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 Palladium catalysed three component cascade process, 
involving coupling of 2-iodobenzoates, -benzaldehydes, or 
acetophenones with substituted allenes and ammonium 10 

tartrate as an ammonium surrogate, provides a novel and 
facile route to substituted functionalised isoquinolinones and 
isoquinolines in good yields. 
 
 Isoquinolinone and isoquinoline derivatives are important 15 

constituents of a diverse range of molecules of biological and  
pharmaceutical relevance as well as a common structural 
component within many alkaloids.1,2,3 However, little attention 
has been given to approaches to these systems which utilise 
metal-catalysed aryl-allene couplings, despite the obvious 20 

potential of this route to produce such systems with high degrees 
of chemo- and regioselectivity. Nonetheless, the potential of this 
approach has been underlined previously. Thus, Larock reported 
that annulation of a substituted allene with N-tosyl-2-
iodobenzylamine under Pd(II) catalysis afforded isoquinolines as 25 

a mixture of three regio- and stereo-isomers.4 Additionally, 2-
iodobenzaldehyde imines have also been used with Pd(0) 
catalysis to annulate substituted allenes giving isoquinoline 
derivatives.5 Ni(0)/chiral phosphine ligand mediated regio- and 
enantioselective synthesis of isoquinoline-1(2H)-one derivatives 30 

has been reported via denitrogenation or decarbonylation of N-
aryl-1,2,3-benzotriazin-4(3H)-ones or N-substituted phthalimide, 
respectively, followed by intermolecular annulation with 
substituted allenes.6 Recently, Glorius et al., employed Rh(III) to 
catalyse C-H activation of N-(pivaloyloxy)benzamide involving 35 

intermolecular annulation with substituted allenes to furnish 
isoquinoline-1(2H)-ones.7   
As part of our program of research into the development and 
application of palladium catalysed allene insertion cascades, we 
have previously reported a number of examples of three-40 

component cascades for the synthesis of N-substituted 4-
methylene-3,4-dihydro-1(2H)-isoquinolinones. A feature of these 
reactions is that, following an initial Pd- mediated intramolecular 
allene insertion, both intra- and intermolecular nucleophilic 
addition then occurs to give tetra-fused ring systems containing 45 

an isoquinolinone ring.8, 9a These include, following the initial Pd 
catalysed intramolecular allene insertion, intermolecular 
nucleophilic addition involving N-allenyl-2-iodobenzamide,9b,c 
and nitrogen-tethered 1,6-enynes9d respectively. Additionally, we 
have also reported two types of cascade reactions that can furnish 50 

isoquinolines; (i) intermolecular allene insertion into the C-I bond 
of an aryl iodide linked N-nucleophile followed by intramolecular 
N-addition to the generated ʌ-allyl,10 and (ii) intermolecular 
allene insertion to an aryl iodide carrying a dipolarophile/Michael 
acceptor followed by intermolecular N-addition of an azide/amine 55 

and finally intramolecular 1,3-dipolar cycloaddition/Michael 
addition.11  
In the present study, we report a new approach utilising our 
“ammonium surrogate” technology12 as a novel ammonia source 

to furnish substituted functionalised isoquinolinone and 60 

isoquinoline derivatives.  Thus, methyl 2-iodobenzoate 
derivatives 1 were reacted with a range of substituted allenes 2 in 
the presence of ammonium tartrate (6 equiv.),  Pd2(dba)3 (2.5 mol%), 

TFP (`10 mol%), and K2CO3 (3 equiv.),  to afford isoquinolinones 4 
via intramolecular cyclisation of the intermediate 3 in 51-78% 65 

yield (Table 1).  Z-configuration of the exocyclic double bonds 
were established using NOE data (see the Experimental Section) 
and in the absence of ammonium tartrate, no reaction occurred, 
and only starting materials were observed. This appears to be 
consistent with a mechanism involving the addition of ammonia 70 

to the ʌ-allyl intermediate forming amine 3 which subsequently 
cyclises to give 4. Thus, the cyclisation step in 3ĺ4 is faster than 
further allylation of the allyl-NH2 group. In the case of methyl 5-
bromo-2-iodobenzoate (1, R1 = 5-Br), the reaction is 
chemoselective for oxidative addition at the C-I bond leaving the 75 
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C-Br bond intact. It is also noteworthy that the ester moieties in 
4k-m were unchanged under the reaction conditions.   
    
Table 1. Pd(0) catalysed annulation of allenes with methyl 2-
iodobenzoates. 5 
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Reactions carried out at 100 ºC in 1,4-dioxane/DMF (5:1) for 16-31h and 
employed substituted allene 2 (1 equiv.), 1 (1.2 equiv.), ammonium 
tartrate (6 equiv.), Pd2(dba)3 (2.5 mol%), TFP (`10 mol%), and K2CO3 (3 
equiv.). Figures in brackets indicate reaction time and isolated yields. 

In order to briefly explore the potential of adducts 4 for further 
synthetic manipulation, compounds 4f and 4k, selected as 
representative examples, were converted into the corresponding 
1-chloroisoquinolines 5a and 5b in the presence of POCl3, 
(Scheme 1). The assignment of the structures of the chlorination 10 

products to chloropyridines 5a and 5b followed from analysis of 
the 1H-NMR data for these compounds. This revealed the  
absence of allyl signals (typically a triplet at ~6-6.5 ppm and 
doublet at ~4.5-5 ppm respectively), and instead, comprised an 
AAƍBBƍ nmr pattern for the two methylene groups at 3-3.5 and 4-15 

4.5 ppm respectively, consistent with the assigned structures. (see 
Supporting Information). 

 
 
 20 

 
 
 
 
 25 

 
Scheme 1. Conversion of isoquinolinone to isoquinoline. 
To further probe the scope of this process, the reaction of 2-
iodobenzaldehydes/2ƍ-iodoacetophenone 6 with substituted 
allenes 2 was explored. This reaction presumably goes via 30 

intermediate 7 which undergoes a 1,3-hydrogen rearrangement 
generating isoquinolines 8, Table 2. Analogously to isoquinoline 
5a and 5b, 1H-NMR data (see Supporting Information) showed 
no indication of allyl signals but instead included an AAƍBBƍ 
pattern for the two methylene groups present in 8. The somewhat 35 

low yields of products from this reaction may reflect the thermal 
instability of the substrates or the products. This hypothesis 
appears to be supported by the isolation of theobromine (in the 
case of 8a,f and g), 2',3',5'-tri-O-acetyluridine (in case of 8d), 
3',5'-tri-O-acetylthymidine (in case of 8e), quinazolin-4-one (in 40 

case of 8b) and chloroquinazolin-4-one (in case of 8c) as by-
products. It is noteworthy that thermal degradation of products 
was not observed in the preparation of isoquinolinones 4a-m. 
Table 2. Pd(0) catalysed preparation of isoquinolines 8. 
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Reaction carried out at 100 ºC in 1,4-dioxane/DMF (5:1) for 12-26h and 
employed substituted allene 2 (1 equiv.), 6 (1.2 equiv.), ammonium 
tartrate (6 equiv.), Pd2(dba)3 (2.5 mol%), TFP (10 mol%), and K2CO3 (2-3 
equiv.). 
In summary, a novel and powerful cascade approach has been 
applied to the synthesis of substituted functionalised 
isoquinolinone and isoquinoline derivatives via 3-component 
palladium catalysed cascade chemistry. The utility of ammonium 
tartrate as a novel ammonia source is underlined in this simple 5 

one-pot cascade protocol. 
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