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Abstract Missense mutations in ATP1A3 encoding Na+,K+-

ATPase α3 are the primary cause of alternating hemiplegia of

childhood (AHC). Most ATP1A3mutations in AHC lie within

a cluster in or near transmembrane α-helix TM6, including

I810N that is also found in theMyshkinmouse model of AHC.

These mutations all substantially reduce Na+,K+-ATPase α3

activity. Herein, we show that Myshkin mice carrying a wild-

type Atp1a3 transgene that confers a 16 % increase in brain-

specific total Na+,K+-ATPase activity show significant pheno-

typic improvements compared with non-transgenic Myshkin

mice. Interventions to increase the activity of wild-type Na+,

K+-ATPase α3 in AHC patients should be investigated

further.

Keywords Alternating hemiplegia . Transgenic rescue .

Na+,K+-ATPaseα3 . Atp1a3 . Mice

Introduction

Alternating hemiplegia of childhood (AHC; OMIM: 614820)

is a rare neurodevelopmental disorder which manifests as ep-

isodic hemiplegia starting in the first 18 months of life, with a

spectrum of persistent motor, movement, and cognitive defi-

cits that become progressively more apparent with age [1, 2].

Approximately half of AHC patients present with epilepsy;

the seizures are predominantly partial but may manifest as

status epilepticus requiring urgent medical attention [2]. Het-

erozygous missense mutations of the ATP1A3 gene, encoding

the Na+,K+-ATPase α3 subunit, have been identified as the

primary cause of AHC [3]. Belonging to the type II P-type

ATPase family of proteins that have a transmembrane domain

permeable to specific ions, Na+,K+-ATPases are membrane-

bound transporters that harness the energy of ATP hydrolysis

to pump three Na+ ions out of the cell in exchange for two K+

ions moving inward [4]. The α3 subunit has ten transmem-

brane α-helices which contain the Na+- and K+-binding sites

and the cytoplasmic domains involved in ATP hydrolysis [4].

Most ATP1A3 mutations in AHC patients lie within a cluster

in or near transmembrane α-helix TM6 [5], including three

affecting the isoleucine at position 810: I810F [5], I810N [6],

and I810S [7]. Flunarizine, a non-selective calcium entry

blocker targeting voltage-dependent calcium channels, re-

duces the severity, duration, or frequency of hemiplegic at-

tacks in some patients [6], while two AHC patients—positive

for T804I and D923N, respectively—have shown marked im-

provements in symptoms when treated with a ketogenic diet

[8, 9]. However, the complexity and severity of AHC make it

imperative that new therapeutic options specifically targeting

Na+,K+-ATPase α3 be explored.

To better understand the consequences of Na+,K+-ATPase

α3 dysfunction and explore potential therapeutic approaches

for this disorder, investigations in animal models harboring
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the same mutations as human patients are needed. Heterozy-

gous Myshkin (Atp1a3Myk/+; Myk/+) mutant mice have an

I810N amino acid substitution in transmembrane α-helix

TM6 identical to that present in AHC [6, 10]. A 12-year-old

Chinese male with the I810N mutation is reported to have

AHC with developmental delay and epilepsy [6].Myk/+ mice

often show hypokinesia upon arousal and move with a paretic,

tremulous gait that becomes transiently more severe after

stress (Supplementary Video 1 and 2) [11]. Myk/+ mice have

not, however, been observed by video monitoring over 24 h,

so it is not known whether they exhibit frank hemiparesis or

hemiplegia when left undisturbed in the home cage. Other

phenotypic abnormalities include decreased body mass, neu-

ronal hyperexcitability, increased susceptibility to epileptic

seizures, motor dysfunction, and cognitive impairment

[10–12]. Molecular modeling of I810N has shown that it

brings about severe structural effects on Na+,K+-ATPase α3,

including the capacity for efficient K+movement along the K+

access pathway [11].

Missense mutations in AHC patients and Myk/+ mice all

substantially reduce Na+,K+-ATPase α3 activity [8, 13].

I810N in Myk/+ mice is functionally a null allele of Atp1a3

that encodes a normally expressed, but catalytically inactive,

Na+,K+-ATPase α3 enzyme [8]. Brain-specific total Na+,K+-

ATPase activity (contributed by α1, α2, and α3 isoforms) is

64% ofwild-type levels inMyk/+mice [14], but 84% ofwild-

type levels in heterozygous Atp1a3tm1Ling/+ mice that have a

point mutation in intron 4 of the Atp1a3 gene [14, 15]. Since

Atp1a3tm1Ling/+ mice do not have visible neurological defects

nor restricted growth [15], we hypothesized that increasing

brain Na+,K+-ATPase activity from 64 % to closer to 84 %

of wild-type levels would mitigate disease phenotype severity

in Myk/+ mice.

Transgenic (Tg)-Atp1a31Stclmice carry a bacterial artificial

chromosome (BAC) transgene of Mus musculus molossinus

origin (MSMg01-344N17) that contains the wild-type Atp1a3

gene and its promoter [10]. The Tg-Atp1a31Stcl transgene was

previously shown to increase Na+,K+-ATPase α3 protein ex-

pression by 58 % and brain Na+,K+-ATPase activity from 64

to 80 % of wild-type levels in Myk/+ mice [10]. The purpose

of the present study was to determine whether this increase in

brain Na+,K+-ATPase activity, to a level comparable with that

of Atp1a3tm1Ling/+ mice (~80 % of wild-type), would have

remedial effects in phenotypic tests in which Myk/+ mice

show clear deficiencies.

Materials and methods

Subjects

Myk/+ mice were genotyped by the presence of an EcoO109I

(New England BioLabs) restriction site using PCR primers F,

5′-CTG CCG GAA ATA CAA TAC TGA-3′ and R, 5′-ATA

AAT ACC CCA CCA CTG AGC-3′. Hemizygous Tg-

Atp1a31Stcl/+ (Tg/+) mice were genotyped using PCR primers

F, 5′-TGA CAT TGT AGG ACT ATA TTG C-3′ and R, 5′-

GTT AAA GGT GTG AGG CAC AGA-3′ spanning the T7

vector-insert boundary. Both lines were backcrossed for 11

(Tg/+) or 21 generations (Myk/+) to the C57BL/6NCr strain

(NCI-Frederick). Myk/+ males were crossed with Tg/+ fe-

males to yield wild-type (+/+), Myk/+, Tg/+, and Myk/+/Tg

(I810N + Tg-Atp1a31Stcl) littermates. Mice were weaned at

4 weeks of age and grouped housed (two to five mice/cage)

with same-sex littermates. Supplementary food pellets were

provided on the cage floor for the first 2 weeks post-

weaning because of the small size of Myk/+ mice. Mice were

weighed at 4 and 8 weeks of age using a Scout Pro portable

balance (Ohaus).

Behavioral procedures

Myk/+, +/+, Tg/+, andMyk/+/Tg littermates (n=12/genotype)

were tested at 8–14 weeks of age. Males and females were

included in balanced numbers. Subjects were handled daily

for 5 min/day for 7 days prior to behavioral testing, which was

conducted during the light phase (0900–1700 h). Prior to ex-

periments, subjects were left undisturbed in the testing envi-

ronment for 30 min to allow for acclimation. A solution of

70 % ethanol was used to clean surfaces and equipment be-

tween subjects. The order of tests, with a rest period of 3–

5 days between each test, was as follows: body weight →

balance beam→ Morris water maze → fear conditioning.

Balance beam

Mice were given five training trials on a 90-cm-long, 18-mm-

wide beam elevated 50 cm above a padded base. A 60-W

lamp at the start platform served as an aversive stimulus,

whereas the opposite end of the beam entered a darkened

escape box baited with food pellets. Performance on the beam

was quantified in a test trial given 24 h after training by mea-

suring the time that it took for the mouse to traverse the beam

and the number of hind foot slips that occurred in the process.

Visible platform water maze

The water maze consisted of a cylindrical tub of ivory-colored

acrylic sheet (117-cm diameter; 30-cm depth) that was filled

with water (26±1 °C temperature) to 11 cm below the rim. A

circular platform (10-cm diameter) made of transparent acrylic

sheet was submerged 1 cm below the water surface at the

center of the pool. The platform location was indicated by a

high-contrast striped marker rising 13 cm above the water

surface. Each subject was given four training trials. At the start

of each trial, the mouse was placed by the tail into the water,
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immediately facing the perimeter, at one of the cardinal com-

pass points (north, south, east, or west), and then was allowed

a maximal time of 90 s to locate the platform. Finding the

platform was defined as staying on it for at least 2 s. A

closed-circuit television camera was mounted onto the ceiling

directly above the center of the pool to convey subject swim-

ming trajectories and parameters to an electronic image ana-

lyzer (HVS Image), which extracted and stored the X-Y coor-

dinates of the subject’s position at sample points every 0.01 s.

Behavioral variables were quantified with the aid of HVS

Water 2020 (HVS Image).

Contextual fear conditioning

Experiments were conducted in a fear-conditioning chamber

(MED Associates; 25-cm height×30-cm width×25-cm

length) with a removable grid floor of 36 stainless steel rods

(3.2-mm diameter, 4.7 mm apart) connected to a constant

current shock generator. FreezeFrame 1.6e software

(Actimetrics) administered foot shocks, recorded video im-

ages of the chamber, and monitored the activity of subjects

throughout the procedure. For the training phase, mice were

placed in the chamber for 2 min 28 s, after which, they re-

ceived a continuous scrambled foot shock of 0.75 mA for 2 s

and then remained in the chamber for an additional 30 s before

being returned to their home cage. Twenty-four hours follow-

ing training, mice were returned to the fear-conditioning

chamber to evaluate their contextual fear memory. Freezing

to the context was recorded at 0.25-s intervals using

FreezeFrame for 3 min, and then, mice were returned to their

home cage.

Statistical analysis

All statistics were calculated by STATISTICA (StatSoft). Data

were subjected to analysis of variance (ANOVA) with Atp1a3

genotype, Tg genotype, and sex as between-subjects factors.

No sex by Atp1a3 genotype or sex by Tg genotype interaction

was observed for any variable measured. When ANOVA de-

tected statistically significant main effects, pairwise differ-

ences were evaluated using Tukey-Kramer post hoc multiple

comparison tests, with significance set at p<0.05. Student’s

paired t test was used to compare baseline freezing with con-

textual freezing. All values reported in the figures are

expressed as mean±standard error of the mean (SEM).

Results and discussion

Body weight

AHC patients tend to be of short stature and low weight [2,

16]. We measured the body weight of mice aged 4 weeks,

when they were weaned, and aged 8 weeks, when behavioral

testing commenced. At both ages, the body weight of Myk/+

mice was significantly less than that of the other genotypes

(Fig. 1). Relative to +/+ mice, the 4-week weight of Myk/+

mice was less by 20.4±5.1 % in females and by 20.6±6.1 %

in males. By 8 weeks, body weight was less by 10.8±3.3 % in

Myk/+ females and by 18.6±3.3 % inMyk/+ males, and a sex

by Atp1a3 genotype interaction approaching significance

(F(1, 42)=3.66, p=0.0626) was observed. Myk/+/Tg mice

did not show any significant deficits in body weight, as con-

firmed by the significant Atp1a3 genotype by Tg genotype

interactions observed (Fig. 1). In a previous study, we found

that the 9-week weight of Myk/+ mice was less by 18.8 % in

males and 16.1 % in females [10]. The smaller deficit of adult

Myk/+ females in the present study could reflect a sex-specific

response to differing husbandry conditions. Male heterozy-

gous Atp1a3D801N/+ mice, which carry the most common mu-

tation causing AHC (D801N), also show lower bodyweight at

8 and 9 weeks of age, but Atp1a3D801N genotype had no effect

on the body weight of female mice at any age [17].

Balance beam

Abnormalities of fine motor skills are present in the vast ma-

jority of AHC patients and become more evident with age [2,

18]. As a measure of motor coordination, we tested mice on a

Fig. 1 Body weight (% of +/+; mean±SEM) of male (n=6/genotype)

and female (n=6/genotype) Myk/+, Myk/+/Tg, and Tg/+ mice at 4 and

8 weeks of age. For body weight at 4 weeks, main effects of Atp1a3

genotype (F(1, 42)=8.41, p<0.01), sex (F(1, 42)=7.40, p<0.01), and

Atp1a3 genotype by Tg genotype interaction (F(1, 42)=12.69,

p<0.001) were observed. For body weight at 8 weeks, main effects of

Atp1a3 genotype (F(1, 42)=14.18, p<0.001), Tg genotype (F(1, 42)=

8.84, p<0.01), sex (F(1, 42)=82.72, p<0.0001), and Atp1a3 genotype by

Tg genotype interaction (F(1, 42)=10.83, p<0.01) were observed.

*p<0.05; **p<0.01; ***p<0.001 compared with +/+ mice
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balance beam, which is useful for detecting subtle deficits in

motor skills and balance that may not be detected by other

motor tests, such as the rotarod [19]. At 24 h after training,

Myk/+ mice showed a significantly greater number of hind

foot slips than the other genotypes as they traversed the beam

(Fig. 2a). Myk/+ mice also took longer than the other geno-

types to traverse the beam (Fig. 2b). By contrast, the number

of foot slips and the traversal time ofMyk/+/Tg mice were not

significantly different from those of +/+ mice, as confirmed by

the significant Atp1a3 genotype by Tg genotype interactions

observed (Fig. 2). Atp1a3D801N/+ mice have also performed

poorly in the balance beam test [17].

Visible platform water maze

Cognitive impairment has been observed in 94 % [2] and

100 % [1] of different AHC patient cohorts studied. The

visible platform version of the water maze is a simple associa-

tive non-spatial task believed to be independent of hippocam-

pal function [20]. This procedure introduces the mice to the

main task requirements (e.g., swimming, the fact that the plat-

form is not near the perimeter, and climbing on the platform to

escape) and assesses whether they have the performance skills

necessary for spatial memory to be assessed in the hidden

platform task. In this rather stressful condition, mice are re-

quired to maintain sufficient behavioral flexibility to over-

come their initial tendency to swim along the wall of the pool,

an innate behavior called wall hugging or thigmotaxis [20].

Then, they must learn that they are returned to their warm

home cage if they climb and stay on the escape platform

indicated by a marker rising above the water.

Over four trials, only +/+ and Tg/+ mice showed quick

orientation toward the visually marked platform location.

Myk/+ andMyk/+/Tg mice took more time (Fig. 3a) and swam

further (Fig. 3b) before reaching the visible platform. Myk/+/

Tgmice performed marginally better thanMyk/+ mice, but the

overall performance of both was poor, as confirmed by the

lack of Atp1a3 genotype by Tg genotype interactions for la-

tency and path length. There were no significant differences

between genotypes in swim speed and floating. The deficient

performances of Myk/+ and Myk/+/Tg mice were largely due

to their excessive thigmotaxis (Fig. 3c), an effect of the I810N

mutation not attenuated by the Atp1a31Stcl transgene. The mu-

tation reduced behavioral flexibility to such a degree that

Myk/+ and Myk/+/Tg mice were practically unable to over-

come thigmotaxis, as previously observed in mice with

forebrain-specific knockout of the TrkB receptor [22]. Exces-

sive thigmotaxis has also been observed in mice with retinal

degeneration [23], but the normal head tracking of Myk/+

mice in an optokinetic drum suggests that their vision is not

impaired [14].

Atp1a3D801N/+ mice have also performed poorly in the vis-

ible platform task [17]. Atp1a3tm1Ling/+ mice were given four

trials per day for 6 days, in which the visible platform position

was changed at random on each trial. Atp1a3tm1Ling/+ mice

took significantly longer to reach the visible platform on days

2–5 but caught up to wild-type controls by day 6 [15].

Contextual fear conditioning

Contextual fear conditioning assesses a memory for the asso-

ciation between an aversive stimulus, such as a mild foot

shock, and a salient environmental cue, the test chamber

(Bcontext^). Rodents with good memory have a natural ten-

dency to freeze (suppress all movement) upon re-presentation

of the context. Contextual fear conditioning is dependent upon

the integrity of the hippocampus [24]. Baseline freezing, be-

fore the administration of a foot shock, was less than 3 % for

all genotypes, although the baseline freezing of Tg/+ micewas

significantly greater than that of +/+ andMyk/+ mice (Fig. 3d).

Fig. 2 Balance beam performance of +/+, Myk/+, Myk/+/Tg, and Tg/+

mice (n=12/genotype). a Number of hind foot slips (mean±SEM) and b

traversal time (s; mean±SEM) when traversing a narrow beam. For the

number of foot slips, main effects of Atp1a3 genotype (F(1, 42)=14.11,

p<0.001) and Atp1a3 genotype by Tg genotype interaction (F(1, 42)=

5.02, p<0.05) were observed. For traversal time, main effects of Atp1a3

genotype (F(1, 42)=22.19, p<0.0001), Tg genotype (F(1, 42)=5.52,

p<0.05), and Atp1a3 genotype by Tg genotype interaction (F(1, 42)=

9.54, p<0.01) were observed. ***p<0.001; ****p<0.0001 compared

with +/+ mice

Neurogenetics



At 24 h after receiving the foot shock, all genotypes increased

their level of freezing compared with baseline, butMyk/+mice

showed a significantly lower level of contextual freezing than

the other genotypes. By contrast,Myk/+/Tg mice did not show

any deficit in contextual fear conditioning, as confirmed by

the significant Atp1a3 genotype by Tg genotype interaction

observed (Fig. 3d). Unlike Myk/+ mice, Atp1a3D801N/+ mice

have not shown any deficit in the formation of fear-related

memories in the contextual fear-conditioning paradigm [17].

The clinical severity of AHC is extremely variable, but the

rarity of the disorder has made it difficult to study genotype-

phenotype correlations. Nevertheless, the high frequency of

D801N and E815K, responsible for most AHC cases, has

allowed two independent studies to show that E815K causes

a more severe phenotype than D801N with respect to age of

onset, motor impairment, and a prevalence of status epilepticus

[25, 26]. Differences in mutant enzyme activity cannot account

for the disease severity associated with E815K, since all of the

AHC mutations that have been studied to date—S137Y,

I274N, D801N, I810N, E815K, and G947R—were found to

result in a catalytically inactive α3 enzyme [10, 13]. However,

the recent finding that E815K, but not D801N and G947R,

impairs the passive influx of protons into the cell [27] suggests

that loss of proton transport is a correlate of severe AHC [28].

The isoleucine at position 810 is recurrently mutated in

AHC [5–7], but I810N is one of the rarer mutations, having

been found in only two cases to date: a 22-year-old male from

Belgium with clinical features of episodic hemiplegia and dys-

tonia triggered by emotional stress, mild ataxia with unstable

gait, moderate intellectual disability and autism, and a clinical

Fig. 3 Water maze and fear-conditioning performance of +/+, Myk/+,

Myk/+/Tg, and Tg/+ mice (n=12/genotype). a Escape latency (s; mean

±SEM). Main effects of Atp1a3 genotype (F(1, 42)=77.09, p<0.0001)

and Tg genotype (F(1, 42)=7.79, p<0.01) were observed for latency. b

Swim path length (m; mean±SEM). Main effects of Atp1a3 genotype

(F(1, 42)=67.20, p<0.0001) and Tg genotype (F(1, 42)=9.10, p<0.01)

were observed for path length. c Thigmotaxis (% time; mean±SEM).

Main effects of Atp1a3 genotype (F(1, 42)=53.10, p<0.0001) and Tg

genotype (F(1, 42)=4.59, p<0.05) were observed for thigmotaxis. d

Freezing levels (% time; mean±SEM) of mice when test-naïve

(baseline) and when returned to the chamber 24 h after training (context).

For baseline freezing, a main effect of Tg genotype (F(1, 42)=11.60,

p<0.01) was observed. For context freezing, main effects of Atp1a3 ge-

notype (F(1, 42)=5.33, p<0.05), Tg genotype (F(1, 42)=7.40, p<0.01),

and Atp1a3 genotype by Tg genotype interaction (F(1, 42)=10.01,

p<0.01) were observed. **p<0.01; ***p<0.001; ****p<0.0001 com-

pared with +/+ mice. †p<0.05 compared with Myk/+ mice. ##p<0.01;

####p<0.0001 compared with baseline freezing for each genotype. n.s.

not significant
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history of epilepsy with some episodes of status epilepticus

[29]; and a 12-year-old Chinese male with clinical features of

episodic hemiplegia, quadriplegia, abnormal eye movement,

dystonia, epilepsy, and developmental delay [6].

Haploinsufficiency of ATP1A2 encoding the Na+,K+-

ATPase α2 subunit is associated with familial hemiplegic mi-

graine type 2 [30], but recent functional analysis of α3 sub-

units suggests that an additional dominant-negative mecha-

nism would contribute to loss of function in AHC [28]. Co-

expression of wild-type and mutant α3 subunits (D801N,

E815K, and G947R) in Xenopus laevis oocytes showed that

mutant α3 subunits inhibit wild-type α3 function [28]. This

dominant-negative effect may explain why the Tg-Atp1a31Stcl

transgene increased brain Na+,K+-ATPase activity in Myk/+

mice by only 16 % [10]. Nevertheless, we have found that

this modest increase in brain Na+,K+-ATPase activity was

sufficient to rescue the phenotypic deficiencies ofMyk/+ mice

in body weight, motor coordination, and contextual fear con-

ditioning. Increasing brain Na+,K+-ATPase activity to 80% of

wild-type levels did not, however, rescue the deficient perfor-

mance of Myk/+ mice in the visible platform version of the

water maze, which is consistent with the deficient visible plat-

form performance of Atp1a3tm1Ling/+ mice whose brain Na+,

K+-ATPase activity is at 84 % of wild-type levels [14, 15]. In

conclusion, our results show that a relatively small increase in

Na+,K+-ATPase α3 activity has therapeutic effects in a mouse

model of AHC. In light of these findings, interventions to

increase the activity of wild-type Na+,K+-ATPase α3 in

AHC patients should be investigated further.
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