The relationship between inflammatory bowel disease and type 1 diabetes mellitus: a study of relative prevalence in comparison with population controls

To the Editor,

Genome wide association studies have identified that an overlap exists in the genetic architecture underpinning inflammatory bowel disease (IBD) and other immune-mediated inflammatory diseases [1]. Epidemiological studies have established that IBD patients have a higher prevalence of asthma, psoriasis, rheumatoid arthritis and multiple sclerosis, than persons without IBD [2, 3]. However, data remains unclear regarding the association between IBD and type-1 diabetes mellitus (T1DM). We have examined the prevalence of IBD in T1DM and T1DM in IBD and assessed the effect of concurrent IBD in T1DM patients on glycaemic control and quality of life (QoL).

Type 1 diabetes mellitus (n= 662) and IBD (n= 622) patients were recruited during attendance at outpatient clinics. Non-diabetic controls (n= 602) were recruited from general practices within the South Yorkshire region. Demographic information was recorded from patient case notes, alongside stated diagnoses of T1DM and/or histology confirmed IBD. Diabetic controls were selected from the diabetes cohort matched for age and sex in a 2:1 ratio for comparison of QoL and glycaemic control. Glycaemic control was assessed using HbA1c values and QoL using the Short Form-36 Version 2 (SF-36) questionnaire.

We found that the prevalence of IBD was 12/662 (1.5%) in those with T1DM and 2/602 (0.3%) in controls (OR 5.5, 1.2-24.9; p=0.03). The prevalence of T1DM in IBD patients was 4/662 (0.6%), which is comparable with the UK adult population prevalence of T1DM (0.4% [4]; OR 1.5, 0.38-6.07; p=0.56). In T1DM-IBD patients, QoL scores were significantly lower in the general health and vitality domains compared to T1DM-only patients (p=0.004 and 0.041, respectively; Fig. 1). Adverse QoL was not explained by changes in the glycaemic control (Fig. 2).

In conclusion, the prevalence of IBD in T1DM was increased six-fold compared with that in the control population. However, our data suggest that there is no increase in the prevalence of T1DM in IBD patients. Similar to our findings, a recent Swedish
study found an increase in the incidence of ulcerative colitis in the
offspring of parents with T1DM [5]. Moreover, two large North
American studies also reported no difference in the prevalence
of T1DM in IBD patients compared with healthy controls [2,
3]. Multiple shared susceptibility loci between IBD and T1DM
have been described [6]. However, the clinical significance of
these genes has yet to be established given the absence of a clear
epidemiological link between these two diseases. Further studies
are required to characterise the association between these two
conditions.

Hugo A Penny1, John S. Leeds1, Matthew Kurien1, Anastasios
Averginos1, Andrew D Hopper1, Marios Hadjivassiliou2, Solomon
Tesfaye3, David S. Sanders4
1) Department of Gastroenterology; 2) Department of Neurology, 3)
Department of Diabetes, Royal Hallamshire Hospital, Sheffield, UK

Correspondence: Hugo A Penny, h.penny@sheffield.ac.uk

Conflicts of interest: No conflict to declare.

REFERENCES

of inflammatory bowel disease and type 1 diabetes implicates multiple
loci with opposite effects. Hum Mol Genet 2010; 19: 2059-2067. doi:
10.1093/hmg/ddq078

Autoimmune disease concomitance among inflammatory bowel disease
patients in the United States, 2001-2002. Inflamm Bowel Dis 2008; 14:
738-743. doi: 10.1002/ibd.20406

3. Weng X, Liu L, Barcellos LF, Allison JE, Herrinton LJ. Clustering of
inflammatory bowel disease with immune mediated diseases among
members of a northern California-managed care organization. Am J
Gastroenterol 2007; 102: 1429-1435. doi: 10.1111/j.1572-
0241.2007.01215.x

pdf.

5. Hemminki K, Li X, Sundquist J, Sundquist K. Familial association
between type 1 diabetes and other autoimmune and related diseases.

pathways with other diseases. Gut 2011; 60: 1739-1753. doi: 10.1136/
gut.2009.199679

Does anatomical distribution of colorectal polyps show a rightward shift? Analysis of
2,372 colorectal polyps in 1,558 patients from Turkey

To the Editor,

We read the article of Visovan et al. [1] with great interest.
In the last two decades, the literature has reported a change
in the topographic distribution of colorectal cancer (CRC),
comprising a shift towards the proximal colon [2, 3]. But as
stated by the authors, data from the East are scarce. Since the
majority of CRC arise from polyps, we aimed to evaluate the
topographic distribution of colorectal polyps in our population
over a six year period in order to assess any proximalization.

Colonoscopy procedures performed in Sisli Hamidiye Efthal Education and Research Hospital Gastroenterology Department between 2009 and 2014 were evaluated retrospectively. The gender, age and polyp localization in patients who were reported to have polyp(s) in colonoscopy were recorded from the hospital database.

A total of 1,558 patients who had 1,780 total colonoscopies accompanied with polypectomy(ies) were enrolled in the study. The mean age of the patients was 61.1±18.3 years, similar to the study mentioned above [1], as was the male predominance: 933 (60%) males, and 625 (40%) females. Polyp locations were evaluated according to a total of 2,372 polypectomies performed in 1,780 procedures. One thousand and sixty one (48.9%) of the polyps were located in the rectosigmoid region. The other sites of the polyps are shown in Table I. The frequency of the right-sided polyps (from cecum up to the splenic flexure) was 26.6 % in 2009, 25 % in 2010, 23.3 % in 2011, 27.9 % in 2012, 26.2 % in 2013 and 28.5% in 2014.

We did not detect a shift in the localization of colorectal polyps from the left to the right side of the colon, at least 25% of the polyps were found in the right colon in our group. We could not confirm colonic polyp proximalization. However, we agree that rectosigmoidoscopy should not be considered sufficient and patients should be encouraged to undergo a total colonoscopy.

Salih Boga1, Ali Riza Koksal1, Huseyin Alkim2, Meltem Ergun3,
Mehmet Bayram4, Ayse Aysim Ozgari5, Canan Alkim1
1) Department of Gastroenterology; 2) Department of Pathology, Sisli
Hamidiye Efthal Education and Research Hospital, Istanbul, Turkey

Table I. The number and topographic sites of colorectal polyps distributed by years

<table>
<thead>
<tr>
<th>Year</th>
<th>No. of patients</th>
<th>No. of colonoscopies</th>
<th>No. of polypectomies</th>
<th>Rectosigmoid</th>
<th>Ascending colon</th>
<th>Transverse colon</th>
<th>Descending colon</th>
<th>Cecum</th>
</tr>
</thead>
<tbody>
<tr>
<td>2009</td>
<td>124</td>
<td>143</td>
<td>184</td>
<td>95</td>
<td>40</td>
<td>35</td>
<td>9</td>
<td>5</td>
</tr>
<tr>
<td>2010</td>
<td>232</td>
<td>271</td>
<td>343</td>
<td>165</td>
<td>92</td>
<td>70</td>
<td>7</td>
<td>9</td>
</tr>
<tr>
<td>2011</td>
<td>198</td>
<td>225</td>
<td>297</td>
<td>147</td>
<td>83</td>
<td>53</td>
<td>11</td>
<td>5</td>
</tr>
<tr>
<td>2012</td>
<td>279</td>
<td>318</td>
<td>445</td>
<td>213</td>
<td>108</td>
<td>91</td>
<td>18</td>
<td>15</td>
</tr>
<tr>
<td>2013</td>
<td>444</td>
<td>490</td>
<td>637</td>
<td>318</td>
<td>152</td>
<td>102</td>
<td>39</td>
<td>26</td>
</tr>
<tr>
<td>2014 (8 months)</td>
<td>281</td>
<td>333</td>
<td>466</td>
<td>225</td>
<td>108</td>
<td>85</td>
<td>27</td>
<td>21</td>
</tr>
<tr>
<td>Total (n)</td>
<td>1558</td>
<td>1780</td>
<td>2372</td>
<td>1161</td>
<td>583</td>
<td>436</td>
<td>111</td>
<td>81</td>
</tr>
<tr>
<td>Total (%)</td>
<td>100</td>
<td>48.9</td>
<td>24.6</td>
<td>18.4</td>
<td>4.7</td>
<td>3.4</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

J Gastrointestin Liver Dis, March 2015 Vol. 24 No 1: 125-130