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Abstract: Mathematical programming approaches to driver scheduling have been
reported at many previous workshops and have become the dominant approach to
the problem. However the problem frequently is too large for mathematical pro-
gramming to be able to guarantee an optimal schedule. TRACS II, developed at
the University of Leeds, is one such mathematical programming-based scheduling
system. Several improvements and alternative solution methods have now been
incorporated into the mathematical programming component of the TRACS II sys-
tem, including a column generation technique which implicitly considers many more
valid shifts than standard linear programming approaches. All improvements and
alternative strategies have been implemented into the mathematical programming
component of TRACS II to allow different solution methods to be used where nec-
essary, and to solve larger problems in a single pass, as well as to produce better
solutions. Comparative results on real-world problems are presented.

1 Introduction

The problem of scheduling public transport vehicles and their drivers has been
the subject of six international workshops (see, e.g., Desrochers/Rousseau (1992),
Daduna/Branco/Paixáo (1995)). With improvements in technology, mathemati-
cal programming solution methods are increasingly successful. One of the driver
scheduling systems using a mathematical programming approach is TRACS II
which was originally developed from the IMPACS system (see Smith/Wren (1988),
Wren/Smith (1988)) and which uses a set covering formulation to ensure that all
vehicle work is covered. This paper outlines several improvements incorporated into
the mathematical programming component of the TRACS II system. Results on a
selection of bus and train problems are reported.
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2 The Driver Scheduling Problem

Typically a vehicle schedule is produced for which drivers need to be allocated. The
vehicle schedule is represented graphically by a series of lines each of which depict
the movements of a vehicle during the day, and at various stages the vehicle will
pass a location which is convenient for driver changeovers. These location/time
pairs are known as relief opportunities, and an indivisible period between any two
relief opportunities is known as a piece of work. Each piece of work then needs
to be allocated to a driver so that the minimum number of drivers is required
and costs are minimised. The work of a driver in a day is known as a shift, which
usually consists of two to four spells of work each of which covers several consecutive
pieces of work on the same vehicle. The formation of shifts is governed by a set of
labour agreement rules to ensure that there is adequate provision for mealbreaks
and acceptable working hours etc.

It is possible to formulate the driver scheduling problem as a set covering or set
partitioning problem which ensures that all of the vehicle work is covered. A suitable
objective function can then be devised which ensures shift and cost minimisation
over a set of previously generated valid shifts. The difficulty with this approach is
that the number of valid shifts is too large for this approach to be able to guarantee
an optimal schedule in most cases. Thus mathematical programming is frequently
combined with heuristic approaches to provide a viable solution method.

3 The TRACS II System

TRACS II is the driver scheduling system which was developed at the University of
Leeds, and which originated from the commercially available IMPACS system (see
Smith/Wren (1988), Wren/Smith (1988)). TRACS II has since been altered to in-
corporate features required in order to schedule train crews, (see Wren/Kwan/Parker
(1994), Kwan/Kwan/Parker/Wren (1996)) and many of the algorithms contained
in the individual components have been improved. In principle though, the TRACS
II system exhibits a similar overall solution method to the IMPACS system:

• Stage 1 Generate a set of shifts which are valid according to labour agreement

rules.

It should be noted that in a practical problem there are generally many million
of such potential shifts. The shift generation process only produces a large
subset of shifts, chosen heuristically in such a way that the most likely shifts
are formed and that a good choice of shifts is available for each piece of work.
These heuristics have proved effective in a wide range of practical applications.

• Stage 2 If necessary, reduce the size of the generated shift set.

Where a standard Integer Linear Programming (ILP) approach is used it op-
timises over the whole shift set, and this is limited in terms of data storage
and is time-consuming, even with improvements in technology and algorithms.
Heuristic methods have been developed which attempt to reduce the size of
the set, while retaining the best possible subset of shifts.

• Stage 3 Select from the shift set a subset which covers the vehicle work.



The problem is one of minimising the overall schedule cost, which includes
a wage cost and sometimes a subjective cost reflecting penalties for shifts
containing undesirable features. As the introduction of each driver incurs a
large cost the primary objective is to minimise the number of shifts. Since
the size of shift set originally generated is limited, it may not be possible to
use a set partitioning approach which would imply that each piece of work
should be covered by exactly one driver. A set covering model is used which
guarantees that each piece of work is covered by at least one driver and the
details of this method are discussed in the following sections.

4 Original ILP Solution Method (ZIP)

The solution method is referred to as ZIP (Zero-one Integer Programming). Given
a problem with M pieces of work in the vehicle schedule, and a previously generated
set of N shifts, we can define :

For j = 1, .., N

xj =

{

1 if shift j is used in the solution
0 otherwise

For i = 1, ..,M

ui =

{

1 if workpiece i is uncovered
0 otherwise

oi = number of times that workpiece i is overcovered

(4.1)

The existence of the variables ui and oi allows workpieces to remain uncovered
and have more than one shift covering them respectively. The desired situation
would be where a piece of work is covered by exactly one shift so that the vari-
ables ui and oi would both have the value zero. Where overcover remains in the
final schedule, the relevant shifts can be edited to form shorter shifts which were
previously excluded at Stage 2.

4.1 The Objective Function

The complexity of requirements to produce an efficient driver schedule leads to sev-
eral, sometimes conflicting, objectives being necessary. These arise out of the need
to assign a driver to every piece of work and the desire to produce schedules that
are satisfactory both from a management and a driver viewpoint. Normally these
are addressed in the following decreasing order of importance.

• To minimise the number of uncovered pieces of work; the minimum will nor-
mally be zero.

• To minimise the number of shifts used in the schedule. This is given a high
priority due to the large overheads associated with employing staff.

• To avoid shifts which contain undesirable features. It is possible to form a
schedule consisting of many undesirable shifts with a relatively low wage cost
but it is preferable to encourage more acceptable working conditions.



• To minimise wage costs. Wage costs can be affected by overall and spell
durations and the wage cost of the shift combination should be reduced.

• To minimise the total duration of overcovered pieces of work.

This can be represented by an objective function of the form :

Minimise
∑N

j=1
Cjxj +

∑M

i=1
Diui +

∑M

i=1
Eioi.

(4.2)

Setting the Di coefficient to a large value will address the most important ob-
jective of reducing the number of uncovered pieces of work.

The Ei coefficient on the other hand should be lower to reflect a less important
objective on the duration of overcovered pieces of work. Ei is proportional to the
duration of workpiece i.

The remaining objectives require the Cj coefficient to reflect shift costs, penalty
costs and wage costs. However, penalty costs would normally be added in later so
as not to detract from the more important objective of minimising the number of
drivers. To prioritise the objectives a large constant is added to each shift cost so
that minimisation favours a schedule with fewer shifts.

Constants used in weighting the objectives are defined by the scheduler.

4.2 Constraints

As mentioned earlier the model is based on set covering, because the number of shifts
generated is limited to those which are deemed to be ‘efficient’ and many shorter
shifts are discarded. Although a final schedule cannot contain pieces of work which
are covered by more than one driver the set covering approach potentially allows
this. The following constraint ensures that every piece of work is covered by at least
one driver:

∑N

j=1
Aijxj ≥ 1 for i = 1, ..,M

Given that each piece of work has an associated undercover and overcover vari-
able, we can rewrite this as :

∑N

j=1
Aijxj + ui − oi = 1 for i = 1, ..,M

(4.3)

where the Aij identify which pieces of work are covered by which shifts:

Aij =

{

1 if shift j covers workpiece i
0 otherwise.

(4.4)

In practice, the introduction of overcovered pieces of work in the schedule is
deterred by the minimisation of overcover and wage costs. Although overcover is
allowed, it can only be acceptable as an overlap in the middle of the day. Thus it is
sensible not to allow overcover early or late in the day. Thus workpiece constraints
corresponding to first pieces of work on early departing vehicles and to last pieces



of work on late arriving vehicles are defined as equations. The inclusion of such
constraints is, in fact, a requirement for the validity of the constraint branching
strategy used within the branch and bound algorithm. The algorithm incorporated
into the mathematical programming component automatically identifies the work-
pieces which shall be formulated as equality constraints, ensuring that the sets of
shifts covering each of these workpieces are mutually exclusive.

Hence, constraint (4.3) can now be split into the following:

∑N

j=1
Aijxj + ui = 1 for i = 1, .., L

∑N

j=1
Aijxj + ui − oi = 1 for i = L + 1, ..,M

(4.5)

where L denotes the number of workpieces which can be identified as equality con-
straints.

In addition to the workpiece constraints, shifts can be categorised by an initially
specified type and the user can impose constraints on any of these to ensure that
the final schedule does not contain too many or too few shifts of any particular
type. Constraints of this form can also be used to limit the total number of shifts in
the final schedule and also eliminate undercover. The constraints can be imposed
either initially or when reoptimising an existing solution.

The constraints can be expressed as follows:

∑N

j=1
δkjxj ≤ Uk,

∑N

j=1
δkjxj ≥ Lk

(4.6)

where Uk is an upper limit on the number of shifts of type k, and Lk is a lower limit
on the number of shifts of type k.

The δkj are defined as :

δkj =

{

1 if xj is a shift of type k
0 otherwise

(4.7)

4.3 Original (ZIP) Model

In summary, the model can be formulated as follows :

Minimise
∑N

j=1
CjXj +

∑M

i=1
Diui +

∑M

i=1
Eioi

Subject to
∑N

j=1
Aijxj + ui = 1 for i = 1, .., L

∑N

j=1
Aijxj + ui − oi = 1 for i = L + 1, ..,M

Plus any user-defined side constraints

xj = 0 or 1, for j = 1, .., N

ui ≥ 0



oi ≥ 0

(4.8)

4.4 Method of Solution of the Model

It is possible to execute the model solver in a number of different ways, such as start-
ing or stopping at different points in the solution strategy; however, the method
will be described in full as if there were no user intervention in the process. The
following is a summary of the stages involved in solving model (4.8).

Stage Z1

Shifts are ranked in groups in order of ‘desirability’ during the generation phase.
The ranking is a crude measure of the ratio of work content to shift content. In the
first stage of the solution all three-part shifts and shifts with a relatively low work
content are temporarily excluded from the shift set. At this stage penalty costs are
not included in shift costs. The integrality constraints on the shifts are relaxed so
that a piece of work may be covered by fractions of several different shifts. The
relaxed model is solved over the remaining shifts using a primal steepest edge (see
Goldfarb/Reid (1977)) variant of the Revised Simplex Method, starting with an
initial solution formed by a heuristic which considers all of the previously generated
shifts.

The quality of the initial solution affects the number of subsequent iterations
required to find the optimal continuous solution. It is developed heuristically and
has to be transformed into a basic solution to (4.8) in order to provide an advanced
start for the revised simplex method. The heuristic considers each piece of currently
uncovered work in ascending order of the number of shifts available to cover it, and
selects a shift to be included in the initial solution which minimises the following
cost function:

Minimise (
Cj

NUj
) + OCj

(4.9)

where
Cj = cost of shift j

NU j = number of currently uncovered workpieces covered by shift j

OCj = increase in overcover costs caused by selecting shift j.

provided its inclusion does not violate a side constraint or an equality workpiece
constraint. In order to satisfy a realistic upper limit on the number of shifts of
certain types or on the total number of shifts it is possible that some workpieces
will remain uncovered. For this reason the ‘no uncovered work’ constraint is not
applied initially.

Stage Z2

The previously excluded shifts are restored and the LP relaxation is reoptimised
with the complete set of shifts, again using the primal steepest edge algorithm.

Stage Z3



Having found the optimal Stage Z2 solution, the penalty costs are added to all
appropriate shifts. These are not normally added initially because shifts displaying
several undesirable features incur a very high cost, and although it is hoped that
these shifts do not appear in a schedule it is actually preferable to include some of
them rather than to exceed the minimum number of shifts. For this reason the so-
lution strategy has historically been to devise two pre-emptively ordered objectives
which are solved in stages. The first is to minimise a function combining the costs of
the individual shifts with a large fixed cost per shift, so as to give a significant bias
towards minimising the number of shifts; the second is to minimise a cost function,
incorporating penalty costs, with the added constraint that the total number of
shifts does not exceed the number already ascertained at the end of the first stage.
These objectives can be formulated as follows:

1) Minimise
∑N

j=1
C1jxj +

∑M

i=1
Diui +

∑M

i=1
Eioi

2) Minimise
∑N

j=1
(C1j + C2j)xj +

∑M

i=1
Diui +

∑M

i=1
Eioi

(4.10)

where
C1j includes wage costs and the large constant shift cost
C2j is the appropriate penalty cost.

In order to address the objective prioritisation the following two side constraints
are now added :

∑M

i=1
ui ≤ 0

∑N

j=1
xj ≤ T.

(4.11)

The first ensures that there can be no uncovered work in the solution. The
second constraint uses a target number of shifts to ensure that the minimisation of
the number of shifts in the solution is still addressed. If the number of shifts at the
end of Stage Z2 is integral then T will take this value. However, it is more likely
that the number of shifts at the end of Stage Z2 is fractional and, since an integer
solution will be the final requirement, T will take this number rounded up to the
next integer. This new model is now reoptimised by primal steepest edge.

Stage Z4

If the total number of shifts in the optimal Stage Z3 solution is non-integral and
of the form I.f(0 < f < 1), the side constraint

∑N

j=1
xj ≥ I + 1

(4.12)

is added. This is because the current solution is minimal for a relaxed LP model,
and so any integer solution must require at least the next highest integer number of
shifts. The current solution will be infeasible for this new constraint and the new



model must be re-solved using a Dual Simplex algorithm.
If the total number of shifts in the current solution is already integral then no

side constraint is added and no reoptimisation performed.

Stage Z5

If the current solution is fractional then the shift set is first reduced and a
branch and bound method is used to determine whether a particular shift should
be included in the schedule or not.

Smith/Wren (1988) developed a technique to reduce the size of the shift set
entering the branch and bound phase, which assumes that an acceptable integer
solution can be found by restricting the choice of relief opportunities to the subset
used in the LP optimum. In this way a shift which does not use any of these times
can be excluded from the search. The reduce procedure uses the principle that the
LP optimum gives a good indication of how the vehicle work would be covered in
an integer solution, and this has been confirmed by extensive practical application.
Application of reduce typically leads to a reduction in the number of shifts considered
at the branch and bound stage of 50-80%, leading to a much reduced solution time.
It is possible that the constraint limiting the search to find a schedule with an exact
number of shifts may not be satisfied with the limited set of relief opportunities.
However, in general there are many different integer solutions, some of which should
be contained within the shift set available. The other possibility is that the reduced
shift set produces a higher cost schedule than one which would be produced with
the whole set, but the process is normally designed to terminate with the first good
solution and its quality is largely dependent on the choice of path through the tree,
rather than on the number of shifts which are considered.

The branch and bound method has been developed with an emphasis on finding
a good integer solution quickly. The integer solution is found by developing a
branch and bound tree, in which the lower bound on the objective cost is given
by the optimal continuous solution. Once an integer solution has been found the
nodes of the tree are fathomed if their cost is greater than or equal to a scheduler
specified percentage of the current best integer cost. In most cases the first integer
solution found fathoms all of the remaining active nodes and hence the branch and
bound process normally terminates with a possibly non-optimal integer solution.
A maximum of 500 nodes can be created. The branch and bound process uses a
specialised relief time branching strategy developed by Smith/Wren (1988).

5 Current ILP Solution Method (SCHEDULE)

5.1 Sherali Weighted Objective Function

Sherali (1982) noted that there are several disadvantages in using a sequential ap-
proach to find a solution which satisfies two objectives. Apart from the fact that
two separate linear programs have to be solved which are essentially doing the same
task but with a different cost coefficient, a high degree of degeneracy is likely to
occur, with typically large numbers of iterations. Also the introduction of side
constraints to maintain the subjective ordering of the objectives results in a more
complex model to be solved which may increase execution times over a simple model
for which efficient solution codes exist.

An alternative approach to solving the driver scheduling model has been ex-
plored in Willers/Proll/Wren (1993), Willers (1995). The approach combines the



objectives of minimising the number of shifts and the total shift cost, whilst retain-
ing their preference ordering.

The two objective functions (4.11) can be simplified. The solution strategy
adopted by ZIP involves adding a side constraint to prohibit any undercover and
therefore it is unnecessary for the ui variables to appear in the model. Overcover
is unproductive and is discouraged by the minimisation of wage costs and so zero
costs can be attached to the oi variables. Also since the more important objective is
to minimise the number of shifts, all of the shift costs can be attached in the second
phase. This removes the need to include a large prioritising constant to every shift.
The two objective functions can now be expressed as :

1) Minimise
∑N

j=1
xj

2) Minimise
∑N

j=1
Cjxj

(5.1)

where
Cj combines wage and penalty costs for shift j.

Willers implemented a method of converting multi-objective models into single
objective models. This involved weighting the objectives and combining them as
follows :

Minimise W1

∑N

j=1
xj + W2

∑N

j=1
Cjxj .

(5.2)

The weights W1 and W2 must be selected so as to ensure that the objectives are
correctly ordered. This produces:

W1 = 1 + UB[
∑N

j=1
Cjxj ] − LB[

∑N

j=1
Cjxj ]

W2 = 1

(5.3)

where
UB[

∑N

j=1
Cjxj ] is an upper bound value on the shift costs

LB[
∑N

j=1
Cjxj ] is a lower bound value on the shift costs.

(5.4)

An upper bound can be calculated by setting all shift variables to 1. This upper
bound however corresponds to summing all shift costs for the N shifts generated,
which would produce a very large weight, potentially leading to numerical difficul-
ties in the solution method. A smaller weight can be calculated by adapting the
upper bound so that :

W1 = 1+ sum of X largest Cj values

(5.5)



where X must be an upper bound on the number of shifts in the schedule. An
appropriate weight can be ascertained by defining X to be the number of shifts in
the initial solution plus the number of uncovered pieces since the sum of the highest
X cost values in this case must be an upper bound to any further schedule costs
calculated. A potentially smaller weight would result from careful calculation of the
lower bound. Willers (1995) investigated several possibilities and concluded that
the simple lower bound of 0 was satisfactory.

5.2 The New Model

By incorporating the Sherali weight (5.5) into the objective function and defining :

Dj = W1 + Cj for j = 1, .., N

(5.6)

as the new cost coefficient for every shift variable, the new model can be defined as
follows :

Minimise
∑N

j=1
Djxj

Subject to
∑N

j=1
Aijxj = 1 for i = 1, .., L

∑N

j=1
Aijxj ≥ 1 for i = L + 1, ..,M

Plus any user-defined side constraints

xj = 0 or 1, for j = 1, .., N

(5.7)

It may be noted that this model, unlike (4.8), guarantees that the minimum
number of shifts is obtained.

5.3 Method of Solution of the (SCHEDULE) Model

It was noted that the process of banning shifts in the first stage of the solution
method did not contribute any improvement in solution time and is no longer used.
The actual solution stages which remain depend upon the user’s choice of solution
strategy but a broad outline follows :

• Solve the LP relaxation over the whole shift set using either a conventional
linear programming method or column generation. The single objective model
is optimised using a primal steepest edge approach.

• Add a constraint which increases the shift total to the next highest integer and
re-solve using a dual steepest edge approach due to Forrest/Goldfarb (1992).

• Reduce the number of constraints and variables and find an integer solution
using the branch and bound technique used in the original model, but with
reoptimisations performed by dual steepest edge.



5.3.1 Initial solution

Recognising that the overcover variables are no longer costed, a new cost function
can be defined for the purpose of creating an initial solution:

Minimise
Cj

NUj

(5.8)

where
Cj = combined wage and penalty costs for shift j

NU j = number of currently uncovered workpieces covered by shift j.

The above method for constructing an initial solution is an adaptation of that
used in ZIP in which the objective is cost minimisation. In SCHEDULE, the pri-
mary objective is shift minimisation and the following method addresses that more
directly. If all pieces of work are to be covered by the minimum number of shifts,
each newly selected shift must cover a lot of work not covered by shifts selected
earlier. This suggests selecting shifts by:

Maximise
∑M

i=1
∆ijLi

(5.9)

where

∆ij =

{

1 if shift j covers the currently uncovered piece of work i
0 otherwise,

Li = duration of workpiece i.

Willers’ experiments (see Willers (1995)) show that while this method does not
always outperform the earlier method in terms of number of shifts in the initial
solution, it does so on average.

5.3.2 Column Generation

In order for a conventional mathematical programming approach to be used to
solve the driver scheduling problem, heuristics are necessary to reduce the problem
size. This restricts optimality to only those shifts remaining. The heuristics have
been developed so that apparently inefficient shifts are removed and solutions have
proved better than manual solutions. However it may be the case that some ineffi-
cient shifts link well with other shifts to produce the optimal solution. In order to
guarantee optimality it must be possible to consider every valid shift.

Column generation is an approach which can be used to solve mathematical
programming problems involving many variables and it is shown that column gen-
eration methods improve upon the solution and/or speed of the process. TRACS II
uses a conventional mathematical programming method which requires all shifts to
be available. The Revised Simplex Method is then used iteratively to improve a cur-
rent solution by swapping a basic variable for a non-basic variable with favourable
reduced cost, until no further improvement can be made. In the case of column
generation only a subset of the columns is available at the outset. The Revised
Simplex Method is used to find the solution which is optimal over the subset. One
then generates new columns or searches through columns not previously considered
and adds some or all shifts with favourable reduced costs as non-basic variables.
The new subset is then reoptimised. For any LP relaxation which is optimal over



its available subset the overall optimal solution is attained when no more columns
which could improve the objective can be added to the set.

The HASTUS scheduling system (see Rousseau/Blais (1985)) contains a mod-
ule, Crew-Opt (see Desrochers/Gilbert/Sauvé/Soumis (1992)), which uses column
generation techniques to form bus driver schedules and has produced encouraging
results (see Rousseau (1995)). A subset of valid shifts is identified and further shifts
are added to the subset based upon utilising a shortest path algorithm to generate
and identify shifts which will improve the current solution. Once no new shift can
be found which will reduce the schedule cost the current solution is optimal over
the relaxed model. A branch and bound technique which also incorporates column
generation is then applied to find a good driver schedule. Crew-Opt allows all shifts
to be available by generating them as constrained shortest paths through a net-
work. In order to ensure optimality over all possible valid shifts it must be possible
to generate any valid shift by using a method such as that used by HASTUS, or
else all shifts must be generated initially and therefore available to the process.
Since TRACS II already has a good shift generation process, and the shift costs
include penalty costs which are more complicated to model using a shortest path
technique, the option of generating complicated shift structures through potentially
large networks was not considered. The technique which was implemented considers
a previously generated shift superset which allows many more shifts to be available
to the mathematical programming solver. Although the continuous solution is still
not guaranteed to be optimal, better solutions lead to a branch and bound search
for schedules with fewer shifts. A network formulation is not used, and so shifts
from this larger set are selected to enter a working subset by means of a less sophis-
ticated enumeration method.

Fores (1996) details the column generation implementation strategies. The so-
lution method is outlined as follows :

• Step 0 Generate a shift superset

This uses the TRACS II technique of generating shifts, possibly allowing more
shifts to be produced by relaxing some of the conditions set previously to re-
strict the shift generation. No further heuristic reduction is then necessary.

• Step 1 Create an initial solution and form an initial shift subset

An initial solution is generated from the shift superset, using one of the meth-
ods described. As shifts are being considered in forming the initial solution a
shift subset is also being selected. This subset needs to be sufficiently large
and varied to reduce the number of shift additions required.

• Step 2 Solve the LP over the current shift subset

Use the Revised Simplex Method to solve the LP over the current shift subset.

• Step 3 Add a set of shifts to the current subset which will improve

the solution

Simplex multipliers produced at the end of Step 2 are used to calculate the
reduced costs of shifts currently not selected from the superset. The reduced
cost of a shift k is defined to be :

Minimise (ck −
∑M

i=1
πiaik).



(5.10)

where :
M is the number of constraints
ck is the cost of shift k
πi is the simplex multiplier for constraint i
aik is the coefficient of shift k in constraint i

Since the shift costs include the large Sherali weight they do not vary as
significantly as the simplex multipliers. The simplex multipliers are therefore
considered in decreasing order and shifts covering their corresponding pieces
of work are added to the subset if they have a favourable reduced cost and if
they are allowed to be added based upon parameters which control the shift
addition.

• Step 4 If no favourable shifts can be found then the LP solution is

optimal, otherwise go to Step 2

• Step 5 Find an integer solution using branch and bound

Since we still cannot guarantee a relaxed solution optimal over all possible
shifts, and the existence of subjective weightings allows ambiguity over the
best cost solution, no alteration is made to the branch and bound strategy.

The column generation implementation was tested against a Sherali version of
ZIP. This allowed the most accurate comparison of two single objective models. A
summary of column generation results will be given in section 7.

5.3.3 A Dual Approach

It has long been known that LPs of the form (5.7) are inherently degenerate (see
Marsten (1974)) and that primal simplex approaches to their solution spend many
iterations making no reduction in the value of the objective function. A number of
degeneracy resolving procedures (e.g. see Wolfe (1963)) have been tried in SCHED-
ULE without success. An alternative is to solve the LP relaxation by a dual simplex
approach to lessen the effect of degeneracy. In order to use a dual approach, the
initial solution has to be transformed into a basic dual feasible solution, i.e. one in
which all the reduced costs are non-favourable. Beale (1968) shows how this can be
done. We then find the optimal solution to the LP relaxation using a dual steepest
edge algorithm (see Forrest/Goldfarb (1992)) and use an improved reduce procedure
and branch and bound to find a good schedule.

5.3.4 Improved REDUCE

The majority of the constraints in (4.8) are associated with pieces of work, each of
which starts and ends at a relief opportunity. The vehicle block

+——+————+————–+——–+

where + denotes a relief opportunity and - denotes a vehicle movement, would gen-
erate four workpiece constraints. As any LP solution covers all the pieces of work,
the first and last relief opportunity on any block must be used by at least one of the
shifts in the LP solution. Thus any unused relief opportunity separates two pieces
of work. Suppose the third relief opportunity in the above block is unused and that



we eliminate it from the problem. The block would change to

+——+————————–+——–+

and would generate only three workpiece constraints. Thus eliminating an unused
relief opportunity allows one of the two workpiece constraints surrounding it to be
removed. For technical reasons, it is not usually possible to remove one workpiece
constraint for every unused relief opportunity and get a good starting solution to the
reduced problem. Willers (1995) provides an algorithm for constructing an optimal
LP basis to the reduced problem from the optimal LP basis to the original problem.
This algorithm removed between 13% and 50% of the workpiece constraints over
a set of twenty practical problems and also allowed the removal of additional shift
variables beyond those removed by the earlier reduce procedure. The reduction in
the number of constraints leads to reductions in the solution time of the branch and
bound phase.

5.4 Other Improvements to SCHEDULE

Apart from the fact that the name of the mathematical programming component
has been altered so that its function is more apparent to the users, the algorithms
and code have been updated and the following two features have been added.

Since the earlier components of TRACS II have been modified to consider train
crews as well as bus crews, SCHEDULE has also been altered to accept the train
data generated. In particular it is now possible to define duty types rather than
having specific names which differ depending on whether bus or train crews are
being scheduled. Also it is necessary for SCHEDULE to handle four part shifts in
train driver scheduling. In fact this has also been generalised so that shifts can be
formed with any number of spells.

Since there are various different solution strategies which have been tested, those
which have proved successful have been implemented in SCHEDULE. It is therefore
possible for the user to select a solution strategy which would be more appropriate
to a given problem. A default solution strategy can be adopted, along with various
parameters which control the sensitivity of the algorithms.

6 Computational Results

One of the objectives in developing the SCHEDULE system was to allow several
solution techniques to be available to the user. The viability of each method has
been tested independently and it is infeasible to compare the quality and solution
speed of each combination. Also, developments have taken place in parallel on dif-
ferent platforms and compared with versions in various stages of improvement. The
justifications for including the dual approach and the column generation technique
are given in the following two sections. Although these two lines of development
have been pursued independently, there is some potential for integrating them which
may lead to further improvement.

6.1 Dual Approach Results

Willers (1995) tested various implementations of the dual approach, including dif-
ferent methods of calculating the Sherali weights, different initial solution methods
and different methods of determining an initial basic dual feasible solution. The
best of these have been described above. On a sample of 20 bus crew scheduling
problems, the dual approach reduced total solution time on a 33MHz 486 PC from
2525 minutes to 1243 minutes, an average reduction of 51% over the ZIP model.



6.2 Column Generation Results

Willers (1995) has shown that the Sherali weighted objective function gives im-
proved results over the objectives used in the older version. The column generation
implementation also uses the Sherali weighted objective function and was therefore
tested against a version of ZIP using that objective in order to gauge any potential
improvement made by this technique. Various improvements were made to both
systems to allow the most accurate comparison.

For seven problems, two sizes of data set were used in order to test any improve-
ments in solution or speed of solution for a problem which consisted of a larger set
of previously generated shifts. The smaller set is that which would normally be
run through the mathematical programming component of TRACS II. As the non
column generation produces an LP solution, using the column generation method
on the same data set will not improve the cost, as both will be optimal.

The following table compares the results obtained using the modified ZIP on a
heuristically reduced shift set against those of a column generation system with a
larger set of previously generated shifts. Timings are reported for a Silicon Graph-
ics Iris Indigo Workstation with 33MHz R3000 MIPS Processor and are in minutes :

Modified ZIP Column Generation
Data Shifts Run Time Shifts Run Time
Set LP Total LP Total
AUC 87 13 36 87 21 91
CTJ 88 10 16 87 9 19
CTR – – – 88 18 54
GMB 34 0.6 0.9 33 0.7 0.9
RI2 45 0.9 2.2 44 1.0 1.2
STK 61 5.2 16 59 21 24
SYD 56 5.4 5.8 56 15 18

Table 1: Comparison of Solutions and Timings

It can be seen from Table 6.1 that the number of shifts required was reduced
in 5 out of the 7 sets. This includes the one problem where no solution could
previously be found. It is difficult to compare timings through a branch and bound
tree because the route through it will be different. However, it is useful to note that
where there is an increase in the overall execution times, the times themselves would
still be acceptable to users. Where the same size of data set were compared, results
showed an average reduction in execution time of 41% using column generation (see
Fores (1996)).

7 Conclusion

The original TRACS II system consistently achieves better results than those ob-
tained by conventional methods and users are happy with the quality of the solution
obtained. Improvements to the system, including the mathematical component, will
therefore benefit the user in terms of ease of use and of the potential improvements
in solutions. The expansion to a more generalised system allows different types
and sizes of problems to be addressed. Also, the improvements in algorithms and
the introduction of the Sherali weighted objective function and the column gen-
eration technique allow better solutions to be found more quickly. A parameter



driven approach gives the user more flexibility in solving problems using different
solution techniques. Since the original draft of this paper, the column generation
approach has been used successfully in many scheduling exercises for clients. This
has given us the confidence to tackle the solution of considerably larger problems
than previously.
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