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We present a method of forming and controlling large arrays of gate-defined quantum devices. The

method uses an on-chip, multiplexed charge-locking system and helps to overcome the restraints

imposed by the number of wires available in cryostat measurement systems. The device architecture

that we describe here utilises a multiplexer-type scheme to lock charge onto gate electrodes. The

design allows access to and control of gates whose total number exceeds that of the available electri-

cal contacts and enables the formation, modulation and measurement of large arrays of quantum

devices. We fabricate such devices on n-type GaAs/AlGaAs substrates and investigate the stability of

the charge locked on to the gates. Proof-of-concept is shown by measurement of the Coulomb block-

ade peaks of a single quantum dot formed by a floating gate in the device. The floating gate is seen to

drift by approximately one Coulomb oscillation per hour. VC 2015 AIP Publishing LLC.

[http://dx.doi.org/10.1063/1.4932012]

Motivation for the study of large arrays of quantum devi-

ces, such as electrically defined quantum dots (QD),1–3 arises

both from the requirement to up-scale for quantum informa-

tion processing4–7 and from interest in the physics that com-

plex devices may give rise to. One of the many challenges of

fabricating such complex devices is the limited number of

wires available on measurement setups. Controlling just

three8–10 or four11–13 quantum dots may require 20 wires, the

limit of many research systems. Recent work14–16 has shown

the use of the multiplexer (MUX) to greatly increase the num-

bers of isolated quantum devices available for study on a sin-

gle chip. The architectures so far reported however do not

allow the simultaneous use of all the MUX outputs, a require-

ment for the fabrication of large interacting arrays. Here, we

present a method that overcomes these restraints by using an

on-chip multiplexer to lock charge onto gate electrodes. We

fabricated such a device, on a GaAS/AlGaAs substrate, which

in principle enables control and measurement of 14 quantum

dots using only 19 wires. Proof-of-concept is provided by

measuring the Coulomb blockade peaks of a quantum dot

defined using this architecture. This scheme represents a

powerful tool for up-scaling and investigating new

phenomenon.

Figures 1(a)–1(c) show cartoon schematics of a small

section of the charge-locking MUX device in various stages

of fabrication. The device consists of three separate two

dimensional electron gases (2DEGs). These are shown in

Figure 1(a) and denoted as (1) the MUX 2DEG, (2) the gate-

source 2DEG, and (3) the device 2DEG. The 2DEGs are

accessed via ohmic contacts (brown squares). The gate-source

2DEG is a comb-like structure with a main channel and multi-

ple tributaries. A dielectric (green) is then added, Figure 1(b),

to the MUX 2DEG to enable addressing (see Ref. 15 for an

explanation of the MUX operation), and to the gate-source

2DEG to cover the main channel leaving the tributaries

exposed. Finally surface gates are added, Figure 1(c), which

we denote as (1) addressers, (2) locks, (3) device-gates, and

(4) the central gate. The dielectric used for our device was a

�600 nm layer of polyimide. The thickness of the dielectric is

such that the gate voltage required to deplete the 2DEG under-

neath the polyimide is around 10 times greater than for gates

passing directly over the substrate surface. Each lock is con-

nected to a MUX output ohmic and passes over the gate-

source dielectric and covers a single tributary. From each of

the tributary ohmics a surface gate passes onto the measure-

ment 2DEG to form the final device. The MUX and gate-

source arrangement is repeated, mirrored about the central

gate. The central gate crosses the measurement 2DEG allow-

ing two measurement channels to be formed.

The steps required for initialisation and operation of the

device are shown in Figures 2(a)–2(d). First, Figure 2(a), the

multiplexer 2DEG and addressing gates are set to a voltage,

referred to as the locking voltage VL, which is well beyond

the depletion voltage of the 2DEG Vdpln (active gates are

coloured red). This initial operation depletes the 2DEG under

the locking-gates and therefore isolates all the gate-source

tributaries from the main channel. Next, Figure 2(b), the

addressing gates are set to a second voltage, which we name

the double lock voltage VdbL� 2�VL. This second opera-

tion isolates the locking-gates which are now charged and

floating at VL. Steps one and two constitute an initialisation

process and the device is ready to be used. We next address

one of the multiplexer outputs, e.g., the left branch in Figure

2(c), and set the multiplexer 2DEG to 0 V. This allows the

addressed locking-gate to discharge, reconnecting the tribu-

tary under the addressed locking-gate to the main channel of

the gate-source 2DEG (the white arrows represent available

current paths). The device-gate can now be swept to thea)rkp27@cam.ac.uk
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desired voltage via the main channel of the gate source

2DEG. Next, Figure 2(d), charge is locked onto the device-

gate by setting the multiplexer 2DEG and addressing-gates

to VL, isolating the tributary from the main channel. The

lock is then isolated by setting the addressing gates to VdbL.

The operations in Figures 2(c) and 2(d) can then be repeated

for the other device-gates. In this way, large numbers of

gates can be set up to form complex devices.

We first investigate the stability of individual floating

device gates. The plot in Figure 2(e) shows the conductance

through the measurement 2DEG as a function of the voltage

applied to the gate-source 2DEG with a single gate addressed

as in panel (c) above. During the measurement the central

gate is held at a constant voltage using a directly connected

voltage supply. The measurements were made at the base

temperature of a dilution refrigerator (�50 mK). Figure 2(f)

FIG. 1. Cartoon schematics of a section of the charge-locking device in various stages of fabrication. (a) The device consists of three separate 2DEGs referred

to as: (1) the MUX 2DEG, (2) the gate-source 2DEG, and (3) the measurement 2DEG. The brown squares are ohmic contacts to the 2DEGs. (b) A dielectric

(green) is added to the MUX 2DEG to enable addressing and to the gate-source 2DEG over the main channel leaving the tributaries exposed. (c) Surface gates

are added and referred to as: (1) addressers, (2) locks, (3) device-gates, and (4) central gate. Each lock passes over the dielectric to cover a single tributary.

Each gate-source tributary terminates in a device-gate which passes onto the measurement-2DEG to form the final device. The MUX and gate-source arrange-

ment is then repeated, mirrored about the central gate on the measurement 2DEG.

FIG. 2. Operational steps of the charge-locking device. (a) The MUX 2DEG and addressing gates are set to a voltage, named the locking voltage VL� Vdpln

(Vdpln¼ depletion voltage). This isolates the tributaries from the main channel of the gate-source 2DEG. (b) The addressing gates are then raised to 2 �
VL¼VdbL. This isolates the locking gates and leaves them floating at VL. (c) One of the locks (e.g., the left lock in the figure) is addressed and the MUX

2DEG set to zero volts. The addressed lock is then able to discharge via the MUX input and the tributary is reconnected to the gate-source 2DEG input. A volt-

age may now be applied to the device gate, Vdg, via the input and main channel of the gate-source 2DEG. (d) The MUX 2DEG and addressing gates are then

set to VL to lock the charge onto the device gate and the addressing gates are then set to VdbL to isolate the lock. Steps (c) and (d) are then repeated to set the

remaining gates. (e) Conductance G of the measurement 2DEG, as a function of device gate voltage Vdg of a single addressed gate (stage (c) above). (f)

Conductance as a function of time of a single floating device-gate (stage (d) above). The device-gate has been isolated and no external voltages are applied to

the device-gate 2DEG. The time varying conductance dG/dt is converted to an effective change in device-gate voltage dVg/dt, by comparing (e) and (f). (g) A

histogram of the calculated dVdg/dt for several device-gates.

143501-2 Puddy et al. Appl. Phys. Lett. 107, 143501 (2015)
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shows the change in conductance as a function of time

dG/dt, after the device had been isolated as in panel (d). By

comparing the plots in panels (e) and (f), the time varying

conductance can be converted in to an effective change in

device-gate voltage dVdg/dt. Panel (g) shows a histogram of

this effective drift for several gates. The modal average is

around 7 mV/h. Possible mechanisms for the observed drift

dG/dt include charge leaking from the device gates into sur-

face states on the substrate, into the donor layer or into the

main channel of the device gate 2DEG via the depleted

region under the locking gates. In addition, charge rearrange-

ment within the donar layer could also give rise to the

observed drift. Possible improvements to the drift may be

achieved by using different doping configurations, the addi-

tion of an insulating layer under the gates and by increasing

the gate capacitance to ground.

We next perform a proof of principle measurement by

forming a QD between the central gate, an isolated floating

device gate and an actively addressed device gate. Figure 3(a)

shows a schematic of the device and the circuit diagram used

to form and measure the QD. The SEM image shows a set of

device gates identical to that of the measured device. During

the measurement the central gate is held at Vcg¼�0.5 V

using an external voltage source. A device gate (g1) has been

addressed, set to �0.45 V and subsequently isolated. An adja-

cent gate is then addressed and the voltage Vg2 swept via the

gate-source 2DEG. Panel (b) shows G as a function of Vg2,

measured at �50 mK. Coulomb resonances appear as a QD is

formed. The voltage sweep with g2 addressed is repeated five

times at 1 h intervals whilst the floating gate g1 remains iso-

lated. The five sweeps are shown in panel (c) as greyscale

plots. The white circles highlight a single Coulomb peak,

which is observed to drift by � 8 mV/h.

The proof of principle measurements presented here

show that our device architecture offers, by increasing the

number of available electrical contacts, a route toward the

investigation of quantum devices of increasing complexity.

We found the gate voltage drifts by around one Coulomb

peak per hour for the device tested. Improvements to the

gate stability may be required for some operations, and so,

further investigation into the mechanisms and possible

improvements to the gate stability are required.
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FIG. 3. (a) Schematic and circuit dia-

gram of the charge-locking device with

an SEM image of a set of device gates

identical to that of the measured device.

The central gate is held at Vcg¼�0.5 V

by an external voltage source, a device

gate (g1) has been addressed, set to

�0.45 V, and subsequently isolated. An

adjacent gate is then addressed and the

voltage Vg2 swept via the gate-source

2DEG. Panel (b) shows G as a function

of Vg2, measured at �50 mK. Coulomb

resonances appear as a QD is formed.

This measurement is repeated five times

at 1 h intervals whilst the floating gate

g1 remains isolated. The five sweeps

are shown in panel (c) as greyscale

plots. The white circles highlight a sin-

gle Coulomb peak, which is observed to

drift by�8 mV/h.
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