 K – 363 K at a total pressure of 400 Torr, N$_2$. Equilibration was first observed...
clearly at 333 K continuing up to 363K where little forward reaction could be observed. An example of the approach to equilibrium is shown in Figure 4. At least 8 traces with 0 < [NO$_2$] < 25morr were acquired at each temperature. Observation of equilibrium behaviour allows that thermodynamics of the reaction to be determined directly from the measured equilibrium constant.

The concentration profiles of [CH$_3$O$_2$] are described by a biexponential function. The analytical expression for [CH$_3$O$_2$](t) is given in the SI ([CH$_3$O$_2$] = M2), where for the present system $k' = k_1[NO_2] = k_{bim}[NO_2]$, $k_1 = k_{rev}$, and k_{diff1} and k_{diff2} are the slow diffusion of CH$_3$O$_2$ and CH$_3$O$_2$NO$_2$ out of the reaction zone. All the other parameters in the generic scheme in the SI were set to zero, i.e. $k_X = 0$. k_{diff1} was determined from the RO$_2$ kinetic trace with no added [NO$_2$], and k_{diff2} was assigned using the dependence of the diffusion coefficient on mass, see the SI. The data fitting returns the rate coefficients k_1 and k_{-1}, which define the equilibrium constant for reaction (1): $K_c = k_1/k_{-1}$.

The pseudo first order conditions, [CH$_3$O$_2$]<< NO$_2$, were maintained throughout the equilibration experiments. Retrieving defined multiple rate coefficients from a single kinetic trace is problematic. Therefore, to improve the reliability of returned rate coefficients, a global analysis was carried using OriginPro 9.1. Global analysis, i.e. the analysis of multiple temporal profiles under a range of NO$_2$ concentrations, significantly decreases the errors in the returned rate coefficients and provides a more rigorous test of the reaction mechanism. All the rate coefficients were treated as global and the signal height as local, and [NO$_2$] was an extra independent variable that was required to define k'_1 via $k_1[NO_2]$. Global analysis was carried out at each temperature. An example of the global fit to an individual kinetic trace is shown in
Figure 4 and the results are given in Table 2. From Table 2 it can be seen that the values of K_c are in excellent agreement with those of Bridier et al., the only previous study that observed equilibrium in reaction 1. It is noted that in the study by Ravishankara experiments were carried out at 350 K and no equilibrium was observed. The reason for this failure to see equilibration is not apparent.

Figure 4. An example of equilibration in the reaction between CH$_3$O$_2$ and NO$_2$ at 353 K and 400 Torr total pressure, N$_2$, and [NO$_2$] = 9.58 mTorr. The pre-trigger signal is equal to zero and is not shown. The fit is from global analysis.

<table>
<thead>
<tr>
<th>T / K</th>
<th>10^{12} k_1 / cm3 s$^{-1}$</th>
<th>k_1 / s$^{-1}$</th>
<th>10^{14} K_c / cm3 Leeds</th>
<th>10^{14} K_c / cm3 Bridier et al.5</th>
</tr>
</thead>
<tbody>
<tr>
<td>333</td>
<td>1.23 ± 0.10</td>
<td>32.3 ± 4.0</td>
<td>3.8 ± 0.6</td>
<td>4.6</td>
</tr>
<tr>
<td>343</td>
<td>1.66 ± 0.17</td>
<td>95 ± 9</td>
<td>1.70 ± 0.24</td>
<td>1.8</td>
</tr>
<tr>
<td>353</td>
<td>1.30 ± 0.16</td>
<td>207 ± 22</td>
<td>0.63 ± 0.10</td>
<td>0.72</td>
</tr>
<tr>
<td>363</td>
<td>0.92 ± 0.13</td>
<td>446 ± 46</td>
<td>0.21 ± 0.04</td>
<td>0.31</td>
</tr>
</tbody>
</table>

Table 2. Forward and reverse rate coefficients determined from CH$_3$O$_2$ + NO$_2$ at a total pressure of 400 Torr, N$_2$. Errors are 2σ.
The enthalpy change for reaction 1, $\Delta_r H_T(1)$, can be obtained at each temperature from the equilibrium constants in Table 2 by calculating the entropy change of reaction 1, i.e. using the third law method. A superior approach is described in the following sections. The analysis is based on a global fit to all the kinetic data (association and dissociation rate constants obtained under irreversible and equilibration conditions, reported here and in the literature), using the master equation program MESMER, which has the feature of non-linear least squares fitting.

All the $k_1(T)$ data in the temperature range 298 – 223 K from the studies of Sander et al., Ravishankara et al. and Bacak et al. were used together with the decomposition data, k_1, from Zabel et al. and Bridier et al. The total number of experimental values used in the fits was 63. The vibrational and rotational constants for each species were obtained from either experiment or the B3LYP/6-31+G** level of theory and the newly formed bond RO$_2$—NO$_2$ was treated as a hindered rotor. The input parameters for this calculation are given in the SI. Overall the data

![Graph](image)

Figure 5. Plot of the experimental versus the MESMER calculated values for k_1. The high values are from this study (●) and Bridier et al. (▲) and the low values (■) are from the nitrate decomposition studies of Zabel et al. The slope is equal to 1.007 ± 0.012, which indicates exceptional agreement.
are in excellent agreement as shown in Figure 5, which is a correlation plot for the experimental and calculated rate constants. The final results for the best fit parameters are given in Table 3.

Figure 5 emphasises the strength of the master equation approach. It compares the calculated rate coefficients, obtained with the best fit parameters, with the experimental values under the same conditions of T and p. It includes the measurements made by Zabel et al. at low temperatures (253 – 272 K) and a range of pressures, and those obtained at higher temperatures and under equilibrating conditions by Bridier et al. (333 – 373 K, 760 Torr) and in this paper (333 – 363 K, 400 Torr). The rate coefficients cover a wide dynamic range (six orders of magnitude). The best fit line in Figure 5, constrained to pass through the origin, has a slope of 1.007 ± 0.012, demonstrating the quality of the fit and the compatibility of the whole dissociation dataset with the master equation model and the best fit parameters. A similar plot is shown in the SI for the association data, which cover a much more limited dynamic range, but again shown a good agreement between fitted and measured values across the wide range of conditions used. The figure in the SI also highlights the inconsistency of the of the data from Wallington et al. with the other data used in this master equation analysis. Note that the MESMER fitting protocol accommodates different third bodies with differing energy transfer parameters.

From Table 3 it can be seen that our value of $\Delta H_{298}^{\circ}(1), - 93.6 \pm 0.3 \text{ kJ mol}^{-1}$, is in excellent agreement with the value of - 92.7 ± 2.0 kJ mol$^{-1}$ obtained by Bridier et al.
The improved error on our $\Delta H_{298}(1)$ determination is a consequence of including most of the literature data in our analysis. The wide dynamic range of the k_1 data, deriving from the low T dissociation studies of Zabel[7] and the higher T data obtained under equilibration conditions is important in defining the enthalpy of reaction. Note that the quoted uncertainty is based on the MESMER fit and does not include contributions from uncertainties in the input parameters. The actual uncertainty is probably higher and has potential contributions from our description of the internal angular/rotational motions of the system.

The high pressure limiting rate coefficient, used to determine the microcanonical dissociation constants in the ME model, using inverse Laplace transformation, was parameterised in the form $k_1^\infty(T) = A \times (T/298)^n$. The best fit value for n is -0.83 ± 0.88 (Table 3), which indicates that the limiting reaction rate coefficient decreases significantly as the temperature is increased. This type of temperature dependence is general for many bimolecular reactions that have large rate coefficients at room temperature, and can be explained by a variational transition-state on a barrierless potential energy surface (PES).[38]

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\Delta H_0(1)$</td>
<td>-90.7 ± 0.2</td>
<td>kJ mol$^{-1}$</td>
</tr>
<tr>
<td>$\Delta H_{298}(1)$</td>
<td>-93.5 ± 0.3</td>
<td>kJ mol$^{-1}$</td>
</tr>
<tr>
<td>A: $k_1^\infty = A \times (T/298)^n$</td>
<td>$8.5 \pm 2.4 \times 10^{-12}$</td>
<td>cm3 molecule$^{-1}$ s$^{-1}$</td>
</tr>
<tr>
<td>n: $k_1^\infty = A \times (T/298)^n$</td>
<td>-0.83 ± 0.88</td>
<td></td>
</tr>
<tr>
<td>$\Delta E_{\text{down},298}(N_2)$: $\Delta E_{\text{down},\infty}$</td>
<td>393 ± 110</td>
<td>cm$^{-1}$</td>
</tr>
</tbody>
</table>
\[\Delta E_{\text{down},298} \times (T/298)^m \]

<table>
<thead>
<tr>
<th>m</th>
<th>(\Delta E_{\text{down},298} \times (T/298)^m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>-0.10</td>
<td>1.34</td>
</tr>
</tbody>
</table>

Table 3. Master Equation fit to the \(\text{CH}_3\text{O}_2 + \text{NO}_2 \) data from this study together with that from the literature for both reactions (1) and (-1). The errors are \(\pm 2\sigma \).

The most accurate way to parameterise the master equation results – \(k_1(T,p) \) and \(k_{-1}(T,p) \), in order to have an analytical representation is to use Chebyshev polynomials. The Chebyshev polynomial coefficients can be calculated using MESMER and the coefficients are given in the SI. These polynomials provide the easiest way to regenerate the results of the master equation fits. In addition the master equation results were fitted to a Troe formalism and the parameters are given in the SI.

HO\textsubscript{2} + NO\textsubscript{2} \rightarrow HO\textsubscript{2}NO\textsubscript{2}

Four dissociation pathways are energetically possible upon photoexcitation of HO\textsubscript{2} at 248 nm:

\[
\begin{align*}
\text{HO}_2 + \text{hv} & \rightarrow \text{H} \left(^1\text{S} \right) + \text{O}_2 \left(^3\Sigma_g^- \right) \quad \Delta_H \hat{H} = 218 \text{ kJmol}^{-1} \quad (\text{P4a}) \\
\text{HO}_2 + \text{hv} & \rightarrow \text{H} \left(^1\text{S} \right) + \text{O}_2 \left(^1\Delta_g \right) \quad \Delta_H \hat{H} = 366 \text{ kJmol}^{-1} \quad (\text{P4b}) \\
\text{HO}_2 + \text{hv} & \rightarrow \text{OH} \left(^1\Pi \right) + \text{O} \left(^1\text{D} \right) \quad \Delta_H \hat{H} = 478 \text{ kJmol}^{-1} \quad (\text{P4c}) \\
\text{HO}_2 + \text{hv} & \rightarrow \text{OH} \left(^3\Pi \right) + \text{O} \left(^3\text{P} \right) \quad \Delta_H \hat{H} = 288 \text{ kJmol}^{-1} \quad (\text{P4d})
\end{align*}
\]

It is generally accepted that photo-dissociation at wavelengths greater than 190 nm results solely in the OH + O products. Based on the above scheme, Hynes et al. developed a novel technique for the sensitive detection of the HO\textsubscript{2} using photolysis at
212 nm and detecting the OH photo-fragment a few ns later. In this study we are extending this technique by demonstrating that it can reliably measure rate coefficients, and also be used for a range of peroxy radicals.

Figure 6. Kinetic trace showing the removal of HO$_2$ in the presence of NO$_2$ (∼34.2 mTorr) at 400 Torr total pressure of N$_2$, $k_2 = 1478 ± 100$ s$^{-1}$. Note that at long times the signal does not return to zero, see text.

The three laser experiment using Cl / CH$_3$OH / O$_2$ to generate HO$_2$ - see experimental – generated an OH signal as a signature of HO$_2$. However, when the HO$_2$ photolysis laser was removed a significant OH signal was present at early times. To account for this OH signal, a three-laser and a two-laser experiment were recorded for each NO$_2$ concentration and the difference was assigned to HO$_2$. The source of OH in the two-laser experiment is most likely from:

$$\text{Cl} + \text{HO}_2 \rightarrow \text{OH} + \text{ClO} \quad (13)$$

Since [HO$_2$] >> [OH], only fraction of the HO$_2$ photolyses to OH, and OH is removed much faster in the system than HO$_2$, the subtraction procedure to determine the HO$_2$ decay is likely to be reliable; kinetic simulations further support this assertion. An example of an HO$_2$ kinetic trace at room temperature, obtained in this way, is shown
in Figure 6, where it is apparent that the concentration of HO$_2$ was found not to return to the pre-primary-photolysis zero. The origin of this behaviour will be discussed below.

Reaction 2 was studied over the pressure range 50 - 400 Torr at 295K, where nitrogen was the buffer gas, and up to 50 mTorr of NO$_2$ was added to the system. The data were fitted by the equation:

$$[\text{HO}_2] = [\text{HO}_2]_0 \exp(-k_2 \, t) + B$$ \hspace{1cm} (E2)

where k_2 is the pseudo-first-order rate constant, $k_2 = k_2 \, [\text{NO}_2]$ and B is the non-zero long time signal. A modified and more detailed analysis, discussed below and in the SI, was used to determine k_2'. A typical bimolecular plot (k_2' vs [NO$_2$]) is shown in Figure 7 and the $k_2(p)$ data are plotted in Figure 8, together with the previous data from Sander et al., Kurylo et al., Christensen et al. and Bacak et al.

![Figure 7. Bimolecular plot for the data for reaction 2 at 200 Torr at room temperature.](image)
From Figure 8 it can be seen that our rate coefficients are within 30% of literature, but are generally on the high side. If this difference is from contributions to the HO$_2$ decay from HO$_2$ + NO then it requires our experiments to be photolysing ~2% of the NO$_2$. Based on the excimer laser fluence and NO$_2$ cross-section at 248 nm it is unlikely that there is this amount of photolysis. Also, the fact that our kinetic data on CH$_3$O$_2$ + NO$_2$ are in good agreement with the literature, see Figure 3, indicates there is little NO$_2$ photolysis. The effect of any NO$_2$ photolysis will, however, be greater in the study of reaction 2, because k_2 is much smaller than k_1 (Figure 8 vs Figure 3). The more recent measurements by Christensen et al. and Bacak et al. used NIR and mass spectroscopy respectively to monitor HO$_2$ loss in the presence of NO$_2$. These higher precision studies reinforce the previous results of Kurylo et al. and Sander et al. at room temperature. Therefore we conclude that the present results are slightly high, even though the source of this discrepancy is not clear.
The accuracy associated with the present measurements mean that we have not pursued further kinetic removal measurements and instead have concentrated on the interpretation of the long-time residual signal, see Figure 6, and higher temperature experiments to observe equilibrium behaviour and attempt to determine the enthalpy of reaction.

Photolysis of HO$_2$NO$_2$ (PNA)

The residual OH signal observed at long time, see Figure 6, was typically 10% of $[\text{HO}_2]_0$. There are two possible sources of this observation: (i) thermal dissociation of PNA, regenerating HO$_2$ and NO$_2$ giving a steady state concentration of HO$_2$, or (ii) formation of OH in the photolysis of PNA. Lowering the temperature to 263K had no effect on the amount of residual OH signal indicating that thermal dissociation was not significant and that PNA photolysis was the source of OH:

$$\text{HO}_2\text{NO}_2 + \text{hv} \rightarrow \text{OH} + \text{NO}_3$$

It was possible, therefore, to obtain a quantum yield for the photolysis of PNA at 248nm by comparing the yields of OH on photolysis of HO$_2$ and of PNA. If all the HO$_2$ is removed by reaction with NO$_2$, which is not an unreasonable assumption as the first order rate coefficient for loss of HO$_2$ when $[\text{NO}_2] = 0$ is $<50s^{-1}$, then the following applies:

$$I_2 = C([\text{HO}_2] + X_2 [\text{HO}_2\text{NO}_2])$$

where C is a constant, $I_2 =$ Intensity of OH fluorescence at time t and

$$X_2 = \frac{\text{Absorption cross section of PNA} \times \phi_{\text{OH,PNA}}}{\text{Absorption cross section of HO}_2 \times \phi_{\text{OH,HO}_2}}$$
Since the exponential increase in HO$_2$NO$_2$ has the same time constant as the decay of HO$_2$, then $I_2 = I_2^0 (1 - X_2) \exp(-k_2^0 t) + I_2^0 X_2$, which is in the same form as equation 2.

Fits to the decay profiles give k_2 and X_2. $\phi_{OH,PNA}$ can then be determined, assuming ϕ_{OH} from HO$_2$ photolysis is unity at 248nm.

$$\phi_{OH,PNA} = \frac{X_2 \sigma_{HO2}}{\sigma_{PNA}}$$

The SI provides a more detailed analysis of equation E3, allowing for diffusive loss of HO$_2$ and PNA. In this solution, $[HO_2] = M2$, $[HO_2NO_2] = M3$ and $k_{rev} (= k_2)$ and k_X (the thermal dissociation rate coefficient for PNA) are fixed to zero. Fitting the kinetic data using equation E3 yields X_2 and hence $\phi_{OH,PNA}$, as noted above.

Data at 263 K were analysed globally using Origin – see above – where the data were fitted by the analytical expression for E3, as detailed in the SI. The values of X_2 and $\phi_{OH,PNA}$ are given in Table 4, together with previous determinations. Cross sections at 248nm were taken from JPL evaluation No. 16.

<table>
<thead>
<tr>
<th>Product</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>X_2 (Leeds)</td>
<td>0.086 ± 0.015</td>
</tr>
<tr>
<td>$\phi_{OH,PNA}$ (Leeds)</td>
<td>0.15 ± 0.03</td>
</tr>
<tr>
<td>$\phi_{OH,PNA}$ (Macleod et al.)</td>
<td>0.34 ± 0.16</td>
</tr>
<tr>
<td>$\phi_{OH,PNA}$ (Jimenez et al.)</td>
<td>0.085± 0.08</td>
</tr>
<tr>
<td>$\phi_{HO2,PNA}$ (Jimenez et al.)</td>
<td>0.89 ± 0.26</td>
</tr>
<tr>
<td>$\phi_{OH,NO2}$ (Roehl et al.)</td>
<td>0.56 ± 0.17</td>
</tr>
</tbody>
</table>

Table 4. Product yields from the photolysis of PNA at 248 nm. Errors are 2σ.
The previous study to measure the yield of the OH product yield from PNA photolysis by Macleod et al.22 determined $\phi_{\text{OH, PNA}} = 0.34 \pm 0.16$. In our experiments HO\textsubscript{2} is titrated with NO\textsubscript{2} to form PNA in time-resolved experiments where the chemistry is straightforward. However, in the experiments by Macleod et al.22 OH was measured from PNA relative to H\textsubscript{2}O\textsubscript{2} where determinations of the absolute, unambiguous PNA concentrations were complicated by use of mass spectrometry. In addition, they assumed that the rotational distributions of OH after photolysis of PNA and H\textsubscript{2}O\textsubscript{2} are the same. This might not necessarily be correct at the 5 / 40 mTorr of PNA/H\textsubscript{2}O\textsubscript{2} and pump / probe delay time used in their study. More recently Jimenez et al.24 determined $\phi_{\text{OH, PNA}} = 0.085 \pm 0.08$ at 248 nm by comparison to H\textsubscript{2}O\textsubscript{2}, where both the PNA and H\textsubscript{2}O\textsubscript{2} concentrations were measured by FTIR. This result is in better agreement with the present study. This study and that of Jimenez et al.24 are expected to be the more reliable determination of $\phi_{\text{OH, PNA}}$; the differences are within the combined uncertainties.

Roehl et al.23 measured the quantum yield for NO\textsubscript{2} formation from the 248 nm photolysis of PNA and determined $\phi_{\text{NO2, PNA}} = 0.56 \pm 0.17$ by comparison with HNO\textsubscript{3}.

If this result is combined with our PNA photolysis measurement then it might be concluded that:

$$\text{HO}_2\text{NO}_2 + \text{hv}_{248 \text{ nm}} \rightarrow \text{HO}_2 + \text{NO}_2$$ $\lambda = 1230 \text{ nm}$ (P5a)

$$\rightarrow \text{OH} + \text{NO}_2$$ $\lambda = 725 \text{ nm}$ (P5b)

$$\rightarrow \text{H} + \text{NO}_2 + \text{O}_2$$ $\lambda = 394 \text{ nm}$ (P5c)

$$\rightarrow \text{OH} + \text{NO}_2 + \text{O}(^3\text{P})$$ $\lambda = 320 \text{ nm}$ …(P5d)

are not the only channels operating. Possible other channels include:

$$\text{HO}_2\text{NO}_2 + \text{hv}_{248 \text{ nm}} \rightarrow \text{HO}_2 + \text{NO} + \text{O}(^3\text{P})$$ $\lambda = 296 \text{ nm}$ (P5e)

$$\rightarrow \text{HNO}_3 + \text{O}(^3\text{P})$$ $\lambda = 718 \text{ nm}$ (P5f)
In the study of PNA photolysis Jimenez measured $\phi_{\text{HO}_2, \text{PNA}} = 0.89 \pm 0.26$. Therefore it would appear that channel P4e is also operating in the 248 nm photolysis of PNA, but at longer wavelengths, relevant for atmospheric chemistry, only channel P4a is expected to be active.

$$\text{HO}_2 + \text{NO}_2 \rightleftharpoons \text{HO}_2\text{NO}_2$$

The reaction between HO_2 and NO_2 was studied between $343 - 423 \text{ K}$ and 400 Torr total pressure. Helium was the buffer gas in order to improve the data quality, (it does not quench the OH fluorescence) and hence increase the likelihood of observing equilibration in this reaction. Compared to the $\text{CH}_3\text{O}_2 + \text{NO}_2$ reaction, see Figure 4, equilibration was not apparent in the OH profiles, see Figure 9. The 10% baseline from PNA photolysis partially obscures any approach to equilibrium, but this should not prevent its observation. From a cursory inspection of the traces it appears that equilibrium was not present. However, upon closer inspection it is apparent that the

![Figure 9](image)

Figure 9. A decay trace showing the removal of HO_2 in the presence of 25.52 mTorr NO_2 at 393 K and a total pressure of 400 Torr. Biexponential behaviour is evident in this trace but analysis indicates that HO_2NO_2 is being lost via another channel, with rate constant k_X, as well as re-dissociation: $k_2 = 691 \pm 59 \text{ s}^{-1}$; $k_2 = 58 \text{ s}^{-1}$ (fixed); and $k_X = 42 \pm 3 \text{ s}^{-1}$; B was fixed at a value of 0.1.
traces were more complicated, because the equilibrated mixture decays much faster than was the case with CH$_3$O$_2$ (compare Figures 4 and 9).

These high temperature traces were analysed by fitting equation E3 to the data, where $k_2' = k_{bim}[NO_2]$, $k_2 = k_{ev}$, and k_{diff1} and k_{diff2} are the slow diffusion of HO$_2$ and HO$_2$NO$_2$ out of the reaction zone, and the baseline arising from PNA photolysis to OH was accounted for by fixing X_2 to the value given in Table 4, see SI for details of the fitting equation. The value of k_2 was fixed to the values given by the best fit parameters from the master equation; as will be discussed in a forthcoming paper. This analysis revealed that this model is an inadequate description of the data, and good fits are obtained only when an additional loss channel from HO$_2$NO$_2$ is added to the model.

\[\text{HO}_2\text{NO}_2 \rightarrow \text{loss} \]

The rate coefficient for this reaction is assigned k_X in the SI. k_X was observed to increase significantly with temperature and is comparable to k_2, and this provides an explanation of why equilibrium is difficult to observe in this system. Attempts to float both k_X and to k_2 returned similar values but with very large error bars. The possibility that the product of reaction 14 is HONO has been studied by Dransfield et al.53 and Tyndall et al.54 Both found no evidence for this reaction occurring and Tyndall et al. placed an upper limit of 5×10^{-16} cm3 molecule$^{-1}$s$^{-1}$ on the second-order rate coefficient for reaction 14 at room temperature; it is unlikely that a highly uncompetitive channel can become competitive by 393 K. Alternatively, reaction 14 may involve the removal of PNA with the added reagents over the 343 – 423 K temperature range. Overall, these high temperature data show that additional reactions
are occurring in the system that prevent the unambiguous determination of independent values of k_2 and hence of the equilibrium constant.

$$1,2\text{-C}_4\text{H}_9\text{O}_2 + \text{NO}_2 \rightleftharpoons 1,2\text{-C}_4\text{H}_9\text{O}_2\text{NO}_2 \text{ (BPN)}$$

Based on our detection of CH$_3$O from the 248 nm photolysis of CH$_3$O$_2$ it is expected that C$_4$H$_9$O$_2$ will produce C$_4$H$_9$O, which is known to fluoresce.

$$\text{C}_4\text{H}_9\text{O}_2 + \text{hv} \xrightarrow{248\text{nm}} \text{C}_4\text{H}_9\text{O} + \text{O} \quad \text{(P5a)}$$

However, when setting up this experiments, the hydroxyl radical, OH, was observed on the timescale consistent with C$_4$H$_9$O$_2$ kinetics. Experiments were also carried out using CH$_3$O$_2$ and OH was also detected that matched methyl peroxy kinetics. This observation is compatible with the observations of Hartmann who photolysed CH$_3$O$_2$ at 248 nm and assigned $\Phi_{\text{CH}_3\text{O}} = 0.2 \pm 0.1$ and $\Phi_{\text{OH}} = 0.06 \pm 0.03$.40 The observation that C$_4$H$_9$O$_2$ is photolysed at 248 nm to produce OH is thus consistent with other studies of peroxy radical photochemistry.40

$$\text{C}_4\text{H}_9\text{O}_2 + \text{hv} \xrightarrow{248\text{nm}} \text{HO} + \text{C}_4\text{H}_8\text{O} \quad \text{(P5b)}$$

This OH channel is more thermodynamically favourable than the butoxy channel and can occur at photolysis wavelengths out to the near IR.57 Since OH is at least an order of magnitude more sensitive to detect than an alkoxy radical, the OH photo-fragment was used as the proxy for C$_4$H$_9$O$_2$ in the present study.

The reaction was initially studied at 241 and 268 K, temperatures at which there is no reverse reaction on the timescale of the experiments; all experiments were carried out at 100 Torr total pressure, helium.
Figure 10. Kinetic trace of C\textsubscript{4}H\textsubscript{9}O\textsubscript{2} in the presence of NO\textsubscript{2} at 241 K and 100 Torr total pressure, helium. [NO\textsubscript{2}], [O\textsubscript{2}] [Cl\textsubscript{2}] and [C\textsubscript{4}H\textsubscript{10}] = 4.75, 392, 97.0 and 101.18 mTorr, respectively, and the removal rate constant k\textsubscript{3} is equal to 3150 ± 108 s-1.

The kinetic traces exhibited exponential decay but it was noted that the traces did not return to the pre-trigger baseline. Therefore, as for HO\textsubscript{2}, the data were fitted to the equation:

\[
[C_{4}H_{9}O_{2}] = [C_{4}H_{9}O_{2}]_{0} \exp(-k_{3} t) + B \quad (E4)
\]

where k\textsubscript{3} is the pseudo-first-order rate coefficient, k\textsubscript{3} = k_{3}[NO\textsubscript{2}] and B is the residual signal. This signal is most likely a result of C\textsubscript{4}H\textsubscript{9}O\textsubscript{2}NO\textsubscript{2} photolysing to OH:

\[
C_{4}H_{9}O_{2}NO_{2} + \text{hv} \rightarrow \text{OH + other products} \quad \phi_{OH,BPN}
\]

Photolysis of the product to OH was observed in the HO\textsubscript{2} + NO\textsubscript{2} reaction, see above. Figure 10 is an example of a C\textsubscript{4}H\textsubscript{9}O\textsubscript{2} decay trace and shows that equation 4 is a good fit to the data and that at long times the signal has not returned to the baseline, B > 0. This non-zero baseline makes it harder to observe equilibrium in reaction 3 at the higher temperatures. It needs to be quantified and fixed when analysing the higher temperature data. The data from reaction 3 is described by

\[
I_{3} = C'([C_{4}H_{9}O_{2}] + X_{3} [C_{4}H_{9}O_{2}NO_{2}]) \quad E5
\]
where \(I_3 \) = intensity of OH fluorescence at time \(t \) and

\[
X_3 = \frac{\text{Cross section of BPN} \times \phi_{\text{BPN}}}{\text{Cross section of HO}_2 \times \phi_{\text{HO}_2}}
\]

In the SI the analytical generic solution is given for equation E5, where \([\text{C}_4\text{H}_9\text{O}_2] = \text{M}_2 \) and \([\text{C}_4\text{H}_9\text{O}_2\text{NO}_2] = \text{M}_3 \). At 241 and 268 K only \(k_3(k_{\text{bin}}) \) and \(k_{\text{diff}} \) (diffusion of \(\text{C}_4\text{H}_9\text{O}_2 \)) are significant, so fitting of equation E5 to the data yields a defined value for \(X_3 \). Global analysis was carried out on the data at each temperature using Origin in order to determine a more reliable value of \(k_3 \) and \(X_3 \), see above for details. The results from this analysis are given in Table 5, where it can be seen that the non-zero baseline is well-defined by the low T experiments.

<table>
<thead>
<tr>
<th>T / K</th>
<th>(10^{12} k_3 / \text{cm}^3 \text{s}^{-1})</th>
<th>(X_3)</th>
<th>(k_3 / \text{s}^{-1})</th>
<th>(10^{13} Kc / \text{cm}^3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>241</td>
<td>11.7 ± 0.42</td>
<td>0.040 ± 0.004</td>
<td>na</td>
<td>na</td>
</tr>
<tr>
<td>268</td>
<td>10.7 ± 0.62</td>
<td>0.040 ± 0.006</td>
<td>na</td>
<td>na</td>
</tr>
<tr>
<td>293</td>
<td>6.49 ± 0.36</td>
<td>0.040 fixed</td>
<td>7.6 ± 7.2</td>
<td>8.54</td>
</tr>
<tr>
<td>316</td>
<td>7.68 ± 0.46</td>
<td>0.040 fixed</td>
<td>51.7 ± 9.8</td>
<td>1.49</td>
</tr>
<tr>
<td>341</td>
<td>5.48 ± 0.70</td>
<td>0.040 fixed</td>
<td>324 ± 30</td>
<td>0.17</td>
</tr>
</tbody>
</table>

Table 5. Returned parameters from the analysis of the \(\text{C}_4\text{H}_9\text{O}_2 + \text{NO}_2 \) data, errors are \(2\sigma \). All experiments were carried out at in 100 Torr of helium.

No change was observed in \(k_3 \) in experiments carried out at 400 Torr helium implying that the system is close to its high-pressure limit. Although no studies of 1-,2-\(\text{C}_4\text{H}_9\text{O}_2 \) have been made, these results are in reasonable agreement with the previous study of the reaction of t-\(\text{C}_4\text{H}_9\text{O}_2 \) with \(\text{NO}_2 \) that obtained a value of \(1.2 \pm 0.3 \times 10^{-11} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1} \) at 1 atmosphere of SF\(_6\). These observations indicate that reaction 3 is
close to its high-pressure limit, and this is tested in the master equation analysis discussed below.

At room temperature and above equilibration was observed. An example of equilibrium behaviour is shown in Figure 11, where it can be seen that the non-zero baseline is significantly larger than in Figure 10, indicating the approach to equilibrium with a non-zero concentration of the peroxy radical. In the analysis of this equilibration data X_3 was fixed to the value obtained at low temperatures, see Table 5, and k_3 and k_{diff2} (diffusion of $\text{C}_4\text{H}_9\text{O}_2\text{NO}_2$) were assigned non-zero values in the fit. Global analysis was carried out for all the data at a given temperature in the same way as in the analysis of the $\text{CH}_3\text{O}_2 + \text{NO}_2$ data. The parameters returned from this analysis are given in Table 5.

![Figure 11](image)

Figure 11. An example of equilibration in the reaction between $\text{C}_4\text{H}_9\text{O}_2$ and NO_2 at 341 K and 100 Torr total pressure, He, and $[\text{NO}_2] = 6.53$ mT. The pre-trigger data are equal to zero and are not shown.

The enthalpy change for reaction 3, $\Delta rH^0(3)$, was determined in the same way as for reaction 1 by fitting a master equation model to the experimental data using MESMER. All the data in Table 5, together with the butyl nitrate decomposition
kinetic data of Zabel et al. were used in this analysis, using the approach discussed in the master equation section. It is noted that Zabel et al. reacted chlorine atoms with n-butane to make the nitrate as used in this study. Therefore C₄H₉O₂NO₂ in both studies is mainly 2-C₄H₉O₂NO₂. All vibrational and rotational frequencies were calculated at the B3LYP/6-31+G** level of level of theory, the output frequencies were scaled by 0.96, and the newly formed bond, RO₂—NO₂, was treated as a hindered rotor. The input parameters for this calculation are given in the SI.

Overall the fit to the data is good but the amount of data is limited to that from this study, carried out in helium, and nitrate decomposition data carried out at just one temperature (253 K) and pressure (800 mBar, N₂). For this reason a temperature independent ∆Eₕₑₑ, was used in the analysis and the results are given in Table 6. The master equation analysis showed that the system is close to but not at its high-pressure limit. This is the reason why the value of ∆Eₕₑₑ for N₂ is undefined with only one pressure point.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\Delta H^0(3))</td>
<td>-90.7 ± 0.3</td>
<td>kJ mol⁻¹</td>
</tr>
<tr>
<td>(\Delta H^0_{298}(3))</td>
<td>-93.5 ± 0.3</td>
<td>kJ mol⁻¹</td>
</tr>
<tr>
<td>A: (k^∞ = A \times (T/298)^n)</td>
<td>9.6 ± 3.9 \times 10^{-12}</td>
<td>cm³ molecule⁻¹ s⁻¹</td>
</tr>
<tr>
<td>n: (k^∞ = A \times (T/298)^n)</td>
<td>-0.60 ± 1.34</td>
<td></td>
</tr>
<tr>
<td>(\Delta E_{DOWN}(\text{He}))</td>
<td>274 ± 126</td>
<td>cm⁻¹</td>
</tr>
<tr>
<td>(\Delta E_{DOWN}(\text{N}_2))</td>
<td>799 ± 13926</td>
<td>cm⁻¹</td>
</tr>
</tbody>
</table>

Table 6. Master Equation fit to the C₄H₉O₂ + NO₂ data in this study together with the literature \(k_1 \). The errors are 1σ.
From Table 6 it can be seen that our value of $\Delta H_{r}^{\circ}(3)$ is equal to the value for reaction 1. Also from Table 6 it can be seen that the high pressure limit for reaction 3 has a negative temperature dependent rate coefficient, although the uncertainty is considerable. The temperature dependence is similar to that of reaction 1. In the SI the Master Equation results for $k_3(T,p)$ and $k_{-3}(T,p)$ are given in parameterised forms through Chebyshev coefficients and Troe parameters.

Conclusions

The application of a three-laser technique has been successfully demonstrated in a study of the kinetics of HO$_2$, CH$_3$O$_2$ and 1-,2-C$_4$H$_9$O$_2$ with NO$_2$. The peroxy radical was probed by pulsed photolysis with detection of the photo-fragment within a few 100 ns via laser induced fluorescence. The observation of a photolysis channel forming OH for 1-,2-C$_4$H$_9$O$_2$ means that this method may be applicable to other stable peroxy species by detection of the relevant alkoxy radical or OH.

- The kinetics and thermodynamics for the reaction CH$_3$O$_2$ with NO$_2$ were determined over the temperature range 295 - 363 K and 25 - 400 Torr of nitrogen. The values of the rate coefficient, $k_1(p)$, at room temperature are in excellent agreement with the literature values. Above room temperature equilibrium kinetics were observed. These data together with the literature data for the forward and reverse kinetics were analysed using a master equation methodology, using the code MESMER. This returned a high precision value for the enthalpy of reaction, $\Delta_{r}H_{298}^{\circ}(1)$, of -93.5 ± 0.3 kJ mol$^{-1}$ which is in good agreement with a
previous determination of -92.7 ± 2.0 kJ. The uncertainty is much reduced because of the use of the fitting routine in MESMER to analyse all available data, for both association and dissociation reactions, regardless of the pressure and temperature conditions used in their determination.

- The rate constants for reaction 2, HO$_2$ + NO$_2$, at 295 K were within 30% of those from previous studies, but appear a little high.

- The decay profiles of HO$_2$ in the presence of NO$_2$ are characterised by a non-zero baseline. This result is best interpreted as photolysis of the reaction product HO$_2$NO$_2$, PNA, to OH. Analysis of the baseline data leads to $\phi_{\text{OH, PNA}} = 0.15$, in agreement with a recent study.

- Equilibrium in the reaction HO$_2$ + NO$_2$ was obscured by an additional loss channel from HO$_2$NO$_2$ that became significant at T > 340 K.

- Reaction 3, 1,2- C$_4$H$_9$O$_2$ + NO$_2$, was studied between 100 and 400 Torr total pressure of helium and between 243 and 343 K. Reaction 3 was found to be close to its high-pressure limit rate coefficient, k_3^∞, 9.6 ± 3.9 \times 10$^{-12}$ cm3 molecule$^{-1}$ s$^{-1}$. Equilibrium kinetics were observed at room temperature and above, and master equation analysis of these data and nitrate decomposition data returned $\Delta_r H_{298}(3) = -93.5 \pm 0.3$ kJ mol$^{-1}$.

Acknowledgements

We thank Dr Branko Ruscic for helpful discussions on the thermochemistry of the reactions studied and Dr Robin Shannon for providing the rotational constants and vibrational frequencies of the species in reaction 3. We are grateful to NERC for funding (NE/K005820/1).
Supporting Information Available

The supporting information contains:

1. Global analysis of kinetic traces under equilibrating conditions, describing how the traces were fitted and the rate coefficients obtained.

2. Comparison of modelled and measured rate coefficients for k_1

3. Representations of $k(p,T)$ for RO$_2$ + NO$_2$ using Chebyshev polynomials and a Troe representation. The section describes the method used and gives parameters for both methods for the reactions studied.

4. Input parameters for the MESMER master equation analysis.

5. Chebyshev polynomials for calculating $k(p,T)$ for RO$_2$ + NO$_2$. A spreadsheet is provided as a separate Supporting Information file to facilitate use of the Chebyshev polynomials. The instructions for using the spreadsheet to calculate $k(p,T)$ under any conditions within the fitted range are given in the spreadsheet in Supporting Information II.

This information is available free of charge via the Internet at http://pubs.acs.org.
References

46. Origin (OriginLab, Northampton, MA).
Figure Captions

Figure 1. Kinetic trace for CH$_3$O$_2$ + NO$_2$ at 295 K and 32.1 mTorr of NO$_2$ at 400 Torr total pressure. The solid line is the best fit first-order decay, E1, to the data, where k$_1$ = 4505 ± 421 s$^{-1}$.

Figure 2. Bimolecular plot for the CH$_3$O$_2$ + NO$_2$ kinetic data at a total pressure of 51 Torr (N$_2$) and at 295 K.

Figure 3. Plot of the pressure dependence of CH$_3$O$_2$ + NO$_2$ at 295 K from this study and the literature, where N$_2$ is the buffer gas: ■ = this study; ● = Ravishankara et al.3 ▲ = Sander et al.3 and ▼ = Bacak et al.4 All errors are 2σ. The solid line is the MESMER fit to the data, see text below for details.

Figure 4. An example of equilibrium behaviour in the reaction between CH$_3$O$_2$ and NO$_2$ at 353 K and 400 Torr total pressure, N$_2$, and [NO$_2$] = 9.58 mT. The pre-trigger data is equal to zero and is not shown. The fit is from global analysis.

Figure 5. Plot of the experimental versus the MESMER calculated values for k$_1$. The high values are from this study (●) and Bridier et al.5 (♦) and the low values (■) are from the nitrate decomposition studies of Zabel et al.7. The slope is equal to 1.007 ± 0.012, which indicates exceptional agreement.

Figure 6. Kinetic trace showing the removal of HO$_2$ in the presence of NO$_2$ (=34.2 mT) at 400 Torr total pressure, k$_2$ = 1478 ± 100 s$^{-1}$. Note that at long times the baseline does not return to zero, see text.

Figure 7. Bimolecular plot for the data for reaction 2 at 200 Torr at room temperature.

Figure 8. Plot of the pressure dependence of the bimolecular rate constant for reaction 2 at room temperature, where N$_2$ is the buffer gas: ■ = this study; ● = Sander et al.3 ▲ = Kurylo et al.7 and ▼ = Bacak et al.4 ♦ = Christensen et al.8 All errors are 2σ.

Figure 9. A decay trace showing the removal of HO$_2$ in the presence of 25.52 mTorr NO$_2$ at 393 K and a total pressure of 400 Torr. Biexponential behaviour is evident in this trace but analysis indicates that HO$_2$NO$_2$ is being lost via another channel, with rate constant k$_X$, as well as re-dissociation: k$_2$ = 691 ± 59 s$^{-1}$; k$_2$ = 58 s$^{-1}$ (fixed); and k$_X$ = 42 ± 3 s$^{-1}$; B was fixed at a value of 0.1.

Figure 10. Kinetic trace of C$_4$H$_9$O$_2$ in the presence of NO$_2$ at 241 K and 100 Torr total pressure, helium. [NO$_2$], [O$_2$], [Cl$_2$] and [C4H10] = 4.75, 392, 97.0 and 101.18 mTorr, respectively, and the removal rate constant k$_3$ is equal to 3150 ± 108 s$^{-1}$.

Figure 11. An example of equilibration in the reaction between C$_4$H$_9$O$_2$ and NO$_2$ at 341 K and 100 Torr total pressure, He, and [NO$_2$] = 6.53 mT. The pre-trigger data are equal to zero and are not shown.
Fig. 3

Fig. 4
Fig. 5

Fig. 6
Fig. 11
TABLE 1

<table>
<thead>
<tr>
<th>Pressure /Torr</th>
<th>$10^{12} k_1 / \text{cm}^3 \text{molecule}^{-1} \text{s}^{-1}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>26</td>
<td>0.82 ± 0.08</td>
</tr>
<tr>
<td>51</td>
<td>1.15 ± 0.16</td>
</tr>
<tr>
<td>99</td>
<td>1.50 ± 0.14</td>
</tr>
<tr>
<td>230</td>
<td>2.26 ± 0.18</td>
</tr>
<tr>
<td>399</td>
<td>3.05 ± 0.24</td>
</tr>
</tbody>
</table>

Table 1. Tabulated values of the bimolecular rate constant for CH$_3$O$_2$ + NO$_2$ at 295 K, with N$_2$ buffer gas. The errors are 2σ.

TABLE 2

<table>
<thead>
<tr>
<th>T / K</th>
<th>$10^{12} k_1 / \text{cm}^3 \text{s}^{-1}$</th>
<th>k_1 / s^{-1}</th>
<th>$10^{14} K_c / \text{cm}^3$</th>
<th>$10^{14} K_c / \text{cm}^3$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Leeds</td>
<td>Bridier et al. [3]</td>
</tr>
<tr>
<td>333</td>
<td>1.23 ± 0.10</td>
<td>32.3 ± 4.0</td>
<td>3.8 ± 0.6</td>
<td>4.6</td>
</tr>
<tr>
<td>343</td>
<td>1.66 ± 0.17</td>
<td>95 ± 9</td>
<td>1.70 ± 0.24</td>
<td>1.8</td>
</tr>
<tr>
<td>353</td>
<td>1.30 ± 0.16</td>
<td>207 ± 22</td>
<td>0.63 ± 0.10</td>
<td>0.72</td>
</tr>
<tr>
<td>363</td>
<td>0.92 ± 0.13</td>
<td>446 ± 46</td>
<td>0.21 ± 0.04</td>
<td>0.31</td>
</tr>
</tbody>
</table>

Table 2. Forward and reverse rate coefficients determined from CH$_3$O$_2$ + NO$_2$ at a total pressure of 400 Torr, N$_2$. Errors are 2σ.
<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\Delta H_0(1)$</td>
<td>-90.7 ± 0.2</td>
<td>kJ mol$^{-1}$</td>
</tr>
<tr>
<td>$\Delta H_{298}(1)$</td>
<td>-93.5 ± 0.3</td>
<td>kJ mol$^{-1}$</td>
</tr>
<tr>
<td>A: $k^\infty = A \times (T/298)^n$</td>
<td>$8.5 \pm 2.4 \times 10^{-12}$</td>
<td>cm3 molecule$^{-1}$ s$^{-1}$</td>
</tr>
<tr>
<td>n: $k^\infty = A \times (T/298)^n$</td>
<td>-0.83 ± 0.88</td>
<td></td>
</tr>
<tr>
<td>$\Delta E_{\text{down},298}(N_2)$: $\Delta E_{\text{down},=}$</td>
<td>393 ± 110</td>
<td>cm3</td>
</tr>
<tr>
<td>$\Delta E_{\text{down},298} \times (T/298)^m$</td>
<td>-0.10 ± 1.34</td>
<td></td>
</tr>
</tbody>
</table>

Table 3. Master Equation fit to the CH$_3$O$_2$ + NO$_2$ data in this study together with the literature, both (1) and (-1). The errors are 2σ.

X_2 (Leeds)	0.086 ± 0.015
$\phi_{\text{OH, PNA (Leeds)}}$	0.15 ± 0.03
$\phi_{\text{OH, PNA (Macleod et al.)}}$	0.34 ± 0.16
$\phi_{\text{OH, PNA (Jimenez et al.)}}$	0.085 ± 0.08
$\phi_{\text{HO2, PNA (Jimenez et al.)}}$	0.89 ± 0.26
$\phi_{\text{OH, NO2 (Roehl et al.)}}$	0.56 ± 0.17

Table 4. Product yields from the photolysis of PNA at 248 nm. Errors are 2σ.
<table>
<thead>
<tr>
<th>T / K</th>
<th>$10^{12} k_3 / \text{cm}^3 \text{s}^{-1}$</th>
<th>X_3</th>
<th>k_3 / s^{-1}</th>
<th>$10^{13} K_c / \text{cm}^3$</th>
</tr>
</thead>
<tbody>
<tr>
<td>241</td>
<td>11.7 ± 0.42</td>
<td>0.040 ± 0.004</td>
<td>na</td>
<td></td>
</tr>
<tr>
<td>268</td>
<td>10.7 ± 0.62</td>
<td>0.040 ± 0.006</td>
<td>na</td>
<td></td>
</tr>
<tr>
<td>293</td>
<td>6.49 ± 0.36</td>
<td>0.040 fixed</td>
<td>7.6 ± 7.2</td>
<td>8.54</td>
</tr>
<tr>
<td>316</td>
<td>7.68 ± 0.46</td>
<td>0.040 fixed</td>
<td>51.7 ± 9.8</td>
<td>1.49</td>
</tr>
<tr>
<td>341</td>
<td>5.48 ± 0.70</td>
<td>0.040 fixed</td>
<td>324 ± 30</td>
<td>0.17</td>
</tr>
</tbody>
</table>

Table 5. Returned parameters from the analysis of the $\text{C}_4\text{H}_9\text{O}_2 + \text{NO}_2$ data, errors are 2σ. All experiments were carried out at in 100 Torr of helium.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\Delta H^o_0(3)$</td>
<td>-90.7 ± 0.3</td>
<td>kJ mol$^{-1}$</td>
</tr>
<tr>
<td>$\Delta H^*_{298}(3)$</td>
<td>-93.5 ± 0.3</td>
<td>kJ mol$^{-1}$</td>
</tr>
<tr>
<td>A: $k^x = A \times (T/298)^n$</td>
<td>$9.6 \pm 3.9 \times 10^{12}$</td>
<td>cm3 molecule$^{-1}$ s$^{-1}$</td>
</tr>
<tr>
<td>n: $k^y = A \times (T/298)^n$</td>
<td>-0.60 ± 1.34</td>
<td></td>
</tr>
<tr>
<td>$\Delta E_{\text{DOWN}}(\text{He})$</td>
<td>274 ± 126</td>
<td>cm$^{-1}$</td>
</tr>
<tr>
<td>$\Delta E_{\text{DOWN}}(\text{N}_2)$</td>
<td>799 ± 13926</td>
<td>cm$^{-1}$</td>
</tr>
</tbody>
</table>

Table 6. Master Equation fit to the $\text{C}_4\text{H}_9\text{O}_2 + \text{NO}_2$ data in this study together with the literature k_1. The errors are 1σ.
TOC graphic