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Abstract 

Background: Hemodynamics is thought to play an important role in the mechanisms responsible for initiation, growth, and rupture of 
intracranial aneurysms. Computational fluid dynamic (CFD) analysis is used to assess intra-aneurysmal hemodynamics.

Objectives: This study aimed to investigate the effects of variations in heart rate and internal carotid artery (ICA) flow rate on intra-
aneurysmal hemodynamics, in an ICA aneurysm, by using computational fluid dynamics.
Patients and Methods: Computed tomography angiography (CTA) was performed in a 55 years old female case, with a saccular ICA 
aneurysm, to create a patient-specific geometrical anatomic model of the aneurysm. The intra-aneurysmal hemodynamic environments 
for three states with different flow and heart rates were analyzed using patient-specific image-based CFD modeling.
Results: Results showed significant changes for the three simulated states. For a proportion of the states examined, results were 
counterintuitive. Systolic and time-averaged wall shear stress and pressure on the aneurysm wall showed a proportional evolution with 
the mainstream flow rate.
Conclusion: Results reinforced the pivotal role of vascular geometry, with respect to hemodynamics, together with the importance of 
performing patient-specific CFD analyses, through which the effect of different blood flow conditions on the aneurysm hemodynamics 
could be evaluated.
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1. Background
An aneurysm is a vascular condition characterized by 

localized dilatation of arterial walls, which is inherently 
carrying a risk of rupture and hemorrhage. Intracranial 
aneurysms tend to occur near arterial bifurcations, around 
the Circle of Willis, and their rupture leads to subarach-
noid hemorrhage (SAH), which is associated with high 
rates of mortality and morbidity. Adverse hemodynamics 
is thought to play a vital role in the mechanisms respon-
sible for initiation, growth, and rupture of aneurysms. 
Therefore, a hemodynamics assessment, before planning 
possible therapies, is very important for clinicians in order 
to reduce intervention risks in favor of benefits. In the past 
few years, patient-specific image-based computational flu-
id dynamics (CFD) has been used as a powerful technique 
to study blood flow behavior in vessels, in order to under-
stand mechanisms of cardiovascular and cerebrovascular 
diseases. The CFD has been employed to evaluate several 
hemodynamic parameters, such as blood velocity, blood 

pressure, wall shear stress (WSS), and turbulence intensity, 
which are accepted to play role in development, diagnosis, 
and treatment of vascular diseases (1-7). As a simulation 
technique, CFD needs: 1) three-dimensional (3D) vessel 
anatomical model (geometry), which is commonly recon-
structed from computed tomography angiography (CTA), 
magnetic resonance angiography (MRA), or 3D rotational 
angiography (3DRA); 2) models to predict blood transport 
properties, 3) blood flow or pressure waveforms at inlets 
and outlets of the vascular bed to be simulated, which are 
assigned as inlet and outlet boundary conditions and are 
commonly assumed or occasionally obtained from patient-
specific measurements. Among the studies in this field, a 
number of researchers have investigated the role of hemo-
dynamics in initiation (8-10), growth (11, 12), and rupture (6, 
13, 14) of aneurysms. Hemodynamic stresses are accepted 
to play an important role in aneurysm initiation, growth, 
and rupture. The WSS and tensile stress is two of these 
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stresses. The former, which is associated with viscous fluid 
flow induced frictional force on the wall, acts as a mechani-
cal signal to the endothelial cells responsible for vascular 
remodeling and modulates their function, while the latter 
is associated with blood pressure and stimulates collagen 
synthesis and degradation. Although intra-aneurysmal 
hemodynamic environment interacts with aneurysm wall 
through both WSS and pressure, WSS are thought to play a 
more important role in aneurysm growth and rupture (3). 
Therefore, assessment of WSS and other hemodynamic pa-
rameters related to it have been suggested to evaluate risk 
of rupture in aneurysms (6). Bowker et al. (15), Les et al. (16), 
and Suh et al. (17) studied the effects of exercise on intra-an-
eurysmal hemodynamics and observed that WSS on the an-
eurysm increased during exercise. However, Bowker et al. 
(15) studied only middle cerebral artery aneurysms, while 
the other two focused on abdominal aortic aneurysms.

2. Objectives
This paper will use patient-specific CFD technique to 

simulate intra-aneurysmal hemodynamics in an aneu-
rysm located on terminal internal carotid artery (ICA) 
and perform both qualitative and quantitative studies on 
the effects of blood flow and heart rate alterations during 
exercise on the hemodynamic behavior of this aneurysm.

3. Patients and Methods
CTA was performed on a 55 years old female with a sac-

cular aneurysm in the ICA, on GE Lightspeed VCT 64-slice 
scanner (General Electric Healthcare, Milwaukee, WI, USA) 
in Imam Khomeini Hospital, Tehran, Iran. A 3D patient-
specific geometric model of the aneurysm was constructed 
after segmentation of 3D CTA images in Materialise MIMICS 
(Materialise NV, Leuven, Belgium) (Figure 1). The geomet-
ric model is then used to generate a volumetric computa-
tional unstructured mesh of 2795046 elements in ANSYS 
ICEM CFD (Ansys Inc., Canonsburg, PA, USA). Blood flow 
was modeled by unsteady 3D Navier-Stokes equations for 
incompressible Newtonian fluid. Blood is assumed to be a 
homogeneous Newtonian fluid of density 1066 kg/m3 and 
viscosity 0.0035 Pa∙s. The assumption of blood, as a Newto-
nian fluid, is demonstrated to be reasonable in large vessels 
with high shear rate (18). Despite compliance of the vessel 
walls, due to the lack of elastin in cerebral arteries (19), 
vessels were assumed to be rigid, with a no slip boundary 
condition at walls. Pressure waveforms, obtained from one-
dimensional global analysis of systemic arterial tree (20), 
were prescribed as the outlet boundary conditions at the 
outlets, i.e. anterior communicating artery (ACA) and mid-
dle cerebral artery (MCA).

Sato and Sadamoto (21) measured the variations of 
blood flow and heart rate in ICA, during dynamic exer-
cise. To study the effect of entering flow on intra-aneu-
rysmal hemodynamics, three different states, with dif-
ferent inlet flow and heart rates, were simulated (Table 
1). A flow waveform, obtained from 1D model of systemic

Figure 1. Reconstructed 3D model used for CFD Simulations

Table 1. Heart Rate and Changes in Internal Carotid Artery Flow 
Rate in Each of the Three Statesa

State 1, Rest State 2 State 3
Heart rate, beats/min 60 93 127
Change in ICA flow rate, % - 11.6 18.4
aAbbreviation: ICA, internal carotid artery

arterial tree (20), was used as the inlet boundary condition 
at state 1 (at rest) and modulated according to Sato and 
Sadamoto measurements, to generate inlet boundary con-
ditions for the other two states and mimic the effects of ex-
ercise on intra-aneurysmal hemodynamics. Mean arterial-
level WSS needed to maintain the structure of the arterial 
vessels is 1.5 Pa (22). Inlet flow waveform is scaled with the 
inlet area, to maintain a mean WSS of 1.5 Pa at the inlet (23). 
The CFD simulations were run using ANSYS-CFX® (Ansys 
Inc. Canonsburg, PA, USA) for three cardiac cycles, with a 
time step of 0.005 seconds and the results obtained at the 
third cardiac cycle were reported. A straight tube exten-
sion, proximal to the real inlet, was used to ensure that the 
blood flow entering the main computational domain has 
a fully-developed velocity profile.

4. Results
Blood flow in the aneurysm was simulated at three states 

(Table 1). Effects of variations in blood flow and heart rate 
on intra-aneurysmal hemodynamics were compared qual-
itatively and quantitatively, for different states.
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4.1. Qualitative Comparison
Distributions of WSS, time-averaged over a cardiac 

cycle on the aneurysmal wall, are shown in Figure 2 
for the three states (first row). For all states, areas of el-
evated WSS were observed around the aneurysm neck 
and the remainder of the aneurysm wall was exposed 
to low WSS. Visual comparison of the states showed an 
increase in WSS in state 2, compared to state 1, whereas 
time-averaged WSS decreased in state 3, although blood 
flow and heart rate were increased in this state. Figure 
2 also shows the distribution of WSS on the aneurysm 
region at peak systole, for each state. Systolic WSS, how-
ever, increased, as flow and heart rate increased in all 
states.

 Figure 3 depicts the distribution of aneurysmal wall 

pressure at peak systole. An impingement region, con-
centrated at the aneurysm neck, was observed for all 
states (marked by a small ball on Figure 3). The location 
of impingement region slightly changed in state 3 and 
interestingly, in state 2, the maximum pressure at the an-
eurysm neck and also the pressure on the aneurysm apex 
were higher than the two other states. There is an area of 
elevated pressure on the aneurysm apex in states 1 and 2, 
which has disappeared in state 3.

Figure 4 shows the isovelocity surfaces corresponding 
to 22 cm/second, at peak systole. One can see a stronger 
impinging jet into the aneurysm in state 1. This stronger 
impinging jet explains the higher aneurysm wall systolic 
pressure in this state of flow and heart rate.

Figure 2. Wall shear stress distributions for three states time-averaged over a cardiac cycle (first row) and at peak systole (second row).

Figure 3. Pressure distributions for three states at peak systole. The impingement point is shown by a small violet ball on each contour.

Figure 4. Isovelocity surfaces corresponding to 22 cm/secend for three states at peak systole
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The oscillatory shear index (OSI) is a biomechanical pa-
rameter that shows the flow oscillations along a cardiac 
cycle. It is related to the ratio of magnitude of time-aver-
aged WSS vector to the time-averaged WSS magnitude. By 
monitoring the differences between magnitude of the 
time-averaged WSS and time-averaged magnitude of WSS, 
OSI indicates the WSS vector deflection from blood flow 
predominant direction. The OSI values can vary between 
0 for no variations in WSS vector to 0.5 for 180° deflection 
of WSS direction. The OSI is calculated based on equation 1.

(1) OSI= 1
2×
�

1.0−
∫ T

0

→
WSS
∫ T

0

→
WSS

�

Distributions of OSI on the aneurysm wall are shown in 
Figure 5. Visual comparison of the contour maps reveals 
that states with higher flow rates are associated with 
smaller areas of elevated WSS. Nevertheless, OSI contours 
are of approximately the same pattern in all states and, 
as expected, the areas of elevated OSI are concentrated at 
the regions where the WSS is low.

4.2. Quantitative Comparison
The WSS and pressure, averaged temporally, over a car-

diac cycle, and spatially, over the aneurysm wall, as well 
as maximum WSS and pressure on the aneurysm wall, 
averaged over a cardiac cycle, are presented in Table 2 for 
all three states. One can see that in states 2 and 3, when 
the flow and heart rate are greater than in state 1, the ves-
sel lumen is exposed to greater averaged values of WSS 
and pressure, on a cardiac cycle. However, as previously 
observed qualitatively, maximum pressure on the aneu-
rysm region at peak systole in state 2 is, counter-intui-
tively, 0.5% (100 Pa) greater than state 3, where the flow 
and heart rates are greater than state 2. Nevertheless, this 
difference is really negligible and one can say that there 
is almost no change on aneurysm wall pressure moving 
from state 1 to states 2 and 3. On the other hand, relatively 
high-pressure impingement region area in state 1 is 4% of 
the whole aneurysm, while this value slightly increased 
to 4.3% in state 2, and decreased to 3.1% in state 3, with 
greater flow rates than state 1. Area of elevated WSS in 
state 1 is 1%, which, in states 2 and 3, grew to be 1.2% of the 
whole aneurysmal wall area.

Figure 5. Distributions of oscillatory stress index for three states

Table 2. Changes in Space and Time Averaged, and Time-Averaged Maximum Wall Shear Stress and Pressure on the Aneurysmal Wall 
for Three Analyzed Statesa

State 1 State 2 State 3

Space and Time Averaged WSS on the Aneurysm Wall, Pa 2.33 2.65 2.23

Change from State 1, % 13.7 -4.4

Time Averaged Maximum WSS on the Aneurysm Wall, Pa 25.05 29.24 31.67

Change from State 1, % 16.7 26.4

Space and Time Averaged Pressure on the Aneurysm Wall, Pa 12961.21 12998.54 12999.31

Change from State 1, % 0.3 0.3

Time Averaged Maximum Pressure on the Aneurysm Wall, Pa 13032.97 13087.36 13098.94

Change from State 1, % 0.4 0.5
aAbbreviation: WSS, wall shear stress.
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Both high and low WSS have been found to be correlated 
with aneurysm growth and rupture (3). To follow the im-
plications of this finding, areas of aneurysm wall regions 
exposed to time-averaged WSS greater than 1.5 Pa and 
lower than 0.4 Pa are studied. The simulations showed 
that 13.4% and 42.6% of the whole aneurysm wall are ex-
posed to time-averaged WSS below 0.4 Pa and above 1.5 Pa, 
respectively. As expected, in state 2, an increase in blood 
flow rate compared to state 1 caused areas with time-
averaged WSS below 0.4 Pa to decrease to 8.3% and areas 
with time-averaged WSS greater than 1.5 Pa to increase to 
49.6% of the whole aneurysm wall area. In contrast, while 
flow rate is increased in state 3, areas with time-averaged 
WSS below 0.4 Pa increased to 17.3% and areas with time-
averaged WSS above 1.5 Pa decreased to 42.8% of the whole 
aneurysm wall area. These counter-intuitive results indi-
cate the role of complex intra-aneurysmal hemodynam-
ics on parameters thought to be important in aneurysm 
rupture.

5. Discussion
Results of patient-specific image-based CFD analysis of 

the intra-aneurysmal hemodynamics performed on a 
ruptured ICA aneurysm showed significant changes for 
the three simulated states. However, for several of the pa-
rameters examined, results were counter-intuitive.

Velocity vector field, as the most important hemo-
dynamic variable, which is used to establish WSS and 
pressure on the aneurysmal wall, could be alternatively 
obtained from CFD or imaging techniques, such as Phase-
Contrast Magnetic Resonance Imaging (PC MRI); howev-
er, PC MRI is only applicable on vessels with simple struc-
tures and large diameter, and fails to map rotational and 
secondary slow flows with acceptable resolution. The CFD 
analysis, instead, was demonstrated to be able to visual-
ize and quantify hemodynamic parameters, with high 
resolution.

In this work, effects of variations of ICA flow rates on 
intra-aneurysmal hemodynamics were studied, using 
hemodynamic parameters, such as WSS, pressure, and 
areas of elevated and low WSS. Blood pressure, which is 
translated to a tensile stress in the wall, affects the vessel 
lumen via stimulation of cell-mediated collagen synthe-
sis and cross-linking and collagen degradation. On the 
other hand, WSS, as a mechanical signal, is sensed and 
transduced to biologic signals by endothelial cells, which 
activate the biomechanical pathways that maintain vas-
cular homeostasis and regulate remodeling (6). Blood 
pressure and WSS are both thought to play an important 
role in aneurysm pathobiology; however, collagen turn-
over, as a biological response to imbalanced wall tensile 
stresses, reduces the imbalance itself and mitigate the 
effect of blood pressure. Hence, WSS-mediated effects 
received more clinical attention. It is showed that a WSS 
of around 2.0 Pa is suitable for maintaining the vessel 
structure while low WSS may lead to endothelial cell de-
generation, via apoptotic cell cycle (20). Current study ex-

amined the effects of variations in ICA flow rate on areas 
of elevated and low WSS and revealed intuitive results of 
increasing WSS on aneurysm wall with increasing blood 
flow and heart rate. However, several counter-intuitive 
trends were observed in areas of excessively low WSS and 
elevated WSS in state 3, which accentuates the pivotal role 
of CFD in reporting and predicting aneurysms develop-
ment. Still, the present study outlines the importance of 
performing patient-specific CFD analyses for blood flow 
in aneurysms, which may assist the clinical decision mak-
ing in selecting an efficient treatment plan for each indi-
vidual case. Rigid walls assumption and treating blood as 
a Newtonian fluid are the limitations of this study, which 
are common in most CFD simulations in the field. As pre-
viously mentioned these assumptions were investigated 
in (18, 19) and have been shown to have negligible effects 
while CFD analysis is employed to quantify flow patterns 
and main hemodynamic measures in intracranial aneu-
rysms.

To conclude, the results of this study reinforced the 
pivotal role of vascular geometry with respect to hemo-
dynamics, together with the importance of performing 
patient-specific CFD analyses, through which the effect of 
different blood flow conditions on the aneurysm hemo-
dynamics could be evaluated.
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