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Abstract 

We significantly improved the performance of precursor- route semiconducting zinc 

oxide (ZnO) films in electrolyte- gated thin film transistors (TFTs). We find that the organic 

precursor to ZnO, Zinc Acetate (ZnAc), dissolves more readily in a 1:1 mix of ethanol (EtOH) 

and acetone than in either pure EtOH, pure acetone, or pure isopropanol. XPS and SEM 

characterisation show improved morphology of ZnO films converted from mixed solvent 

cast ZnAc precursor compared to EtOH cast precursor. When gated with a biocompatible 

electrolyte, phosphate buffered saline (PBS), ZnO thin film transistors (TFTs) derived from 

mixed solvent cast ZnAc give 4 times larger field effect current than similar films derived 

from ZnAc cast from pure EtOH. Sheet resistance at VG = VD = 1V  is 30 kΩ/!, lower than for 

any organic TFT, and lower than for any electrolyte- gated ZnO TFT reported to date. 

 

Key Words: Thin film transistor, Zinc oxide, Zinc acetate, precursor, PBS, Biosensor 

 

Introduction 

Horowitz et al.[1] discovered that semiconducting organic films can be gated by field 

effect with very low threshold using deionised (DI) water as gate medium. Gating is due to 

the high capacitance electric double layer (EDL) that develops at the water/semiconductor 

interface even for DI water as ‘electrolyte’. This discovery has triggered an interest in 

developing such thin film transistors (TFTs) into a novel type of biosensor, wherein an 

aqueous sample under test is an active part of the transducer. TFT devices gated by a 

biologically realistic aqueous electrolyte, phosphate- buffered saline (PBS) solution, were 

sensitised (e.g. by enzymes) either at the semiconductor/water interface [2, 3], or at the 

gate electrode [4]. The latter is easier and more versatile as it requires no chemical 

modification of the semiconductor, which can lead to loss of performance. Compared to DI 

water, more concentrated electrolyte gate media like PBS favourably display higher 

capacitance up to somewhat higher frequencies. However, organic semiconductors often 

suffer stability problems under concentrated electrolytes, and may become doped by 

penetrating ions, i.e. electrochemical transistor behaviour competes with field effect gating 
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[5], which makes the transducer’s output difficult to interpret. This can largely be avoided 

when an inorganic semiconducting film is used instead. Ong et al. [6] had shown that the II-

VI semiconductor Zinc oxide (ZnO) can be prepared by casting a soluble precursor, Zinc 

acetate (ZnAc, Zn(O2CCH3)2), with subsequent thermal conversion into ZnO under 

atmosphere. Ong et al. reported n- type field effect transistors using such films, with 

electron mobility μ ~ 5 cm2/Vs and good on/off ratio. However, their conventional ‘dry’ 

dielectric gate medium with low capacitance lead to high operational voltages. Al Naim et al. 

have since shown that precursor route ZnO can also be gated with aqueous media [7]. 

Electrolyte- gated precursor- route ZnO transistors may show similar mobility as reported by 

Ong et al. for dry- gated devices at much reduced threshold due to the high EDL 

capacitance, thus delivering a solution-processed electrolyte gated TFTs that do not suffer 

from electrochemical doping. However, so far, mobility in precursor- route ZnO still falls 

short of the performance of ZnO when deposited by methods such as magnetron sputtering 

or pulsed laser deposition [8-11].  

Here, we report on the preparation of precursor- route ZnO films that perform 

significantly better in electrolyte- gated TFTs than any previously reported precursor- route 

ZnO films. The key to improved performance is the use of a mixed solvent for the ZnAc 

precursor. 

 

Experimental 

We dissolved 0.1M ZnAc in EtOH, isopropanol, Acetone, or 1:1 EtOH/Acetone, by 

continuous stirring at elevated temperature for prolonged periods. TFT contact substrates 

with geometry factor width/length (W/L) = 1 mm/30 μm = 33.3 were prepared using a 

shadow mask on synthetic quartz substrates sourced from Ossila and thermal evaporation 

of Au contacts with an underlying Cr adhesion layer under high vacuum. ZnAc solution was 

casted onto contact substrates at 2000 rpm for 50s and thermally converted into ZnO under 

atmosphere on a hotplate at 450o C for 12 minutes. ZnAc coating and conversion was 

repeated three times. Resulting ZnO films were characterised by XPS and SEM. XPS was 

calibrated by the graphitic carbon C 1s peak [12]. Graphitic carbon is adsorbed on the 

surface during exposure of the sample to ambient atmosphere, and is commonly used for 

ZnO XPS calibration[13]. ZnO surfaces were imaged by SEM at 15 kV. For transistor 

manufacture, we applied a droplet of the aqueous electrolyte 0.01M phosphate buffered 

Page 2 of 13Physical Chemistry Chemical Physics

Ph
ys
ic
al
C
he
m
is
tr
y
C
he
m
ic
al
Ph
ys
ic
s
A
cc
ep
te
d
M
an
us
cr
ip
t

View Article Online

DOI: 10.1039/C5CP03326H

http://dx.doi.org/10.1039/C5CP03326H


3 
 

saline (pH =7.4) (PBS, Aldrich catalogue No P4417) as a gate medium. The gate medium was 

electrically addressed by an L- shaped Au gate needle that was lowered to very close 

proximity (200 μm adjusted by a glass cover slip used as spacer) using a probe head. The 

‘foot’ of the L was oriented along the width W of the transistor channel and overlapped the 

channel completely. Source and drain (S/D) were contacted by Tungsten (W) needles that 

readily pierced through the ZnO film that had formed on the evaporated Au contacts. We 

recorded TFT output and transfer characteristics with two Keithley source/measure units 

configured for TFT characterisation. 

 

Results and discussion 

Previous reports [7, 14] on water- gated ZnO transistors from ZnAc precursor used 

ethanol (EtOH) as the casting solvent for the precursor. However, we observe that pure 

EtOH is not a good solvent for ZnAc. To completely dissolve 0.1 M ZnAc in EtOH, we need to 

heat and stir the mixture for prolonged periods (5 hours), and on storage at ambient 

temperature, ZnAc precipitates within an hour. To re- dissolve, we need to repeat heating 

and stirring for 30 minutes before processing. We find similarly poor solubility of ZnAc in 

pure acetone, and 2-propanol. Ong et al.[6] instead used methoxyethanol to dissolve ZnAc 

but they do not clearly report solvent quality. However, we here observe that a 1:1 mix of 

EtOH and acetone is a far better solvent for ZnAc than either EtOH, 2-propanol, or acetone, 

alone. Heating and stirring is still required to dissolve ZnAc in mixed solvent, but only a small 

amount of precipitate forms even after several days of storage, which quickly re- dissolves 

on gentle heating.  

We cast films of ZnAc dissolved in mixed EtOH:Acetone (1:1) solvent, and similar films 

from pure EtOH for comparison, onto contact substrates, thermally converted into ZnO. We 

first characterised both resulting ZnO film surfaces by X-ray photoelectron spectroscopy 

(XPS). Fig.1 shows the detected peaks for Zn 2p orbitals for precursor- route ZnO films cast 

from EtOH (top) and mixed solvent (bottom), Fig. 2 shows O 1s XPS spectra for precursor- 

route ZnO films cast from EtOH (top) and mixed solvent (bottom). For Zn 2p orbitals, we find 

the usual split into Zn 2p1/2 Zn 2p3/2 orbitals [15-19]. The (non- Gaussian) O 1s peaks in Fig. 2 

have been resolved into a superposition of two overlapping Gaussians. The lower energy 

Gaussian has been attributed to O2− ions bound into the regular wurtzite structure of ZnO 
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(Zn-O-Zn), the higher energy Gaussian to oxygen in metal-OH (M-OH) surface groups [15]. 

All XPS peak positions, and their widths (FWHM), are summarised in table 1. 

 

Fig. 1: XPS spectra of Zn 2p orbitals in ZnO films resulting from the thermal conversion of precursor, ZnAc, cast 
from different solvents. Top: ZnAc cast from EtOH, bottom: ZnAc cast from mixed solvent, EtOH:Acetone 1:1. 
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Fig. 2: XPS spectra of O1 s for ZnO films resulting from the thermal conversion of precursor, ZnAc, cast from 
different solvents. Top: ZnAc cast from EtOH, bottom: ZnAc cast from mixed solvent,  EtOH:Acetone 1:1. 

 

Table 1 

 EtOH route Mixed route 

Position 

(eV) 

FWHM 

(eV) 

Position 

(eV) 

FWHM 

(eV) 

Zn1/2 1021 1.75 1023 2.5 

Zn3/2 1045 2 1047 2.5 

O 1s 529.6 2.8 530 2.2 

Zn-O 529.4 1.9 529.9 1.07 

M-OH 531.2 2.8 531 2.2 

 

Table 1: Summary of observed XPS peak positions, and their FWHM, for ZnO films via 

ZnAc precursor route from different solvents. The (non- Gaussian) O 1s peaks have been 

resolved into a superposition of overlapping Gaussian Zn-O-Zn, and Metal-OH, O 1s peaks, 

as shown in Fig. 2. 

All observed XPS peaks are in the range of what was found in previous XPS studies on 

ZnO 
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[14-19]. Overall, XPS analysis shows the chemical identity of our films as wurtzite ZnO, with 

Zn-OH surface groups, thus confirming successful conversion of the precursor for both 

casting solvents, but reveals no differences at the level of atomic binding between the 

different casting solvents. 

However, SEM surface imaging shows morphological differences on the ~ 10nm size scale 

between ZnO films prepared using different solvents. In Fig. 3, we show images of ZnO 

surfaces resulting from the conversion of EtOH cast precursor (top), and mixed solvent cast 

precursor (bottom). 

!

!

!

Fig. 3: SEM images of ZnO films resulting from the thermal conversion of precursor, ZnAc, cast from different 
solvents. Top: ZnAc cast from EtOH, bottom: ZnAc cast from mixed solvent, EtOH:Acetone 1:1. 
 

 

Films from EtOH- cast precursor show recognisable small grains in the order 7 to 15 nm. 

However, the image of mixed solvent cast precursor films shows little contrast, grains are 

barely recognisable, and larger (17-20nm). The absence of clearly visible morphological 

features on the mixed solvent cast ZnO surface indicates a very homogeneous film. 
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We believe that in the better quality mixed solvent, the precursor ZnAc forms a true 

solution, while in poor solvent, e.g. pure EtOH, precursor molecules will cluster into small 

aggregates rather than fully dissolve. On casting from such poor solution, aggregates will 

transfer to the substrate, priming the formation of ZnO grains with defined boundaries on 

thermal conversion. Grains are larger, and less clearly separated, when precursor is cast 

from a better solvent. 

As grain boundaries often limit charge carrier mobility, the homogeneous, featureless 

morphology of mixed solvent cast ZnO suggests it may perform better when used as 

semiconductor in a thin film transistor (TFT). We therefore tested both types of ZnO films in 

TFTs gated by phosphate- buffered saline (PBS) as an aqueous gate medium. PBS is often 

used to simulate bodily fluids [2-4] and is thus a realistic medium for biosensor applications.  

The surface of ZnO is hydrophilic, and PBS forms a flat ‘puddle’ with small contact angle. 

Resulting transistor output- and transfer characteristics are shown in Figs 4 and 5. 
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Fig. 4: Output characteristics for Zn acetate precursor route ZnO TFTs gated by PBS electrolyte. Top: Precursor 
cast from pure EtOH. Bottom: Precursor cast from mixed EtOH/acetone (1:1). Insets to output characteristics 
show magnified characteristics at low gate voltages. 

 
Output characteristics show that TFTs turn on for positive gate voltages, as expected for 

electron- transporting transistors. Electron- rather than hole type transistor action is well 

established for ZnO [7, 8, 14, 20], but is in contrast to organic TFTs gated with aqueous 

electrolytes which to date all were hole transporters. Output characteristics are near ideal, 

with little hysteresis, a truly linear ‘linear’ regime, and drain current saturation at high drain 

voltages. Magnified low gate voltage output characteristics (insets to Fig. 4) clearly show 

TFTs are ‘off’ at VG = 0 V, but ‘on’ (above threshold) at VG = +0.2 V.  Threshold voltage is 

therefore between 0 and 0.2 V, similar as in previous reports on PBS- gated ZnO [14]. Low 

threshold is characteristic of all electrolyte- gated TFTs, due to the high specific capacitance 

of electrolyte gate media. In parallel, we monitored gate leakage currents; gate leakage was 

always small (< 5 μA at VD = VG = 1V for EtOH route, 0.2 μA for mixed solvent route) 

compared to drain current. 
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!

!

Fig. 5: Saturated transfer characteristics for Zn acetate precursor route ZnO TFTs gated by PBS electrolyte. Top: 
Precursor cast from pure EtOH. Bottom: Precursor cast from mixed EtOH:acetone (1:1). Transfer 
characteristics are shown in two different representations (on ID

1/2
 (black) and logID (orange) scale), as it is 

customary in the TFT literature. 
 

The saturated transfer characteristics, Fig. 5, both show some hysteresis, which is also 

sometimes observed for ZnO TFTs under ionic liquid (IL) gate media [21]. Fig. 5, top in 

particular also shows a rather curved I½
D,sat vs. VG plots, approaching linearity (as predicted 

by generic TFT theory) only at high gate voltages (above 0.8V). This may indicate increasing 

electrolyte capacitance or increasing carrier mobility, at high gate voltages/carrier densities 

in the channel. Threshold voltage is therefore better estimated from low gate voltage 

output characteristics, as above. Nevertheless, transfer characteristics clearly show field 

effect transistor action, i.e. off → on switching of drain current with gate voltage, with 

on/off ratios [ID(VG= 1V) / ID(VG= 0V)]  710 for EtOH route, and 2340 for mixed solvent route, 

which are within the range 102 … 104 reported previously for ZnO TFTs under various 

electrolyte gate media [14, 21]. 
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While characteristics are qualitatively similar between the different casting solvents, 

there is a remarkable quantitative difference. For our EtOH- cast TFT, saturated drain 

current at VG = VD = 1V is 0.26 mA, corresponding to a sheet resistance R! (1V) = W/L [VD = 1 

Volt / ID,sat = 0.26 mA] = 128 kΩ/!. However, the saturated drain current for the ZnO TFT 

cast from ZnAc in mixed solvent is significantly higher, 1.1 mA, corresponding to a sheet 

resistance of only R! (1V) = 30 kΩ/!. We note that the calculation of a carrier mobility from 

standard transistor equations is difficult in the case of electrolyte- gating due to uncertainty 

on the precise figure of specific capacitance Ci [1, 7]. Instead we report the figure- of-merit 

μCi that can be extracted directly from measured characteristics without assumptions on Ci 

[22]. When evaluating saturated transfer characteristics at high gate voltage (VG = 0.8V … 

1V), we find μCi  = 33 μAV-2 for EtOH- cast films, and 117 μAV-2 for films cast from mixed 

solvent, almost 5 times larger. If we assume a specific capacitance of Ci = 3 µF/cm2 [1], this 

corresponds to an electron mobility of 11 cm2V-1s-1 for EtOH- cast ZnAc- precursor ZnO, and 

39 cm2V-1s-1 for mixed- solvent cast ZnAc- precursor ZnO. Mobilities evaluated from 

electrolyte- gated transistors should be treated with caution, but the near fivefold 

improvement remains true regardless, as Ci will be equal in both cases. 

Table 1 puts our work into context with literature results on directly comparable devices, 

i.e. electrolyte- gated TFTs using solution- processed ZnO as semiconductor. 

 

Table 2 

Reference Preparation Gate medium R!!!! [kΩ/!!!!] μCi [μAV
-2

] 

Park et al.[23]  Li- doped ZnO cast from 

ammonia solution 

Ionic liquid 110 @ 1V 8.3 

Singh et al.[14] ZnAc precursor cast from 

EtOH 

PBS 5000 @ 0.5V 1.4 

Singh et al.[14] ZnAc precursor cast from 

EtOH 

DI water 77000 @ 0.5V 0.23 

Al Naim et al.[7]  ZnAc precursor cast from 

EtOH 

DI water 180 @ 0.8V 26 

Thiemann et al.[21] ZnAc precursor sprayed 

from MetOH 

Ionic liquid 50 @ 1V 48 

This work ZnAc precursor cast from 

EtOH 

PBS 128 @1V 33 
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This work  ZnAc precursor cast from 

EtOH : Acetone 

PBS 30 @1V 117 

 

Table 2: Performance characteristics of electrolyte- gated TFTs with solution- processed ZnO. 

 

Data in table 1 confirm that ZnO films derived from mixed solvent route processed ZnAc 

precursor lead to performance in electrolyte- gated TFTs superior to any other solution- 

processed ZnO films. Sheet resistance is lower, and figure- of- merit higher, for mixed 

solvent cast precursor even compared to work using higher capacitance ionic liquid (rather 

than aqueous) gate medium[21], or casting dissolved (rather than precursor- route) ZnO 

[23]. 

As a further comparison, mixed solvent route ZnO also compares favourably to 

electrolyte- gated organic TFTs, even those using state- of- the art hole transporting 

polymer, Poly(2,5-bis(3-hexadecylthiophen-2-yl)thieno[3,2-b]thiophene) (PBTTT). The best 

performing electrolyte- gated PBTTT TFTs [24] display a sheet resistance R႓(1V) = 640 kΩ/! 

for water-gated and 102 kΩ/! for ionic liquid gated PBTTT, which is still higher than the 

sheet resistance we find for mixed solvent cast precursor ZnO. 

The low sheet resistance and high estimated mobility we report here has so far only been 

matched or surpassed for conventional ‘dry’ processed ZnO TFTs. Fortunato et al.[8] and 

Zhang et al.[9]  deposited ZnO by rf magnetron sputtering and reported carrier mobility of 

70 cm2/Vs when gated by silicon oxynitride (SiOxNy) dielectric [8], and 60 cm2/Vs using 

Ta2O5 gate insulator [9]. Both mobilities are measured at rather high voltages though 

(Fortunato et al. : 10 V; Zhang et al. : 5V); Brox-Nilsen et al. [10] report 50 cm2/Vs again on 

Ta2O5 at slightly lower voltage (4 V). The highest mobility to date of 110 cm2/Vs for ZnO TFTs 

is reported by Bayraktaroglu et al. [11] who grew ZnO by pulsed laser deposition onto a 

substrate held at 350oC. However, these direct deposition methods do not benefit from the 

ease of processing afforded by soluble precursor routes, and sheet resistance even in the 

device of Bayraktaroglu et al. was R!(15V) = 25 kΩ/!. None of Fortunato et al, Zhang et al., 

Brox-Nilsen et al., and Bayraktaroglu et al. report gating with an aqueous electrolyte, which 

would be essential for biosensor applications. 

 

Conclusions 
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It is well established that the performance of organic semiconductor devices critically 

depend on the choice of processing solvent [25]. Here, we report a similar observation on 

inorganic semiconductor devices prepared via a solution- processed precursor. We find that 

Zinc acetate (ZnAc), a precursor to the II-VI semiconductor zinc oxide (ZnO), dissolves 

significantly better in a 1:1 mix of ethanol and acetone than in either pure ethanol, acetone, 

or isopropanol. ZnAc cast from a better solvent will give aggregate- free precursor films that 

convert into more homogeneous ZnO films, as characterised by XPS and SEM. When gated 

by the aqueous electrolyte PBS,   transistor sheet current and other performance 

characteristics are superior to previously reported precursor- route ZnO TFTs, and 

approaches performance of ZnO transistors deposited by conventional ‘dry’, precursor- free 

methods such as magnetron sputtering or laser ablation, and gated by dry dielectrics. 
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