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Abstract With the continued growth in software environ-
ments on cloud application platforms, self-management at
the PaaS level has become a pressing concern, and the run-
time monitoring, analysis and detection of critical situations
are all fundamental requirements if we are to achieve au-
tonomic behaviour in complex PaaS environments. In this
paper we focus on cloud application platforms offering their
customers a range of generic built-in re-usable services. By
identifying key characteristics of these complex dynamic
systems, we compare cloud application platforms to distributed
sensor networks, and investigate the viability of exploiting
these similarities with a case study. We treat cloud data stor-
age services as “virtual” sensors constantly emitting mon-
itoring data, such as numbers of connections and storage
space availability, which are then analysed by the central
component of a monitoring framework so as to detect and
react to SLA violations. We discuss the potential benefits,
as well as some shortcomings, of adopting this approach.
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1 Introduction

In order to remain competitive in a rapidly changing mar-
ket, it is essential that service providers monitor and respond
to their existing and potential customers’ needs. For com-
panies operating traditional deployment models this means
continually developing new systems and retiring old solu-
tions in relatively short periods of time [28]. For cloud ser-
vice providers, it means constantly monitoring the services
that are available to customers, identifying bottlenecks and
breakdowns, checking for Service Level Agreement (SLA)
failures and mismatches, and providing seamless hand-overs
from one service to another.

This is particularly important at the PaaS (Platform-as-
a-Service) level, where a large number of generic services
may be available, such asdata storage, queue messaging,
searching, E-mail and SMS, logging and caching, among
others.1 These can be re-used and integrated by users, gener-
ating complex interrelationships between services and user
applications. Consequently, if a service becomes unexpect-
edly inaccessible, the platform provider needs to recognise
this problem as quickly as possible, and to take steps to re-
place the ‘broken’ application with an equivalent working
alternative. The definition of ‘equivalent’ in this contextwill
depend, of course, on the SLAs associated with all users pre-
viously using the now-inaccessible service.

This requirement is an inevitable business consequence
of the Service-Oriented Computing (SOC) paradigm, reflect-
ing as it does the idea that services should be used as basic
building blocks from which to assemble rapid and low-cost,
yet secure and reliable, applications [24]. To be used in this
way, services need to be largely autonomous, as well as dis-
coverable, self-describing, reusable, and above all highly in-
teroperable, while offering a wide range of capabilities in-

1 Heroku, for example, provides up to 150 add-ons (http://

addons.heroku.com).
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cluding everything from the performance of simple calcula-
tions to the execution of complicated business processes in
widely distributed environments [28].

The emergence of SOC opened new business opportu-
nities for enterprises who migrated their IT systems from
traditional monolithic approaches towards highly modular
and re-usable service-based architectures, and allowed or-
ganisations to develop highly distributed software systems
in a short period of time by dynamically assembling basic
services supplied by multiple service providers and hosted
on different hosting platforms [28]. To meet the demands of
these service providers, it has been predicted that the result-
ing “service cloud” will come to comprise a federation of
resources offered by multiple infrastructure providers [8],
and cloud platforms will continue to play an increasingly
important role in this context.

Today’s cloud application platforms (e.g., Google Ap-
pEngine2, Windows Azure3 and Heroku4) already host nu-
merous services, ranging from simple operations to com-
plicated business logic, and ready to be integrated into an
ever-expanding range of service compositions. However, the
continuing paradigm shift towards cloud computing has in-
troduced a new and pressing challenge: the complexity of
next-generation service-based cloud environments is soon
expected to outgrow our capacity to manage them in a man-
ual manner [6,10], and current cloud computing providers
do not offer user-customised management and monitoring
mechanisms as part of their infrastructure [28]. Since com-
plexity is known to be inversely related to software reliabil-
ity [19,26], the challenge of service management and mon-
itoring is especially pressing in the case of hybrid clouds,
where different parts of an application system are deployed
on private and public clouds, and multi-clouds, where an ap-
plication system is distributed across several clouds at the
same time. In this context, maintaining the ever-expanding
software environment of a cloud application platform is a
major challenge. Platform providers must be enabled to ex-
ercise control over all critical activities taking place onthe
platform, with the introduction of new services and applica-
tions, and the modification of existing ones, to maintain the
platform’s and deployed applications’ stability and perfor-
mance [19].

Meeting these challenges involves the rapid and scalable
processing of large quantities of real-time data, generated
by a widely distributed system of performance monitors. In
this paper we argue that these monitors can be regarded as
forming asensor network, which in turn allows techniques
developed by the sensor web community to be used to sup-
port the development of self-management mechanisms for
cloud application platforms. Of particular benefit is the po-

2 http://appengine.google.com/
3 http://www.windowsazure.com/
4 http://www.heroku.com/

tential to monitor cloud application platforms (deployed ap-
plications, platform components, third-party services regis-
tered with the platform, etc.) and detect critical situations in
a timely manner so as to provide a basis for run-time self-
adaptation [10].5 We focus in this paper on the PaaS level,
although it should be noted that the techniques we propose
could potentially be used, albeit with some modifications
and various caveats, by SaaS (Software-as-a-Service) and
IaaS (Infrastructure-as-a-Service) providers as well.

To demonstrate the viability of our approach, we present
the results of a small case study, which focuses on the Her-
oku platform and the interpretation of its data storage ser-
vices as sensors. Our approach uses a self-adaptation frame-
work developed using ‘Semantic Sensor Web’ techniques,
in which we represent heterogeneous values collected from
services (e.g., number of client connections and occupied
storage space) using RDF triples, and stream these data to an
autonomic manager – the central component of the network,
responsible for situation assessment, problem diagnosis and
adaptation planning. To avoid overloading the autonomic
manager, the data pass through a pre-processing (filtering)
stage, so that only critical, adaptation-relevant values are al-
lowed through. The case study can be regarded as a partial
proof of concept. Nonetheless, while we identify several po-
tential benefits associated with our approach – extensibility
and scalability, opportunities to re-use existing solutions, the
concept of routing nodes, and platform-independence – po-
tential shortcomings can also be identified. These include
both problems concerning our ability to instrument propri-
etary services, and the extent to which this may entail an
intrusive approach to monitoring.

The rest of the paper is organised as follows. Section 2
is dedicated to the foundations of self-management and au-
tonomic computing in cloud computing, in particular at the
PaaS level. It also explains the essential role of monitoring
and analysis components in self-managing systems. Section
3 further discusses monitoring in the context of cloud appli-
cation platforms. Taking Heroku as an illustrative example,
we analyse the challenges associated with management of
such complex systems and draw parallels between cloud ap-
plication platforms and sensor networks. In Section 4 we
present the Heroku-based case study by applying our ideas
to data storage services. Section 5 summarises the poten-
tial benefits and shortcomings of our approach, and suggests
ways in which it can be expanded to include the IaaS and
SaaS levels. Section 6 concludes the paper.

5 It should perhaps be noted that we are not attempting here to com-
pete with existing approaches for run-time monitoring in clouds, but
rather to offer complementary concepts, which can be reusedwhen de-
veloping cloud monitoring mechanisms.
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2 Self-Management at the PaaS Level

With the continuing paradigm shift towards cloud comput-
ing, service-based cloud environments can be expected to
become ever more complex, outgrowing our capacity to man-
age them in a responsive manual manner. Both academia and
industry have consequently been putting considerable effort
into finding potential solutions to this problem. These solu-
tions, mainly based on the principles of Autonomic Com-
puting [15], have as their focus the creation of self-adaptive
cloud systems which are capable ofself-management – the
ability to manage themselves without human intervention.

To date, attempts to equip clouds with autonomic be-
haviour have mainly focussed on the IaaS (Infrastructure-
as-a-Service) level, whether by developing efficient mech-
anisms for distributing the varying volumes and types of
user requests across different computational instances (load-
balancing), or by reserving and releasing computational re-
sources on demand (elasticity) [3,23]. Both load balancing
and elasticity are now seen as essential characteristics of
cloud computing [22].

Building on techniques developed by the grid and HPC
computing communities, these existing approaches usually
rely on collecting such data as CPU load, memory utilisa-
tion and network bandwidth to execute adaptation actions.
Depending on adaptation policies, such actions target var-
ious goals (e.g., increasing application performance or re-
ducing cost and energy consumption) and typically include
replication andresizing techniques [13]. The former refers
to adding and removing computational instances to meet
ever-changing resource requirements, whereas in the latter
case resources are added or removed within a single compu-
tational instance. Load balancing techniques are often used
in combination with replication to spread workload equably
across available instances. Existing IaaS adaptation solutions
can be further classified asreactive or predictive – the for-
mer are commonly employed by many IaaS cloud providers,
while the latter use various heuristic analytical and machine
learning techniques to predict workload and scale resources
accordingly. For a survey of existing elasticity and load bal-
ancing techniques, the interested reader is referred to [13].

Unfortunately, the development of self-management ca-
pabilities at the Platform-as-a-Service (PaaS) level is far less
developed. Even though various approaches have been de-
scribed as targeting the PaaS level, these typically do not
act at the PaaS-level directly, but rely on lower level, IaaS-
related adaptation actions [13]. Neither researchers nor plat-
form providers have offered solutions which would allow
hosted applications to modify their internal structure and/or
behaviour at run-time by adapting to changing context (e.g.,
by substituting one Web service for another). This task has
instead been shifted to the Software-as-a-Service (SaaS) level
– that is, it has been left to software developers, the target

customers of the PaaS offerings, to implement self-adaptation
logic within specific applications.

It is our belief that self-management at the PaaS level is
equally important, and development of self-adaptation mech-
anisms at the this level is essential in order to prevent cloud
platforms from dissolving into “tangled” and unreliable en-
vironments. Our research therefore targets the PaaS, and more
specifically the Application-Platform-as-a-Service (aPaaS)
level of cloud computing [20] – a cluster of cloud platforms,
which extend the default functionality offered to customers,
such as an operating system and execution environment, with
a selection of generic re-usable services and tools to cre-
ate applications and have them deployed and executed in a
cloud environment.6 We adopt the viewpoint of a supplier
offering its customers a range of built-in or third-party ser-
vices (whose behaviour we cannot easily change), and ask
how best to monitor and manage their life-cycles.

2.1 Monitoring and Adaptation

The growing importance of distributed systems, including
service-based applications and clouds, has also motivated
the scientific community to investigate the adaptability and
sustainability aspects of such systems. Early theoreticalwork,
inspired by Paul Horn’s Autonomic Computing ‘manifesto’
[15] and referring to the original ‘self-*’ characteristics of
autonomic systems, served as groundwork for a wide range
of prototypical implementations of self-managing mecha-
nisms for various computer system structures, including ser-
vice-based applications and clouds [7]. Existing self-adapt-
ation mechanisms typically implement control feedback loops,
such as MAPE-K7 [18] or CADA8 [12], where the monitor-
ing activity acts as a trigger for adaptation: whenever moni-
tored variables move beyond pre-specified bounds, this trig-
gers adaptation (for example, re-balancing of workloads) in
an attempt to restore normality.

In a broad sense, then, monitoring may be defined as
the process of collecting and reporting relevant information
about the execution and evolution of a computer system, and
can be performed by any mechanism capable of checking
whether the currently observed situation meets expectations
[17].9 These monitoring processes typically target the col-
lection of data concerning a specific artefact, themonitored
subject [5]. In the context of cloud application platforms,

6 Throughout this paper, we use the terms cloud application plat-
form (CAP), cloud platform, service-based cloud, servicebased cloud
platform, PaaS, aPaaS, etc. interchangeably to refer to thesame con-
cept.

7 MAPE-K: Monitor, Analyse, Plan, Execute, Knowledge.
8 CADA: Collect, Analyse, Detect, Act.
9 We focus in this paper on run-time monitoring. Related activities

can also include such techniques as post-mortem log analysis, data
mining, and online or offline testing – the interested readeris referred
to [17].
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the monitored subject can be a platform component, an ap-
plication, a service composition, a single service, etc., and
depending on the implementation of the monitoring mecha-
nism, monitoring can be either intrusive or non-intrusive.10

It is also important to consider who is responsible for driv-
ing the monitoring process: inpolling mode, the monitor
is responsible for querying the subject at regular intervals,
while in push mode the subject is responsible for notifying
the monitor whenever a significant event occurs [5].

In our view, implementing self-management at the PaaS
level requires a flexible combination of approaches. On the
one hand, we could make it a condition of deployment that
applications must conform to a platform-specific API that
includes the provision of ‘hooks’ to which monitors could
be attached, thereby facilitating an intrusive approach. But
since these hooks necessarily provide access to application
performance data, this could in turn be seen as introducing
a potential security risk; this may be unacceptable where
particularly sensitive applications are concerned, in which
case a non-intrusive approach would be required. Moreover,
a ‘broken’ application cannot be relied upon to act accord-
ing to its specification, and in particular, therefore, cannot
be relied upon to push a report to the monitor, signaling
its own failure. It is therefore essential that a PaaS-level
monitor polls applications at regular intervals to determine
whether they are still active. On the other hand, the SOC-
inspired ability to combine applications in novel and unex-
pected ways makes it impossible to anticipate in advance
all of the situations of which the monitor needs to be made
aware – in such circumstances, it is also important that appli-
cations can push event data to the monitor, since the monitor
may not itself issue the required queries.

3 Monitoring Services as Sensors

Let us consider a hypothetical scenario in which an online
store is deployed on Heroku. This application has several
web dynos (computational instances for processing incom-
ing HTTP requests) and severalworker dynos (computa-
tional instances for performing tasks on the server side),
which can be scaled up and down. In order to fully utilise
the advantages of the cloud platform, this e-store application
may employ various add-on services – data storage, authen-
tication, e-payment, search, notification, message queueing,
etc. As this example suggests, the flexibility arising from
the freedom to choose from a range of pre-existing services
is appealing from the software developer’s point of view –

10 Intrusive monitoring requires the monitored subject to be instru-
mented with probes to facilitate inspection of its characteristics. As
with code instrumentation, it is essential that this is donewith care,
since the instrumentation can itself potentially affect the subject’s per-
formance, providing a flawed picture of its inherent capabilities.

Fig. 1 Cloud-based applications are coupled to the platform’s services,
with multi-tenancy allowing the same services to be used by more than
one application. The resulting ‘tangled’ structure results in a highly
complex maintenance problem.

using just six services has already saved considerable finan-
cial, time and human resources expenditure.

From the platform provider’s point of view, however, of-
fering this level of flexibility comes at a price. With add-ons
replicated across multiple computational instances (Figure
1), and coupled to more than one million deployed appli-
cations,11,12 it becomes a challenging task to monitor the
execution of the resulting PaaS environment so as to detect
failures and suboptimal behaviours. Maintaining the whole
system at an operational level – that is, satisfying SLAs be-
tween the provider and its consumers – is an inherently dif-
ficult problem.

The autonomic management framework we have been
developing for service-based cloud environments [10] re-
lies on monitoring and detection of critical situations, which
then trigger appropriate adaptations. In other words, we treat
cloud application platforms as devices equipped withsen-
sors – whenever a significant condition is picked up by a
‘sensor’, a corresponding action is invoked by the ‘device’.
Adopting this approach leads immediately to the idea that
cloud application platforms can be treated assensor net-
works. Until recently sensor networks could be regarded as
relatively scattered groups of sensor components, each based
on its own proprietary standards and serving its own indi-
vidual purposes. This situation changed in 2003 with the
launch of the Sensor Web Enablement (SWE) initiative by
the Open Geospatial Consortium13 (OGC), whose members
are “specifying interoperability interfaces and metadataen-

11 http://gigaom.com/2012/05/04/

heroku-boss-1-5m-apps-many-not-in-ruby/
12 http://www.crunchbase.com/company/heroku
13 http://www.opengeospatial.org/
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Fig. 2 The concept of the Sensor Web.

codings that enable real time integration of heterogeneous
sensor webs into the information infrastructure”.14 The Sen-
sor Web can be seen as a collection of protocols and APIs,
coupled to and providing access to an interconnected net-
work of Web-accessible sensor networks and historical data
repositories (Figure 2).

While sensor networks are more usually thought of as
computer accessible networks of distributed devices using
sensors to monitor continually varying conditions at differ-
ent locations [4] (Figure 3), there are clear similarities with
our own problem domain, which requires the monitoring of
multiple distributed information sources on a cloud applica-
tion platform in order to support self-management. Looking
at cloud application platforms from an information manage-
ment point of view, the commonalities can be summarised
as follows:

– Volume: as in sensor webs, the amount of raw data gen-
erated by deployed applications, components of the plat-
form, users, services, etc. is huge. Even if we neglect
‘noise’ (information flows that are not relevant for mon-
itoring in the given context) the amount of information
remaining is still considerable.

– Dynamism: in both sensor webs and cloud application
platforms, various information sources are constantly gen-
erating data (which is then processed, stored, deleted,
etc.) at an unpredictable rate. The various platform com-
ponents evolve, with new services being added and old
ones removed, making the whole system even more dy-
namic.

14 http://www.opengeospatial.org/projects/groups/

sensorwebdwg

Fig. 3 Schematic of a sensor network.

– Heterogeneity: just as networked sensors can be attached
to a wide range of different devices, so platform data can
originate from a wide range of distributed sources (appli-
cations, databases, user requests, services, etc.). This in-
formation is inherently heterogeneous, both in terms of
data representation (different formats, encodings, etc.)
and in terms of semantics. For example, two completely
separate applications from different domains with dif-
ferent business logic may store logging data in XML. In
this case, the data is homogeneous in its format – and
potentially also in structure – but heterogeneous at the
semantic level.

– Distribution: the information provided by both sensors
and platform monitors may come from various logically
and physically distributed sources. On the logical side,
platform data may originate from databases, file systems,
running applications, external Web services, and these
may be physically deployed on distinct virtual machines,
servers and even data centres.

These similarities allow us to draw parallels between
cloud application platforms and problem domains for which
solutions proposed by the Sensor Web research community,
based on sensor technology, have already been shown to be
effective. The parallels give us confidence that we can re-use
the positive experience of the Sensor Web community in the
context of dynamic monitoring and analysis of continuously
flowing streams of data within a cloud application platform.

In summary, by extending the notion of sensors to in-
clude not just physical devices, but anything that calculates
or estimates a data value – e.g., an application component,
an SQL query, or a Web service – we can think of a particu-
lar service as a sensor and the whole platform as a network
of such sensors. For example, we may be interested in mon-
itoring response times from a Web service which is part of a
more complex service composition. In this case, the service
is the monitored subject, response time is the monitored as-
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Fig. 4 Schematic of a “sensor-enabled” cloud application platform.

pect, and the software functionality measuring and sending
these values is the sensor. There may be cases when a mon-
itored subject has more than one aspect to monitor – that is,
a single Web service may be equipped with several sensors
(though possibly implemented within a single piece of pro-
gramming code) measuring not only response time, but also,
for example, availability, the number of incoming requests
or price.

Figure 4 illustrates the concept of a sensor-enabled cloud
application platform. The monitored subjects – services, ap-
plications, platform components – are equipped with sensors
– software components responsible for measuring some val-
ues – which are connected into a network. Following sensor
network principles, values from a sub-network of monitored
subjects may first go through a routing node – a software
component responsible for transporting the values furtherto
a central component and/or initial processing and aggrega-
tion of incoming information. Depending on the purposes
of monitoring the central component may perform various
functions, ranging from simply storing monitored values to
sophisticated analysis of those values, diagnosing problems,
or even executing appropriate adaptation actions through a
feedback mechanism. For example, in [10] the autonomic
manager is responsible for analysis of the incoming data,
detection of critical situations and execution of relevantad-
aptation actions on the managed cloud application platform.

4 Proof of Concept

In this section we present the initial results of our experi-
ments treating a cloud application platform as a distributed
network of virtual sensors. As a test bed for our experi-
ments we have chosen Heroku, which currently offers its
customers up to 150 generic re-usable add-on services. A

considerable number of these services are dedicated purely
to data storage, including traditional relational databases (e.g.,
ClearDB MySQL15 and Heroku Postgres16), NoSQL data-
bases (e.g., MongoHQ17 and Redis Cloud18), and caching
services (e.g., MemCachier19 and MemcachedCloud20), among
others. Heroku’s pricing model assumes that cloud customers,
when subscribing to a particular service, are free to choose
from a range of subscription plans. These plans determine
the resources and support the customer receives for a given
price, and essentially act as SLAs between the customer and
platform provider. Typically, subscription plans range from
very limited free accounts (for testing and trial purposes)
to full-blown enterprise accounts (priced at up to $6000 per
month). The two typical metrics determined in a subscrip-
tion plan for data storage services arenumber of simultane-
ous client connections andstorage capacity (defined either
in terms of MB or number of rows). Heroku itself constantly
monitors the resources used by its customers and compares
this against the associated quotas; however, it does not notify
the application providers in any way when a critical thresh-
old value is approaching, and this can result in a situation
where an application is unexpectedly restricted from con-
necting to a database (due to the connections limit) or in-
serting new values (due to the storage limit).

Accordingly, our goal in this case study was to fit data
storage services with sensing capabilities, so that application
providers can be notified in advance whenever a threshold
is approaching and can take appropriate action – for exam-
ple, by disconnecting idle client connections or by upgrad-
ing their subscription plan.

To this end, we have implemented a self-adaptation frame-
work to support autonomicity of cloud application platforms.
The framework is based on the MAPE-K reference model,
and follows our interpretation of cloud application platforms
as sensor networks. By annotating monitored values emit-
ted by the sensors (i.e. services) with semantic descriptions
(RDF triples), we are able to represent raw data in a uniform
format and facilitate semantic interoperability between het-
erogeneous data sources. This approach also enables us to
apply run-time querying (using a streaming query language)
and formal reasoning to perform situation assessment, prob-
lem diagnosis and adaptation planning (these activities are
performed by the ‘autonomic manager’). Due to limitations
of space we refer interested readers to [10] for implementa-
tion details.

Using our framework we manually annotated sensor data
(in this case, the current pool of client connections, and util-

15 https://www.cleardb.com/
16 https://www.heroku.com/postgres
17 http://www.mongohq.com/
18 https://redislabs.com/redis-cloud
19 https://www.memcachier.com/
20 http://redislabs.com/memcached-cloud
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isation of storage space) with semantic descriptions defined
in an OWL ontology, and, using a publish-subscribe mecha-
nism, streamed these values to the autonomic manager (the
central component of the network) via a messaging queue.
Before the values were delivered to the autonomic manager,
they first passed through one or more routing nodes which
performed initial filtering and aggregation; by registering
standing queries against an RDF stream we selected only
critical values (those violating the thresholds), which were
then passed on to the autonomic manager. Thus, our ap-
proach off-loads some of the computational workload, which
might otherwise become a bottleneck of the system. The au-
tonomic manager picks up the critical values and, by rea-
soning over SWRL rules, determines the nature of the prob-
lem and suggests a possible adaptation strategy. In this case
study, we defined the critical thresholds as 90% of the over-
all quotas, and restricted possible adaptation strategiesto
(a) disconnection of idle client connections and (b) deleting
older database values. In practice, of course, the possiblead-
aptation strategies should be somewhat more sophisticated
and intelligent.

The results of the case study support the viability of our
approach, albeit in a controlled environment, and suggest
that further investigation is worthwhile – by treating services
as sensors and connecting them into a network, we were able
to monitor values coming from distributed sources and de-
tect critical condition violations at run-time in a timely man-
ner. Re-using existing techniques from the Semantic Sensor
Web area allowed us to perform dynamic in-memory analy-
sis of monitored data, and create an extensible architecture.

It should be noted that we relied here on the use of ex-
isting service metrics, which can be measured via standard
mechanisms and do not require the insertion of additional
probes into applications’ source code. For example, Post-
greSQL exposes its run-time usage statistics through the ta-
blepg-stat-activity, and Redis offers such information
through a standard API command,INFO. However, various
other metrics would require a more intrusive approach, and
may require developers to instrument the source code of
platforms, user applications or services with sensing func-
tionality. We discuss this, and other potential drawbacks to
our approach, in Section 5.3.

5 Discussion

There are a number of taxonomies and classifications dis-
cussing existing approaches to the monitoring and adapt-
ation of service-based enviroments (we refer the interested
reader to [17]). We highlight here two approaches that most
closely relate to our own.

Ardissono et al. [2] presented a framework for fault tol-
erant Web service orchestration and introduced the idea of
local and global diagnosers. A local diagnoser is a software

component coupled with a Web service, which is responsi-
ble for diagnostic hypotheses explaining exceptional occur-
rences from a local point of view. Then local hypotheses are
sent to a central (i.e., global) diagnoser, which is responsible
for global reasoning about the whole composite service ap-
plication. Accordingly, local diagnosers can be seen as sen-
sors, and the global diagnoser as a central component of a
sensor network.

A similar concept was introduced by Ameller et al. [1]
as part of the SALMon project – a SOA system which uses
a monitoring technique to provide run-time Quality of Ser-
vice information that is needed to detect and eventually cor-
rect SLA violations. Monitored SOA systems are equipped
with measuring instruments (which are essentially sensors),
which are used to obtain basic metrics assocaited with the
selected quality attributes. The metrics are then sent to the
Monitor, Analyser and Decision Maker (software compo-
nents associated with the given SOA system). In this sense,
they play a role of routing nodes, as they only collect and
analyse values from a particular SOA system. However, there
is no central component in the SALMon architecture, and
managed SOA systems are isolated from each other.

With regard to our own approach, the potential benefits
and drawbacks of treating PaaS monitoring as a Web Sensor
problem can be summarised as follows.

5.1 Potential Benefits

Extensibility and Scalability. Existing sensor networks typi-
cally comprise a vast number of sensing devices spread over
a large area (e.g., traffic sensors distributed across a city-
wide road network) and have the capacity to be easily ex-
tended (as modern cities continue to grow in size, more and
more sensors are being deployed to support their associated
traffic surveillance needs). Once the sensors are connected
to the existing network, they are ready to report on the cur-
rent situation. A similar extensible architecture may be in-
troduced to the domain of monitoring cloud platforms, and it
follows that the monitoring architecture should support such
ad-hoc networks, so that when a new service is deployed on
a cloud and integrated into an existing service-based envi-
ronment, it is ready to be monitored. The same applies to
the case when a service component is uninstalled – it should
be seamlessly disconnected from the monitoring network.

Existing solutions and best practices. Treating a cloud ap-
plication platform as a sensor network allows us to re-use
existing solutions, developed and validated by the Sensor
Web community, in the context of monitoring and analy-
sis of streaming heterogeneous sensor data. A particularly
promising direction to pursue is applying techniques from
the Semantic Sensor Web area – a combination of the Se-
mantic Web and the Sensor Web – so as to enable situation
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awareness by providing enhanced meaning for sensor obser-
vations [27]. This can be done by adding semantic annota-
tions to existing standard Sensor Web languages (typically,
by expressing sensor values in the form of RDF triples), thus
providing more meaningful descriptions and enhanced ac-
cess to sensor data. Moreover, this extra layer helps to bridge
“the gap between the primarily syntactic XML-based meta-
data standards of the SWE and the RDF/OWL-based meta-
data standards of the Semantic Web” [27]. The advantage of
this approach is that semantically-enriched sensor data helps
to homogenise various data representation formats existing
in the SWE and also facilitates more intelligent analysis of
observed sensor values by applying formal reasoning. The
research work presented in [10] describes our initial results
applying techniques from the Semantic Sensor Web to create
a self-adaptation framework for managing cloud application
platforms. The main advantage of the described framework
is the support for run-time analysis of the heterogeneous
monitored values by means of reasoning over ontologies and
rules.

Routing nodes. When implementing a monitoring frame-
work for a cloud platform, intermediate routing or filtering
nodes may be of great use. Their responsibility is

(i) to transfer the monitored values to the central compo-
nent from a physical component (e.g., server, data cen-
tre), virtual component (e.g., application container, vir-
tual machine), or logical component (e.g., application
system, database) of the monitored platform; and

(ii) to perform initial processing of the incoming values –
that is, by filtering and aggregating monitored values it is
possible to offload some of the computational tasks from
the central monitoring component (which otherwise may
become a bottleneck of the whole system), and make the
whole framework more scalable.

Platform independence. Our framework can act as a high-
level conceptual model for creating monitoring frameworks,
which is independent of the underlying technology and im-
plementation. In other words, it does not constrain how com-
munications between sensors and the monitoring compo-
nents should be implemented – depending on a given cloud
application platform it may be performed via publish-subscribe
messaging queues, a message broker, via the SOAP pro-
tocol, etc. Our framework also does not constrain the un-
derlying platform and programming languages – Java, .Net,
Ruby, etc., are all equally acceptable.

5.2 Extending the approach to IaaS and SaaS levels

Throughout this paper we have specifically focused on mon-
itoring at the aPaaS level. However, it can be potentially ex-
tended and applied to the IaaS and SaaS levels as well. That

is, it is possible to monitor CPU/memory utilisation and net-
work bandwidth usage by equipping the underlying infras-
tructure with probes and gauges and connecting them into
a sensor network. Similarly, embedding application-specific
sensors at the software level can help perform monitoring in
terms of business goals.

There are, however, certain caveats to bear in mind. At
the lowest (IaaS) level the set of monitoring metrics is rather
limited, but quite defined and standardised – network band-
width and latency, virtual machine CPU/memory utilisations,
etc. [16]. Moving up the stack to the PaaS level, the set of
possible parameters to be monitored increases, but is still
limited to what a given cloud platform offers to its cus-
tomers (for example, it may include OS-specific metrics like
read/write frequencies, the number of running applications,
thread counts, etc.), as well as metrics related to utilisation
of platform-level services (size of messaging queues, execu-
tion times of worker processes, availability of data storage,
etc.). At the uppermost SaaS level, the set of monitored met-
rics expands still further and is almost unlimited, as it covers
all possible business-related parameters.

In this context, it would be interesting to explore how
the role of routing nodes may change across the three cloud
service models. At the IaaS level, we anticipate partition-
ing into sub-networks to be based on the physical location
of monitored elements – a routing node may connect, for
example, computational instances hosted on a single physi-
cal web server. At the platform level, partitioning may take
place based on virtual distribution of sensors either horizon-
tally (those collecting monitored values from multiple appli-
cations belonging to a specific user) or vertically (monitor-
ing all instances of a specific service). At the SaaS level, we
would expect it to be difficult to find common shared param-
eters on which we can perform partitioning. Nevertheless,
identifying logical clusters – that is, applications with sim-
ilar business logic – is still possible (for example, monitor-
ing various Twitter-connected applications and identifying
trending hash tags can help perform crowd sentiment analy-
sis [11]).

5.3 Potential Drawbacks

Portability. A major challenge posed by the ideas presented
in this paper is that implementing a monitoring framework
based on this high-level abstraction is not straightforward.
It is not possible to provide truly general guidelines as to
how to implement the monitoring functionality, as imple-
mentation depends on the characteristics of the particular
cloud application platform (its architecture, supported pro-
gramming languages and frameworks, etc.). For example,
our own work in this direction (described in [10]) showed
clearly that a monitoring framework, implemented in Java



Towards a Framework for Monitoring Cloud Application Platforms as Sensor Networks 9

Spring and deployed on VMWare’s Cloud Foundry21, was
portable to another cloud platform only with difficulty, due
to its dependence on Cloud Foundry’s built-in message queue-
ing service RabbitMQ22 as a means of transporting moni-
tored values within the monitoring framework.

Intrusive monitoring. As we have seen, another shortcom-
ing is the likely need to instrument monitored subjects with
sensors, since the number of monitoring metrics exposed
by the service providers and application developers and ac-
cessible through standard APIs is quite limited – that is, it
may be necessary in many cases to follow an intrusive ap-
proach to monitoring. Unlike real sensor networks where the
sensing functionality is implemented by default, we have to
somehow “inject” probes into existing software assets. Even
though there exist several open-source PaaS offerings on
the market which can be enabled with sensors (e.g., App-
Scale23, and the beta version of Cloud Foundry), the major-
ity of cloud application platforms are proprietary, making
third-party integration of new sensor capabilities problem-
atic. Therefore, it may be necessary for systems adopting
our framework to be implemented as ‘trusted entities,’ equ-
ipped with sufficient access rights to platform components
and applications.

6 Summary and Concluding Remarks

We have outlined a novel framework for implementing mon-
itoring – a key element for performing run-time self-adapt-
ations. Our approach interprets service-based cloud appli-
cation platforms as sensor networks, thereby allowing us to
apply sensor web techniques to the problems of PaaS-level
autonomic management. The main benefits of this approach
are extensibility and scalability, the existence of efficient so-
lutions, platform independence, genericity and complemen-
tarity to other approaches, the possibility of using routing
nodes as filters to avoid bottlenecks; and the potential to ad-
dress challenges of multi-clouds.

Maintaining application systems hosted on different clouds
is a challenging task [4], and prompt run-time monitoring
of the kind envisaged here may be a solution to this prob-
lem. There are novel ways of (partially) eliminating bor-
ders between clouds by establishing, for example, virtual
networks between VMs hosted on different platforms [25].
Adopting virtual links and utilising the sensor network ap-
proach, it would be possible to regard separate clouds as
part of a single network so as to perform monitoring. By
thinking in terms of sub-networks and routing nodes, we can

21 http://www.cloudfoundry.com/
22 http://www.rabbitmq.com/
23 http://www.appscale.com/

treat the whole multi-cloud system as a single sensor net-
work and each of the participating clouds as sub-networks.
In summary, we believe the approach we have outlined to be
promising, but further investigation is required.
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voir – When One Cloud Is Not Enough. Computer 44(3), 44–51
(2011). DOI 10.1109/MC.2011.64

26. Sha, L.: Using simplicity to control complexity. IEEE Software
18(4), 20–28 (2001). DOI 10.1109/MS.2001.936213

27. Sheth, A., Henson, C., Sahoo, S.: Semantic Sensor Web. IEEE In-
ternet Computing 12(4), 78–83 (2008). DOI 10.1109/MIC.2008.
87

28. Wei, Y., Blake, M.: Service-Oriented Computing and Cloud Com-
puting: Challenges and Opportunities. IEEE Internet Computing
14(6), 72–75 (2010). DOI 10.1109/MIC.2010.147


