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ABSTRACT
This paper examines the synthetic control method in contrast to commonly used difference-in-differences (DiD) estimation,
in the context of a re-evaluation of a pay-for-performance (P4P) initiative, the Advancing Quality scheme. The synthetic
control method aims to estimate treatment effects by constructing a weighted combination of control units, which represents
what the treated group would have experienced in the absence of receiving the treatment. While DiD estimation assumes
that the effects of unobserved confounders are constant over time, the synthetic control method allows for these effects
to change over time, by re-weighting the control group so that it has similar pre-intervention characteristics to the treated
group.

We extend the synthetic control approach to a setting of evaluation of a health policy where there are multiple
treated units. We re-analyse a recent study evaluating the effects of a hospital P4P scheme on risk-adjusted hospital
mortality. In contrast to the original DiD analysis, the synthetic control method reports that, for the incentivised
conditions, the P4P scheme did not significantly reduce mortality and that there is a statistically significant increase
in mortality for non-incentivised conditions. This result was robust to alternative specifications of the synthetic control
method. © 2015 The Authors. Health Economics published by John Wiley & Sons Ltd.
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1. INTRODUCTION

In the absence of randomised controlled trials, evaluations of alternative health policies and public health
interventions may use evidence from natural experiments (Craig et al., 2012; Jones and Rice, 2011). Natural
experiments attempt to exploit exogenous variation in the participation in the programme under evaluation,
for example, across regions or time periods. Difference-in-differences (DiD) methods are often used to esti-
mate treatment effects in these settings, by contrasting the change in outcomes pre- and post-intervention, for
the treatment and control groups. An attractive feature of DiD estimation is that it can remove the portion of
confounding due to time-invariant (fixed) differences between the comparison groups in unobserved covar-
iates that predict the outcome of interest, assuming that the effects of these unobserved confounders do not
change over time. DiD also assumes that any time effects (e.g. macro shocks) are common to the treatment
groups under evaluation. The combination of these two assumptions is often referred to as the ‘parallel trends
assumption’, which implies that without the intervention, outcomes for the treated and control groups would
have followed parallel trajectories over time. DiD estimation is an increasingly common approach for
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evaluating health programmes (e.g. Currie et al., 2014; Échevin and Fortin, 2014). As a recent review by
Ryan et al. (2014) points out, while the theoretical properties of DiD estimation are well understood, a major
concern is whether in practice the parallel trends assumption is plausible. The authors present simulation
evidence that the choice of specification for the DiD estimation can have a major impact on the point
estimates and estimated statistical significance of estimated policy effects and suggest that alternatives to
DiD also warrant consideration.

The synthetic control method, pioneered by Abadie and Gardeazabal (2003) and Abadie et al. (2010) is an
alternative approach for programme evaluation that relaxes the parallel trends assumption. Abadie et al.
(2010) introduced the synthetic control method in the context of comparative case studies, where only one
or a few units are subject to intervention, while a larger set of units remained untreated. The central idea
behind the synthetic control method is that the outcomes from the control units are weighted so as to
construct the counterfactual outcome for the treated unit, in the absence of the treatment. More precisely, a
synthetic control unit is defined as the time-invariant weighted average of available control units, which prior
to the intervention have similar pre-intervention characteristics and outcome trajectory to the treated unit. In
contrast to the DiD method, the synthetic control method allows the effects of observed and unobserved
predictors of the outcome to change over time, while assuming that pre-intervention covariates have a linear
relationship with outcomes post-treatment.

The synthetic control method therefore may be useful for health policy evaluations when the validity of
the parallel trends assumption is questionable. However, the data structures from such studies typically differ
to previous comparative case studies that have applied the synthetic control method, where only one or a few
units are subject to intervention (Abadie and Gardeazabal, 2003; Abadie et al., 2010; Eren and Ozbeklik,
2011; Coffman and Noy, 2012; Hinrichs, 2012; Billmeier and Nannicini, 2013). The synthetic control
method has recently been considered for settings with multiple treated units, but this research is currently
unpublished, and it is unclear whether the methods proposed apply to evaluations of alternative health
policies (Acemoglu et al., 2013; Dube and Zipperer, 2013; Xu, 2015).

In a health context, the synthetic control approach has been considered for macro-level interventions
including the effects of wage compensation on the migration of health professionals (Okeke, 2009), the
impact of universal coverage on health outcomes (Courtemanche and Zapata, 2014), and the impact of
expanding public insurance eligibility on insurance take-up (Lo, 2013). We are not aware of a previous study
in a health context that critically examines the synthetic control approach as a contrast to DiD estimation.

In this context, policy makers often introduce new initiatives at the level of the health care provider, and so
multiple units are treated. For example, hospital pay-for-performance (P4P) schemes, which link a portion of
the provider’s income to achieving quality targets, tend to be introduced for individual providers, in spite of scant
evidence on their effectiveness and cost-effectiveness (Meacock et al., 2014; Emmert et al., 2012; Lagarde et al.,
2013; Epstein, 2012; Eijkenaar, 2013). One of the most rigorous evaluations of a P4P programme was the assess-
ment of Advancing Quality (AQ), which was introduced in the North West of England in 2008 (Sutton et al.,
2012). The evaluation applied a DiD approach, exploiting a quasi-experimental design, in that the programme
was introduced in all 24 hospitals in the North West region, while all 132 hospitals in the rest of England served
as a control group. The study reported that for conditions incentivised by the programme, risk-adjusted hospital
mortality was reduced (Sutton et al., 2012), and the scheme was cost-effective (Meacock et al., 2014). This
significant improvement in patient outcomes was in direct contrast to findings from a similar US scheme, the
Hospital Quality Incentive Demonstration (Ryan, 2009). Possible explanations for the positive effects of the
AQ scheme included the relatively large bonus payments for hospitals in the AQ scheme (Epstein, 2012), the
scheme’s design that encouraged cooperation amongst providers but also, as acknowledged by the authors of
the original evaluation, potential bias due to residual confounding (Sutton et al., 2012). Specifically, the reduction
in risk-adjusted mortality that was reported may have been due to unobserved covariates whose values differed
across regions and whose effects varied over the study period.

The aim of this paper is to critically examine the synthetic control method, in the context of evaluating
health policies with multiple treated units such as hospitals. We re-evaluate the AQ scheme using the
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synthetic control method and contrast the findings to the original DiD analysis. In order to ensure compara-
bility to the original DiD evaluation, we use risk-adjusted mortality that controls for observed, patient-level
compositional differences that vary over time. We propose a modification of the approach originally
proposed by Abadie et al. (2010) in using the synthetic control method to construct an aggregate synthetic
control unit, using hospital-level data from the control regions. To represent uncertainty, we extend the
placebo tests proposed by Abadie et al. (2010) to accommodate the data structure with multiple treated units.

The remainder of the paper is organised as follows. In Section 2 we introduce the motivating example and
the original DiD analysis. Section 3 provides a general overview of the synthetic control method. Section 4
describes our proposed approaches to modifying the synthetic control method for multiple treated units, and
Section 5 presents the results. Section 6 presents robustness checks, and Section 7 concludes and discusses
the limitations of the study.

2. MOTIVATING EXAMPLE: EVALUATION OF THE ADVANCING QUALITY SCHEME

The AQ scheme was the first hospital-based P4P programme in the UK, introduced in October 2008 for
all hospitals in the North West Strategic Health Authority. The AQ scheme aimed to improve hospital
performance on a number of clinical processes by rewarding hospitals for achieving quality targets. As
the US Hospital Quality Incentive Demonstration scheme, the AQ was initially based on a ‘tournament’
system, in which bonuses were paid to the top performers. The programme required participating hospi-
tals to collect and submit data on 28 quality measures of patient care across five clinical areas: pneumo-
nia, heart failure, acute myocardial infarction, hip and knee surgery, and coronary artery bypass grafting.
In the first year of the programme, bonuses equal to 2–4% of their revenue were paid to hospitals, which
reported quality scores in the top two quartiles. For the next 6 months, bonuses were available also to
those who reached a certain threshold and those who made top improvements from performance in the
first year. Earned bonuses were allocated internally to the clinical teams whose performance had earned
the bonus.

We re-analyse the data from the published evaluation of the programme’s effects on patient outcomes
(Sutton et al., 2012), which was also used as the basis of the cost-effectiveness evaluation (Meacock et al.,
2014). The study considered patients who were admitted with the three emergency conditions that the AQ
programme was incentivised to change the management of, acute myocardial infarction, heart failure, and
pneumonia, but also investigated the programme’s potential effects on six clinical conditions not incentivised
by the scheme (acute renal failure, alcoholic liver disease, intracranial injury, paralytic ileus, and duodenal
ulcer).

As in the original study, the outcome of interest is 30-day risk-adjusted hospital mortality, calculated using
patient-level data from the national Hospital Episode Statistics database (Health and Social Care Information
Centre, 2014). Logistic regression, developed using the data from the pre-intervention period only, was used
to estimate a predicted risk score according to patient characteristics: age, sex, primary ICD-10 diagnostic code,
co-morbidities, type, and location of admission. This predicted risk was aggregated to the hospital level, by
quarter of the year, and subtracted from observed mortality rates. Figure 1 shows the trajectory of risk-adjusted
mortality in hospitals in the North West region and in the rest of England, six quarters before and after the start
of the AQ.

The original DiD evaluation estimated the following panel data (fixed effects) regression model:

Y it ¼ δt þ λμi þ αDit þ εit (1)

where i is hospital and t is quarter of the year identifier. Yit is risk-adjusted mortality, δt are common time effects
(time fixed effects), and μi are fixed hospital-level unobserved variables (hospital fixed effects) with a time-
constant parameter λ, Dit is an indicator variable that takes the value of 1 for the hospitals in the North West
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after the programme start, and 0 otherwise, α corresponds to the effect of the treatment, and εit stands for idi-
osyncratic shocks with mean zero. The risk adjustment aimed to control for observed, time-varying
confounders measured at the patient level; hence, these variables are not further included in the hospital-level
regressions.

With DiD estimation, the parameter of interest is the ATT (Jones and Rice, 2011). Intuitively, the Average
treatment effect on the treated (ATT) estimator contrasts the observed outcomes of the treated group to their
counterfactual outcomes, after the intervention.1

This estimation approach can provide unbiased estimates of the ATT, if the effects of any hospital-level
factors, potentially leading to unobserved compositional differences between hospitals in the North West and
the rest of England, remain constant over time and if the unobserved time effects are common across hospitals
in treated and untreated hospitals.

The original DiD analysis reported that across the three incentivised conditions in the evaluation, the
introduction of AQ led to a reduction in risk-adjusted absolute 30-day in-hospital mortality by 0.9 percentage
points [95% CI, �1.4 to �0.4], with a significant mortality reduction of 1.6 percentage points [95% CI, �2.4
to �0.8] for patients admitted with pneumonia. For patients admitted with the other two incentivised condi-
tions, the estimated mortality reduction was not statistically significant. For the conditions considered in the
evaluation that were not incentivised by AQ, the DiD analysis reported a non-significant increase in
mortality.

The differences in the pre-intervention trajectories of risk-adjusted mortality between the comparison
groups (Figure 1) for both the incentivised but also the non-incentivised conditions raise the concern that
there may be unobserved covariates that differ between the comparison groups and whose effects on mor-
tality change over time. Visual inspection of risk-adjusted mortality in the periods before the introduction
of the AQ scheme (Figure 1) raises concerns about whether the outcome trajectories for the North West
region were parallel to those for the rest of England. Standard statistical tests could not reject the null
hypothesis of parallel trends (Sutton et al., 2012). However, the parallel trends assumption concerns
treatment-free potential outcomes in the pre-treatment, but also in the post-treatment, period and so this
assumption is untestable, and the investigation of alternative methods that avoid this assumption are
warranted.

1In contrast, the ATE parameter captures the expected differences between counterfactual outcomes under treated and under control states,
for everyone in the population.

Figure 1. Risk-adjusted 30-day hospital mortality, in the North West of England (n = 24) (solid lines) vs. the rest of England (n = 122,
sample constrained to create balanced panel; dashed lines), base case. The vertical dashed lines indicate the last pre-intervention period
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3. OVERVIEW OF THE SYNTHETIC CONTROL METHOD

We first describe the synthetic control method for settings when only a single unit is exposed to treatment,
following the notation of Abadie et al. (2010). Of the J+1 units (regions), the first unit is exposed to a health policy,
while the others remain unexposed and are referred to as the ‘donor pool’. Outcomes are observed for T periods,

and the policy of interest starts in T0 + 1. The observed outcome vector of each region isY j ¼ Y j1⋯Y jT 0⋯YJT
� �′

.
The observed outcome can be written as the sum of a treatment-free potential outcome, YjtN, and the effect of

the treatment, αjt, such that

Y jt ¼ Y jt
N þ αjtDjt (2)

Y jt
N ¼ δt þ λtμj þ θtZj þ εjt (3)

where δt is a time fixed effect, Zi is a vector of time-invariant measured predictors with time-varying coeffi-
cient vector θt, μj is a vector of time-invariant unobserved predictor variables with time-varying coefficients
λt, Djt is an indicator variable that takes the value of 1 for the treated unit after T0, and is 0 otherwise, and εjt
are unobserved transitory shocks with zero mean. Under the assumption that the relationship between the out-
come and the predictors is linear, the synthetic control method generalises the DiD method by allowing the
effects λt of the unobserved predictors μj to differ over time, while the DiD method constrains these effects to
be constant (Equation 1).

Before the intervention, the treatment-free potential outcome Yjt
N corresponds the observed outcome, for

both the treated and the control regions. For periods after T0, the treatment-free counterfactual for the
treated region, Y1t

N , is not observed. In order to estimate the treatment effect for the post-intervention
periods, the synthetic control method estimates the unobserved Y1t

N by creating a ‘synthetic control unit’,
a weighted combination of potential controls that best approximates the relevant pre-intervention character-
istics of the treated region. Let the vector used for this weighting be W= (w2⋯wJ + 1)′, where wj is the
contribution of each control region to the synthetic control unit and the weights are constrained such that
wj≥ 0 and w2 +⋯+wJ + 1 = 1. The estimator of the counterfactual is constructed as the linear combination

of the observed outcomes of the potential control regions: Ŷ N
1t ¼ ∑Jþ1

j¼2 wjY jt . The estimated treatment

effect for the treated unit for each time period after T0 can then be obtained as α̂1t ¼ Y 1t � Ŷ N
1t.

If the number of pre-intervention periods is large relative to the scale of the idiosyncratic error (Abadie et al.,
2010), an accurate prediction of pre-intervention outcomes makes it more plausible that time-varying responses to
unobserved predictor variables are also similar between the treated and the synthetic control unit.2 Formally, if the
weighted value of the observed covariates and pre-treatment outcomes for the control pool equals those of the

treated region, ∑Jþ1
j¼2 wjZj ¼ Z1 and ∑Jþ1

j¼2 wjY jt ¼ Y 1t; t ¼ 1;…; To , and the outcome is a linear function of

observed and unobserved potential confounders, then α̂1t is an approximately unbiased estimator of α1t.
The vector W* is chosen to minimise the discrepancy in the observed and unobserved confounders measured

before the intervention, between the treated and the synthetic control region. The discrepancy is measured with

the distance metric
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X 1 � X 0Wð Þ′V X 1 � X 0Wð Þ

q
, where X1 is a k×1 vector including k covariates and

pre-treatment outcomes for the treated region, while X0 is the corresponding k× J matrix of the control regions.
V is a k× k positive definite and diagonal matrix, which assigns weights according to the relative importance
of the covariates and the pre-intervention outcomes. The choice of variables within X0 and X1 needs to be justified
using substantive knowledge of the outcome process. While various choices are available for the method of

2The intuition is the following: The only way to reproduce the trajectories of the outcome variable over extended time periods is if the
weighted controls are similar to the treated unit in both observed and unobserved predictors of the outcome variable, as well as in the ef-
fects of these variables on the outcome (Abadie, 2013).
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selecting the weights in V, including the subjective assessment in their importance of predicting the outcome,
Abadie et al. (2010) recommends jointly choosing V and W so that they minimise the root mean squared predic-
tion error of the pre-intervention outcomes.

To obtain the statistical significance of the estimated treatment effects, Abadie et al. (2010) propose a proce-
dure akin to permutation tests (Edgington and Onghena, 2007). This involves iteratively re-assigning treatment
status for each control unit and, for this ‘placebo-treated’ unit, re-estimating the treatment effect by applying the
synthetic control method, then comparing the estimated treatment effect to the distribution of placebo effects.

4. EXTENDING THE SYNTHETIC CONTROL METHOD FOR MULTIPLE TREATED UNITS

For evaluations where there is more than one treated unit, Abadie et al. (2010) suggests aggregating the treated
units into a single treated unit, for example, a region. For the evaluation of the AQ, this would amount to
aggregating the outcomes and covariates of the 24 hospitals in the North West to construct the treated region,
as well as aggregating the outcomes of the control hospitals, to nine control regions. This would leave insuf-
ficient power to detect whether there was a statistically significant treatment effect.3 Hence, we modify
Abadie et al. (2010) approach and construct the synthetic control region by directly weighting the 132 control
hospitals to match the average pre-treatment outcomes of the hospitals in the treated region.

Let i be the hospital identifier and t the time period. i=1 to K1 hospitals are treated, while the remaining
K1 + 1 to K1 +K2 hospitals are controls. As before, the observed outcome of a hospital in each quarter can be
written as Yit=YitN+ αitDit. The aggregate outcome for the treated region can be defined as the previous expres-
sion weighted according to the relative frequency of the individual units (e.g. patients), so that

Y t ¼ Y t
N þ αtDt

whereY t ¼ ∑K1
i¼1Y itf it
∑K1

i¼1f it
; Y t

N ¼ ∑K1
i¼1Y it

N f it
∑K1

i¼1f it
, αt ¼ ∑K1

i¼1αit f it
∑K1

i¼1f it
;Dt is the treatment indicator, and fit denotes patient

numbers in each treated hospital and time period. As with DiD estimation, the synthetic control method with
multiple treated units identifies the ATT parameter (Xu, 2015). We calculate the ATT by averaging the
estimated treatments effects αt over the post-treatment period, weighted by the time-varying cumulative number
of patients in the treated region.

We propose to use the synthetic control method to estimate the counterfactual outcome for the treated

region, Y t
N
, by re-weighting the outcomes of the control hospitals:

Ŷ t
N ¼ ∑

K1þK2

j¼K1þ1
wjY jt

The weight vector W ¼ wK1þ1⋯wK1þK2ð Þ′ is selected to minimise the distance metric of the aggregated
characteristics and pre-treatment outcomes of the treated region and the synthetic control region (see Appendix
1 in the Supporting Information for further details).

We construct a test for the null hypothesis that the ATT for the treated region is zero, using a representation of
the distribution of the ATT under the null. We obtain this distribution by exploiting potential permutations of
hospitals into treated and control groups, accounting for a data structure where treatment is assigned at the level
of the region. We build placebo-treated regions by re-sampling a set of hospitals from the donor pool only, with-
out replacement, keeping the remaining controls in the donor pool. Then, we estimate the ATT using the synthetic
control procedure outlined above. These two steps are repeated for a large number of independently re-sampled

3The minimum p-value of rejecting the null hypothesis of no treatment effect, using a two-sided test would be (1/9 × 2 = 0.22).
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placebo-treated regions, allowing for repeatedly using control hospitals between placebo-treated regions. We
compare the distribution of the placebo ATTs to the observed ATT and calculate the p-value of the two-sided test
as the proportion of placebo ATTs, which were at least as extreme in absolute value as the estimated ATT.

In the distance matrix we include hospital-level covariates prior to the introduction of AQ (teaching hospital
status, hospital quality indicator, the composition of admitted patients according to age, ethnicity, and predicted
mortality) and pre-intervention outcomes for each quarter. We replicate the original analysis in considering all the
incentivised conditions aggregated, and then disaggregated by condition (pneumonia, acute myocardial infarc-
tion, heart failure). As in the original analysis, the non-incentivised conditions were weighted according to patient
numbers in each period, prior to the statistical analysis. We re-construct the synthetic control region, for each
analysis. In the placebo experiments, we create placebo regions that consist of the same number of hospitals as
in the treated region (23 for the pneumonia condition and the non-incentivised conditions, 24 for heart failure,
myocardial infarction, and all incentivised conditions), and the number of placebo regions created is 100. We
use the statistical software Stata throughout (StataCorp, 2011).

5. RESULTS OF THE MAIN ANALYSIS

We examine the synthetic control method in presenting step-by-step graphical results for the aggregate
incentivised conditions (see Appendix 2 in the Supporting Information for results for each incentivised condi-
tion). Here, the results show that there is no difference in risk-adjusted 30-day hospital mortality, between the syn-
thetic North West and the rest of England, prior to the introduction of the AQ scheme (up to 2008 quarter 3;
Figure 2). Average hospital characteristics were also similar between the North West and the synthetic North
West (Table I). Synthetic control weights were non-zero in each control region. No hospital contributed more
than 25% of the synthetic control weights (see Appendix 3 in the Supporting Information). While the ‘gap’
between the predicted outcomes of the synthetic and the real North West before the programme started indicates
the quality of the synthetic control region; the gap after the programme start can be attributed to the effect of AQ
(Figure 2 right panel). Over the entire post-intervention period, the estimated effect of AQ for the incentivised
conditions is �0.45%, and the null hypothesis that AQ had no effect on risk-adjusted mortality for the
incentivised conditions cannot be rejected (p=0.21), whereas for the DiD, the estimated ATT is �0.88%, and
the null is rejected (p<0.01; Table II).

Figure 3 (left panel) shows the estimated gaps for the 100 placebo regions for the incentivised conditions,
demonstrating a good pre-intervention fit, and for the post-intervention period, randomly scattered around zero.

Figure 2. Left panel: Risk-adjusted 30-day hospital mortality, for patients admitted with incentivised conditions: the North West of England
(solid line) vs. the synthetic North West (dashed line). Right panel: Gap in risk-adjusted 30-day hospital mortality for patients admitted with
incentivised conditions: the North West of England vs. the synthetic North West. The vertical dashed lines indicate the last pre-treatment

period (base case)
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The right panel shows the empirical distribution of the placebo ATTs. The areas outside the two vertical lines
show the proportion of the placebo ATTs that are more extreme than the estimated ATT of�0.45, translating to
a p-value of 0.21.

The synthetic control method also reports a smaller ATT for pneumonia patients compared with the DiD
analysis, and again the null hypothesis cannot be rejected (Table II). For the heart failure and acute myocardial
infarction patients, the synthetic control and DiD analyses both conclude that the null hypothesis cannot be
rejected. For the non-incentivised conditions, the synthetic control approach, unlike the DiD analysis, reports
that the introduction of the AQ scheme lead to a large, significant (p< 0.01) increase in risk-adjusted 30-day
hospital mortality (Figure 4).

6. ROBUSTNESS CHECKS

6.1. Synthetic control method at the hospital level

We also consider an approach where we construct a synthetic control unit for each treated hospital. We
estimate treatment effects at the hospital level and aggregate these to region level, using patient frequency
weights of the treated hospitals. We also modify the placebo experiments to reflect the structure of the
hospital-level analysis (for details, see Appendix 4 in the Supporting Information). We find that the
conclusions are consistent with those from the base case analysis (Table III). The somewhat differing

Table I. Means of hospital characteristics and outcomes measured before the AQ programme, for all incentivised
conditions

North West Rest of
England
(mean)Real (mean) Synthetic (mean)

Teaching or specialist hospital 16% 15% 21%
Age 72.3 72.1 73.0
White 84% 84% 79%
National regulator’s quality rating 3.47 3.46 3.48
Predicted mortality 18% 18% 19%
Risk-adjusted mortality 07Q1 (% point) 2.48 2.47 0.48
Risk-adjusted mortality 07Q2 (% point) 2.31 2.32 0.30
Risk-adjusted mortality 07Q3 (% point) 2.85 2.85 1.37
Risk-adjusted mortality 07Q4 (% point) 3.22 3.22 1.22
Risk-adjusted mortality 08Q1 (% point) 1.17 1.18 �0.08
Risk-adjusted mortality 08Q2 (% point) 1.03 1.05 �0.67

Averages of hospital-level variables, weighted for number of patients admitted. Risk-adjusted mortality is a % point difference between
observed and predicted mortality of hospitals, aggregated to the region level.

Table II. Estimated ATTs: DiD vs. synthetic control method (base case)

Standard DiD ATT (p-valuea) Synthetic control ATT (p-valueb)

All incentivised �0.88 (<0.01) �0.45 (0.21)
Pneumonia �1.62 (<0.01) �0.43 (0.45)
Heart failure �0.29 (0.52) 0.74 (0.18)
Acute myocardial infarction �0.28 (0.44) �0.49 (0.15)
All non-incentivised conditions 0.39 (0.30) 0.90 (0.02)

After discarding 10 hospitals that did not contribute observations to each quarter, we apply both methods on a balanced panel of 24 treated
and 122 potential control hospitals.
ap-values based on standard errors from fixed effects model, clustered by hospital.
bp-values calculated based on placebo tests.
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point estimates can be explained with the worse pre-treatment fit obtained with the hospital-level analysis
(Appendix 5 in the Supporting Information). In order to correct for suboptimal pre-treatment fit, we also
combine the hospital-level synthetic control analysis with DiD adjustment. After the synthetic control
procedure, we create a new panel dataset including the treated hospitals and the synthetic control hospi-
tals and apply DiD.4 We find that the conclusions from the synthetic control method are robust for
combination with DiD; however, the point estimates move closer to the results obtained from the aggre-
gate analyses (Table III).

6.2. Differences in differences combined with matching

We combine a multivariate matching method (Sekhon, 2011) with DiD, in order to reduce differences in
observed confounders that might be associated with the outcome dynamics (Abadie, 2005) and increase
the plausibility of the parallel trends assumption. We match on those same potential confounders (averaged
over the pre-treatment periods) and pre-treatment outcomes that were included in the distance matrix of the
synthetic control method. Matching resulted in good balance on all the predictors, while it was less successful
in closely matching the pre-treatment outcomes than the synthetic control method (Appendix 6 in the
Supporting Information). We find that the treatment effects estimated for incentivised conditions overall
and for pneumonia patients remain significant, but they attenuate in absolute value, compared with the
unmatched DiD analysis. The estimated mortality difference for the non-incentivised conditions increases
from 0.39 (p=0.30) to 0.86 (p=0.06), which is close to the estimate obtained with the synthetic control
approaches.

6.3. Leave-one-out robustness check for aggregate-level synthetic control analysis

To examine whether the synthetic control results were driven by a few influential control hospitals, we also
assess sensitivity of the estimated treatment effects to the iterative deletion of hospitals from the donor pool
(Abadie et al., 2015). Accounting for the regional structure of the data, we estimate nine new synthetic North

4In this robustness check, the estimated uncertainty is conditional on this reweighted data and does not take into account uncertainty in the
process of creating the synthetic control hospitals.

Figure 3. (a) Gap in risk-adjusted 30-day hospital mortality for patients admitted with incentivised conditions: the North West of England
vs. the synthetic North West (black line) compared with the distribution of 100 placebo gaps (grey lines). The vertical dashed line indicates
the last pre-treatment period. (b) The distribution of estimated placebo ATTs. The dashed lines indicate the estimated ATT and �1*ATT

(base case)
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West regions, in each of these analyses deleting one of the control regions. We find that the results are robust to
the elimination of one control region a time (Appendix 7 in the Supporting Information).

Figure 4. Graphical results of the synthetic control method: patients admitted with non-incentivised conditions (base case)

Table III. Estimated ATTs across methods: robustness checks

(1) Synthetic
control (base case)

(2) Synthetic control
(synthetic control for each

treated hospital)

(3) Synthetic control (synthetic
control for each treated

hospital) + DiD
(4) Standard DiD

(base case)
(5) Matching

+ DiD

All incentivised �0.45 (0.21) �0.17 (0.55) �0.27 (0.36) �0.88 (0.00) �0.74 (0.02)
Pneumonia �0.43 (0.45) �0.09 (0.95) �0.24 (0.57) �1.62 (0.00) - 1.12 (0.02)
Heart failure 0.74 (0.18) 0.71 (0.13) 0.72 (0.16) �0.29 (0.52) 0.51 (0.37)
Acute myocardial
infarction

�0.49 (0.15) �0.42 (0.23) �0.72 (0.26) �0.28 (0.44) �0.12 (0.78)

Non-incentivised 0.90 (0.02) 1.21 (0.01) 1.24 (<0.01) 0.39 (0.30) 0.86 (0.06)

p-values in brackets. For (1) and (2), p-values are based on placebo tests. For (3), (4), and (5), p-values are based on standard errors from
fixed effects regression, clustered by hospital.
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7. DISCUSSION

This paper examines the synthetic control method in the context of an evaluation of a high profile health
policy change. Our empirical example, a re-evaluation of a P4P scheme, has characteristics typical for the
evaluation of health policies: there are multiple treated units, and the validity of the parallel trends assumption
is questionable. We extend the synthetic control approach that Abadie et al. (2010) proposes, by re-weighting
disaggregated control units, in constructing a synthetic control region. We also present a procedure for infer-
ence, which accounts for a data structure with multiple treated units. This approach differs from previous appli-
cations of the synthetic control method, which predominantly estimate treatment effects for a single treated unit,
such as a geographical region (Billmeier and Nannicini, 2013; Coffman and Noy, 2012; Eren and Ozbeklik,
2011; Okeke, 2009).

This paper extends the limited extant literature on the synthetic control method for multiple treated units. A
working paper by Acemoglu et al. (2013) uses the synthetic control method to construct the treatment-free po-
tential outcome for each multiple treated unit and is similar to the approach we take in the sensitivity analysis,
but weights the estimated unit-level treatment effects according to the closeness of the synthetic control. Their
inferential procedure is similar to the one developed here, in that they re-sample placebo-treated units from the
control pool. Dube and Zipperer (2013) pool multiple estimates of treatment effects to generalise inference for a
setting with multiple treated units and policies. Xu (2015) propose a generalisation for the synthetic control ap-
proach, for multiple treated units with a factor model that predicts counterfactual outcomes. Our approach is
most closely related to the suggestion initially made by Abadie et al. (2010), to aggregate multiple treated units
into a single treated unit. In preliminary simulation studies, we find the method reports relatively low levels of
bias in similar settings to the AQ study.

We find that in our study, where the parallel trends assumption might be violated, the synthetic control
method led to different conclusions about the estimated effectiveness of the programme, compared with
the DiD approach. The major difference between the underlying assumptions of the two methods is that while
the DiD approach assumes that unobserved differences have time-invariant effects on the outcome, the syn-
thetic control approach allows these effects to vary over time. While in this setting, standard statistical tests
using pre-intervention outcomes could not reject the parallel trend assumption, the concern remains that
unobserved baseline variables, for example, the geographical sparseness of areas, differed between the
comparison groups pre-intervention. The concern for DiD is that the effects of such variables on risk-adjusted
hospital mortality may well have differed over the study time period, for example, because of improvements
in practice over time for patients requiring emergency admission for conditions such as pneumonia.

In our empirical example of re-evaluating the AQ scheme, the synthetic control method reported that
for three of the conditions incentivised by the scheme, the programme did not lead to significant changes
in risk-adjusted 30-day hospital mortality. This is in contrast with the initial evaluation that took the
DiD approach described and reported that the AQ scheme reduced risk-adjusted 30-day hospital mortality
(Sutton et al., 2012).

The finding that a hospital P4P scheme did not improve health outcomes for conditions incentivised by the
scheme is similar to those from a growing body of systematic reviews (Eijkenaar, 2013). A large evaluation
of a similar P4P scheme in the USA, the premier Hospital Quality Incentive Demonstration, used the same
incentivised conditions and process measures as the AQ but reported an improvement only in the incentivised
process measures (Williams et al., 2005), not the patient outcomes (Ryan, 2009). A follow-up study of the
long-term effects of the AQ found that the previous DiD estimates of the positive effect of the policy on
the incentivised conditions was not maintained, but rather that in the longer term risk-adjusted mortality
for the incentivised conditions fell significantly more in the rest of England than in the North West
(Kristensen et al., 2014).

Our re-analysis found that across six non-incentivised conditions, the introduction of AQ appeared to lead
to a significant increase in risk-adjusted mortality. The evaluation of another UK P4P scheme, the Quality
and Outcomes Framework, found that the quality of care declined for aspects of care not incentivised by
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the programme (Doran et al., 2011; Campbell et al., 2009). Previous literature evaluating P4P schemes have
reported harmful effects of extrinsic motivation for intrinsically motivated professionals (Deci et al., 1999),
as well as the possible ‘gaming’ of incentive schemes (Gravelle et al., 2010; Woolhandler et al., 2012).
Evidence for detrimental effects of P4P has also been found in other areas of public policy, such as education
(Dranove and Jin, 2010; Fryer, 2011). While our study adds to the literature raising concerns about the
unintended consequences of P4P schemes, further research to investigate the reasons why P4P schemes
might lead to worse health outcomes is clearly warranted.

Our proposed implementation of the synthetic control method aimed to ensure comparability of the
estimates with the original DiD analysis. Prior to both the DiD and synthetic control estimation, we used the
same patient-level risk adjustment undertaken in the original analysis to adjust for observed patient-level char-
acteristics that changed over time. Both the DiD and the synthetic control analysis estimated the ATT weighted
for patient numbers, over post-treatment periods. Both implementations of the synthetic control method used
hospital-level data but aggregated to the level of the North West at different stages of the analysis. While the
base case analysis directly reweighted control hospitals to create the synthetic North West, the sensitivity
analysis created synthetic control hospitals, and aggregated these to the region level. We found that the point
estimates and their statistical significance were robust to the choice of approach.

Methodological guidance on DiD estimation encourages studies to recognise the clustering of observa-
tions within higher level units (Bertrand et al., 2002; Cameron et al., 2011; Brewer et al., 2013). In the
evaluation of the AQ, there were potentially two cross-sectional levels of clustering (admissions within
hospitals within regions) and a time dimension (12 quarters). While there were insufficient observations to
apply widely used methods (e.g. cluster robust standard errors) for handling clustering at the regional level
(only one treated region), we did allow for correlated errors within hospitals. The approach taken to allowing
for the clustering within hospitals is consistent with how the permutation test was implemented in the
synthetic control analysis. Here, each placebo region was constructed by re-sampling hospitals from across
the whole control pool of hospitals, rather than re-sampling hospitals within each specific region, i.e. again
respecting the clustering within hospital but not within region.

In a sensitivity analysis in the DiD estimation, we implemented a two-way (by hospital and quarter) cluster
robust variance–covariance matrix (Schaffer, 2012), but this led to similar results to the base case.

The intuition behind the synthetic control method is similar to that for a matching approach that aims to
select an appropriate control group, by balancing the pre-treatment characteristics of the comparison groups.
In contrast to the synthetic control approach, the combination of matching and DiD still requires the parallel
trends assumption, but after conditioning on a set of observed covariates (Blundell and Dias, 2009). In
the sensitivity analysis, we constructed a control group where pre-treatment covariates and levels of pre-
treatment outcomes were closely matched to treated hospitals. Matching changed the results from the original
DiD estimates in the same direction as the synthetic control method. This offers further support for concerns
that the main assumption underlying the DiD approach may not be plausible in settings where the differences
between the comparison groups in pre-intervention outcomes are relatively large (Abadie, 2005).

This paper has several limitations. First, both the synthetic control and the standard DiD approaches
assumed that unobserved covariates, and the P4P scheme, had a linear additive effect on risk-adjusted mortal-
ity. However, if the characteristics of treatment and control units are similar, even when the true data-generating
processes are non-linear, linear models can still provide a good approximation. The ‘changes in changes’model
proposed by Athey and Imbens (2006) offers an alternative extension of the DiD approach, which relaxes the
linearity assumption.

A second assumption pertaining to all the methods presented is that following the introduction of AQ, there
were no compositional changes in the patients admitted to the hospitals, nor other differential innovations to the
local health care system. Both the synthetic control and the DiD approaches assume that risk adjustment at the
patient level adjusts for compositional differences, which change over time, before AQ was introduced.

Third, a specific concern for the synthetic control method is that the number of pre-treatment periods may be
insufficient and that the fit of the pre-treatment outcomes might be due to chance, leaving residual differences in
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unobserved factors that have changing effects over time. Furthermore, with a large number of potential controls
available, several weighted combinations of the control units may create equally good predictions of the pre-
treatment outcomes. The scale of transitory shocks can be larger at the disaggregated level of hospitals than
at the aggregate level, in which case more time periods would be desirable to reduce potential bias in the
estimated treatment effects. The similar conclusions reached by the different implementations of the synthetic
control method suggest that the reported results are robust to the specific choice of weights assigned to the
synthetic controls.

The placebo experiments provide a further assessment for the ability of the synthetic control units to
reproduce the treatment-free counterfactual. We find that the trajectories of the placebo outcomes are distrib-
uted symmetrically around zero for the incentivised and non-incentivised conditions, indicating that the
synthetic control method would be expected to estimate a zero effect when the true effect is zero. The statis-
tically significant result reported for the non-incentivised conditions on the other hand demonstrates the
ability of the synthetic control method to detect non-zero treatment effects, for this dataset.

There is currently little guidance on the practical implementation of the synthetic control approach, for
example, regarding variable selection in the distance matrix. We included predictors in the distance matrix
based on prior knowledge on predictors of the outcome, risk-adjusted mortality. Recent work has proposed
a criterion based on the mean squared prediction error of the post-intervention outcomes as a criterion for
covariate selection (Dube and Zipperer, 2013). When assessing alternative specifications of the distance
matrix, we found that the estimated effects changed only slightly, without altering the conclusions. In addi-
tion to the p-values reported, confidence sets can be calculated by inverting a rank statistic (Hodges and
Lehmann, 1963), but before this procedure can be applied to more general settings with treatment effect
heterogeneity (Rosenbaum, 2003), further research is required.

Further research is required to investigate the relative merits of the synthetic control approach compared
with DiD methods, across a wide range of settings. Simulation studies are now warranted to report the relative
performance of the methods, specifically according to alternative lengths of pre-intervention time periods, the
scale of the transitory shocks, and the potential non-linearity of the data-generating model.
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