This is an author produced version of Comment on: Clinical cure rates in subjects treated with azithromycin for community-acquired respiratory tract infections caused by azithromycin-susceptible or azithromycin-resistant Streptococcus pneumoniae: analysis of Phase 3 clinical trial data.

White Rose Research Online URL for this paper: http://eprints.whiterose.ac.uk/91371/

Article:

http://dx.doi.org/10.1093/jac/dkv212
Title: Comment on: Clinical cure rates in subjects treated with azithromycin for community-acquired respiratory tract infections caused by azithromycin-susceptible or azithromycin-resistant Streptococcus pneumoniae: analysis of Phase 3 clinical trial data.

Author: Andrew Kirby*, The University of Leeds and Leeds Teaching Hospitals NHS Trust. Old Medical School, Leeds General Infirmary, Leeds, LS1 3EX, UK. E-mail: a.kirby@leeds.ac.uk. Telephone: 0113 3923929

Corresponding author: Andrew Kirby

Running title: S. pneumoniae azithromycin MICs and clinical outcome.
Comment on: Clinical cure rates in subjects treated with azithromycin for community-acquired respiratory tract infections caused by azithromycin-susceptible or azithromycin-resistant *Streptococcus pneumoniae*: analysis of Phase 3 clinical trial data.

Zhanel et al. report that *Streptococcus pneumoniae* azithromycin MICs ≥2mg/L, compared to <0.5mg/L, predict worse outcomes in azithromycin treated *S. pneumoniae* respiratory tract infections.¹ This relationship between MIC and outcome is not a linear dose (MIC) response relationship. Whilst an MIC ≥2mg/L predicts worse outcomes, outcomes are no different if the *S. pneumoniae* MIC is 2-8mg/L, ≥16 or ≥64mg/L. The absence of a linear dose (MIC) response relationship is not explained and raises the possibility that the MIC is not causally related to outcomes.² Defining if an MIC is causally related to outcome is important to ensure the maximal benefit from azithromycin treatment can be obtained. Given this non-linear dose response relationship I suggest further analysis is required to understand the study findings. Specifically, an analysis of individual patient factors should be completed. It may be that patient factors e.g. age, co-morbidities, previous episodes of respiratory tract infection or macrolide treatment, are associated with both treatment failure and azithromycin MICs. A study by Moreno et al. supports this possible explanation, they showed nosocomial acquisition of a *S. pneumoniae* infection was a risk factor for macrolide (erythromycin) resistance.³ Data from Holmes et al. has also shown that raised MICs are not always causally related to outcomes. Holmes et al. investigated outcomes from *Staphylococcus aureus* bacteraemia in relation to vancomycin MICs.⁴ A multivariate analysis determined that raised vancomycin MICs were associated with poorer clinical outcomes, even in the absence of vancomycin treatment. Might a raised *S. pneumoniae* azithromycin MIC also be a predictor of a poorer outcome, but not one related to a reduced efficacy of azithromycin treatment? A multivariate analysis is required to determine if patient factors may explain the observed association between azithromycin resistance and outcome in the treatment of *S. pneumoniae* respiratory tract infection. Such analyses have been completed for penicillin treated *S. pneumoniae* respiratory tract infections. One such analysis by Pallares et al. showed that after adjusting for co-morbidities the odds ratio for mortality in patients with penicillin-resistant, compared to penicillin sensitive strains, was 1.0.⁵ If patient factors do explain the association between MICs of ≥2mg/L and clinical failure, MIC criteria defining resistance for azithromycin treatment of *S. pneumoniae* respiratory tract infections may be unhelpful in predicting an individuals risk of treatment failure.

Transparency declarations: None to declare

References


