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Abstract
We perform magnetic focussing of high mobility holes confined in a shallow GaAs/
Al0.33Ga0.67As quantum well grown on a (100) GaAs substrate. We observe ballistic focussing
of holes over a path length of up to 4.9 μm with a large number of focussing peaks. We show
that additional structure on the focussing peaks can be caused by a combination of the finite
width of the injector quantum point contact and Shubnikov–de Haas oscillations. These results
pave the way to studies of spin-dependent magnetic focussing and spin relaxation lengths in two-
dimentional hole systems without complications of crystal anisotropies and anisotropic g-
tensors.
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1. Introduction

The control of the electron’s spin degree of freedom is central
to the development of spin-based electronics, as well for spin-
based quantum computation [1–3]. Key to both of these fields
is the need to manipulate the electron spins without magnetic
fields. This has driven great interest in the spin–orbit inter-
action, which allows all electrical control of the electron spin
in semiconductor heterostructures [4]. Holes in GaAs/
Al0.33Ga0.67As heterostructures not only possess an intrinsi-
cally strong spin–orbit interaction, and suffer far less from
unwanted interactions with nuclear spins in the host semi-
conductor, but also have unique properties that have no
counterpart in electron systems [5–7].

In systems with strong spin–orbit coupling transverse
magnetic focussing can be used as a spin filter, allowing

direct measurement of the spin polarization due to the spatial
separation of different spin species [8–11]. Transverse mag-
netic focussing requires high mobility two-dimensional (2D)
systems, so that particles travel ballistically with no
momentum relaxation between the injector and collector.
Previous magnetic focussing experiments with 2D hole sys-
tems were performed using heterostructures grown on (311)A
substrates, where silicon can be used as a p-type dopant and
high hole mobilities could be achieved [8, 9, 12]. However
the low symmetry of the (311)A crystal introduces unwanted
complexities into the hole spin properties, since the holes
have anisotropic in-plane g-factors and non-zero off-diagonal
elements in the Lande g-tensor [13, 14]. This greatly com-
plicates analysis of the spin polarization due to spin–orbit
interaction.

In the present paper we show that it is possible to perform
transverse magnetic focussing of 2D holes grown on (100)
substrates, where the high crystal symmetry greatly simplifies
the hole spin properties. Furthermore the high hole mobility is
achieved in a comparatively shallow 2D hole system, and the
extremely high mobility allows for ballistic transport over a
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large focussing length, so that magnetic focussing experi-
ments can be performed at very low magnetic fields where the
Zeeman spin splitting is negligible.

2. Device characterization

Although high mobility hole systems can be realized on (100)
substrates using carbon modulation doping [15–17], making
stable p-type nanostructures with Schottky gates is still pro-
blematic. We therefore use a completely undoped accumu-
lation mode Al0.33Ga0.67As/GaAs heterostructure containing
a 15 nm GaAs quantum well, grown on a (100) substrate
(Wafer W713). The holes are introduced into the quantum
well by applying a negative bias to an overall top gate [18].
The quantum well confinement lifts the bulk light-hole–heavy
hole degeneracy, and in our experiments only the heavy hole
band is occupied.

Two samples were used in this study. Sample A is a
standard Hall bar used to determine the two-dimensional hole
density (p), mobility μ and mean free path (lmfp) as a function
of top-gate bias. We calculate the mean free path using the
standard equation: l p e2 .mfp ( )m p= Sample B has an
additional set of gate electrodes patterned by electron beam
lithography, which are used to define three 300 nm wide and
300 nm long quantum point contacts (QPCs) in a magnetic
focussing geometry (shown in the inset of figure 2). Experi-
ments were performed in a dilution fridge with a base tem-
perature of 35 mK.

Figure 1 shows the hole mobility and calculated mean
free path as a function of density. The high quality of
the heterostructure means the holes have the high mobility
and long mean free path required to study magnetic focussing.
All focussing measurements are performed at a top gate
voltage of VTG = −1.45 V, which gives a density of

P 1.65 10 cm2D
11 2= ´ - corresponding to a mobility of

760000 cm2 V−1s−1 and lmfp = 4.9 μm.

3. Magnetic focussing

The inset of figure 2 shows the gate structure on sample B
used to define the focussing geometry. Three QPCs are pat-
terned with separations of 800 nm between QPCs A and B,
and 2300 nm between QPCs B and C. This allows for
focussing diameters of 800, 2300 and 3100 nm to be used
depending on the measurement combination. Five ohmic
contacts (labelled 1 to 5) are used to apply a current through
the injector QPC and to measure the resulting voltage built up
across the collector QPC. The 2D hole reservoir is grounded
with a separate ohmic contact to act as a drain for holes that
are not received by the collector.

For the data shown in figure 2 the four terminal focussing
resistance was measured by injecting a constant current of
I = 5 nA through QPC A using ohmic contacts 1 and 2. A
perpendicular out-of plane magnetic field B̂ was then used to
focus the holes into the collector QPC C, with the resulting
focussing voltage (Vfocus) measured between contacts 4 and 5.
The gates defining both QPC A and C were symmetrically
biased with a voltage of VSG = −0.43 V such that each QPC

Figure 1.Mobility and mean free path for a range of densities on the
2D Hall bar sample A, measured at the base temperature of 35 mK.

Figure 2. Magnetic focussing of 2D holes at two different
temperatures. The inset shows the measurement configuration. A
constant current of 5 nA is injected through QPC A using ohmic
contacts 1 and 2. The resultant voltage is measured across the
detector (QPC C) using contacts 4 and 5, to define a focussing
diameter of 3100 nm. The white trace on the schematic diagram
shows the path of focussed holes. The focussing resistance is plotted
as a function of applied B̂ for both high temperature (top trace) and
low temperature (bottom trace). The arrows mark location of
focussing peaks predicted by the 2D hole density p .2D
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was sitting on the first conductance plateau, G e h2 .2= The
resulting focussing resistance (Rfocus = Vfocus/I) is plotted as a
function of B̂ in figure 2.

The top trace in figure 2 shows the magnetic focussing
signal at T = 500 mK. There is a clear asymmetry in the
focussing resistance around B⊥ = 0 T. For B⊥ < 0 T no
focussing peaks or other structure is observed, with clear
focussing peaks visible for B⊥ > 0 T. The magnetic field at
which the first three focussing peaks should occur can be
calculated from the 2D hole density: Bfocus = iÿkF/ed, where
k p2 ,F 2D

1 2( )p= i is an integer and d is the focussing dia-
meter. The expected locations of the first three peaks are
marked by vertical arrows in figure 2. There is good agree-
ment between the values predicted from the hole density and
the peak locations observed in experiment.

Reducing the temperature to 118 mK causes two chan-
ges, shown in the bottom trace of figure 2. Firstly, Shubni-
kov–de Haas oscillations, periodic in 1/B, become visible for
B⊥ < −0.1 T Secondly, for B⊥ > 0 additional higher fre-
quency structure appears superimposed on top of the
focussing peaks. For B⊥ < 0.15 T this structure is periodic in
1/B and coincides with the Shubnikov–de Haas oscillations
in the 2D region (B 0<^ ), highlighting the need to avoid
large magnetic fields in focussing experiments.

In contrast at low fields the additional structure is peri-
odic in B for B⊥ < 0.15 T. This high frequency structure is
likely an interference effect arising from either the finite width
of the injector QPC [19–21], branching flow caused by
background impurities [22–24], or some combination of
these. To shed some light on to the origins of this high fre-
quency structure, and investigate how the transverse magnetic
focussing depends on the focussing distance and the magnetic
field, we use the flexible device geometry to examine
focussing for different d using different combinations of
injector and collector QPCs. Figure 3 shows focussing for all
three available focussing diameters, with the inset showing
the measurement configuration for each trace. Focussing
peaks can be seen for all focussing diameters, ranging from
d = 3100 nm in figure 3(a) to 800 nm in figure 3(c).

As the focussing length is increased, the location of the
focussing peaks shifts to lower B⊥. This is advantageous
since it allows the first peaks to occur at low enough B̂ that
there is no unwanted structure caused by Shubnikov–de Haas
oscillations. Again higher frequency structure is observed on
top of the focussing peaks and troughs, which is rapidly
washed out by increasing temperature. This additional struc-
ture is periodic in B⊥, with figure 4(c) showing the period in
B⊥ of the structure as a function of focussing diameter. The
period of the structure decreases linearly as the first peak
moves to lower B⊥ (focussing diameter is increased). This is
consistent with the structure being caused by the finite width
of the injector QPC, which will give self-similar interference
patterns for different focussing lengths due to a difference in
path length and Aharonov–Bohm phase [19]. This is also
consistent with the noticeable broadening of the focussing
peaks as the focussing diameter is decreased (figures 3(a)–
(c)). Since the injector and collector QPCs have a finite width
WQPC (of order the Fermi wavelength) there is a range of

cyclotron orbits, and corresponding B⊥, for which holes will
be accepted into the collector QPC. If we assume this
broadening of the focussing peaks is approximately

B k e dFD = D^ where k p2F 2D
1 2( )p= we expect broader

Figure 3. Focussing resistance for different focussing diameters. (a)
d = 3100 nm, injecting holes from QPC A and collecting in QPC C.
(b) d = 2300 nm, using QPCs B and C. (c) d = 800 nm, using QPCs
A and B. All traces were taken with 5 nA injection current at
T = 35 mK.

Figure 4. (a) Width of the first focussing peak as a function of the
ratio of the QPC width to the focussing diameter. (b) Amplitude of
first focussing peak as a function of the focussing path length d.p (c)
Period of the high frequency structure as a function of the location of
the first focusing peak.
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peaks for smaller d. Figure 4 (a) shows the peak width (ΔB)
scales with WQPC/d as expected.

Finally we turn to the amplitude of the focussing peaks.
The decrease in the amplitude of the focussing peaks with
increasing d is a consequence of the the increased chance of
scattering as the focussing path length is increased
(figures 3(c)–(a)). This data can be used to extract the scat-
tering length l0 since R A d lexp 2 ,Focus 0( )pµ - where d 2p
is the focussing path length. Figure 4 (b) shows the amplitude
of the first focussing peak as a function of the focussing path
length d 2p on a semilog plot. The exponential decay of the
focussing signal gives a scattering length of l 1.6 m0 m= ,
which is significantly shorter than the momentum relaxation
length in the 2D system (lm = 4.9 μm). The ratio of these
scattering lengths (l l 3.10 »m ) is consistent with values found
in previous studies of hole transverse magnetic focussing on
(311)A substrates [12], and is likely due to the fact that the
momentum relaxation length is not sensitive to small angle
scattering, whereas small angle scattering may cause holes to
miss the collector QPC. A similar difference in the quantum
and momentum scattering times has been observed in accu-
mulation mode electron systems [25].

4. Conclusions

We have shown that high mobility 2D hole systems can be
formed on (100) substrates and used to study transverse
magnetic focussing over path lengths as large as 4.87 μm. We
have shown that additional structure observed at low tem-
peratures arises from the finite with of the injector QPC at low
magnetic fields, and Shubnikov–de Haas oscillations at higher
magnetic fields. This work paves the way to future studies of
spin–orbit driven spin-dependent magnetic focussing and spin
relaxation lengths in 2D hole systems without the complica-
tions of crystal anisotropies and anisotropic g-tensors.
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