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Spatiotemporal System Identification with

Continuous-spatial-maps and Sparse Estimation
Parham Aram*, Visakan Kadirkamanathan Member, IEEE and Sean R. Anderson

Abstract—In this paper we present a framework for the
identification for spatiotemporal linear dynamical systems. We
use a state-space model representation, which has the following
attributes: the number of spatial observation locations are
decoupled from the model order; the model allows for spatial
heterogeneity; the model representation is continuous-over-space;
the model parameters can be identified in a simple, sparse
estimation procedure. The model identification procedure we
propose has four steps: (i) decomposition of the continuous
spatial field using a finite set of basis functions. Spatial fre-
quency analysis is used to determine basis function width and
spacing such that the main spatial frequency contents of the
underlying field can be captured; (ii) initialisation of states in
closed form; (iii) initialisation of state-transition and input matrix
model parameters using sparse regression - the least absolute
shrinkage and selection operator (lasso) method; (iv) joint state
and parameter estimation using an iterative Kalman-filter/sparse-
regression algorithm. To investigate the performance of the
proposed algorithm we use data generated by the Kuramoto
model of spatiotemporal cortical dynamics. The identification
algorithm performs successfully, predicting the spatiotemporal
field with high accuracy, whilst the sparse regression leads to a
compact model.

Index Terms—spatiotemporal, system identification, space-time
modelling, sparse regression

I. INTRODUCTION

S
PATIOTEMPORAL systems modelling is becoming an

important area of study in such diverse areas as meteorol-

ogy [1], biomedical signal processing [2], the neurosciences

[3], epidemiology [4], and mobile sensor networks [5]. In order

to fully describe the underlying dynamics of such processes,

it is generally recognised that space and time data should not

be treated as statistically independent variables [6]. Recent

advances in data collection techniques and computing power

have made possible the development of unifying methods of

spatial interpolation and temporal prediction. This paper intro-

duces an efficient data-driven method to build a sparse model

of linear spatiotemporal systems with continuous-spatial-maps.

To identify spatiotemporal models of linear dynamical sys-

tems the space-time, auto-regressive, moving average, with

exogenous input (STARMAX) model was developed as a

specialist form of multivariate ARMAX model [7], [8]. There

are two important limitations of the STARMAX model, how-

ever: (i) the number of observation locations is intrinsically

coupled to the order of the model, hence model size grows

with the number of observation locations and (ii) the model
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describes behaviour at discrete spatial locations only and

therefore cannot produce continuous-spatial maps. The former

is a particular disadvantage for system identification, where

compact models for systems-level analysis is often a key

goal. Additionally, there are many circumstances where a

continuous-spatial map would be preferable to predictions at

discrete spatial locations.

An innovation pursued by a number of researchers centred

around an approach where the spatiotemporal model was

described in a state-space form and the continuous spatial

field was represented by a basis function decomposition [9]–

[11]. The weights of the basis functions themselves were

then described as a dynamic process, evolving over time in

the state vector. This approach had the dual advantages over

STARMAX of describing the spatial field as a continuous

map, as well as decoupling the model order from the number

of observation locations. However, the dynamics tended to

be defined in terms of a simple process such as a random

walk [9], or derived from a priori knowledge of the physical

process [12]. These approaches opened up a key gap: the

use of data-driven techniques to identify the dynamics of

the spatiotemporal system, which was addressed recently us-

ing system identification techniques for the integro-difference

equation (IDE) model representation [13], [14].

However, the IDE model discussed in [13], [14] has a

disadvantage in that the spatial mixing kernel used to describe

correlations over space assumes homogeneity: all points in

space are described by the same mixing kernel - an assumption

that may be limiting in some circumstances. One advantage

of the STARMAX model, in this regard, is that it allows for

heterogeneity in the spatial correlations, whilst being amenable

to data-driven identification. Therefore, this leads us to the

conclusion that the three broad approaches to spatiotemporal

modelling described above (STARMAX, basis function de-

composition of the spatial field and data-driven identification)

have attributes that have not yet been distilled into a single,

powerful framework for system identification that incorporates

the following: (i) decoupled number of sensor observations

from model order; (ii) continuity-in-space; (iii) a heterogenous

representation; (iv) data-driven methods for the identification

of process dynamics. Deriving such a framework is the aim

of this paper.

In our proposed approach to spatiotemporal system identi-

fication, we exploit the method of a basis function decom-

position of the continuous spatial field. Then the dynamic

evolution of the basis function weights are described similarly

to a STARMAX process. To identify the model we propose

a four-step data-driven procedure: in the first step the spatial

field is described by a basis function decomposition in the
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output equation of a state-space model; in the second step the

states are initialised in closed form from the spatial observation

data; in the third step the model parameters are initialised using

either a least squares (LS) technique or a sparse regression

technique - least absolute shrinkage and selection operator

(lasso) [15]–[17]. The key advantage of using lasso is that

it simultaneously identifies spatial correlation structure along

with estimating model parameters. In the fourth step the states

and parameters are estimated in a joint procedure using an

iterative Kalman-filter/sparse-regression algorithm, inspired by

a similar LS approach [18].

The structure of the paper is as follows. In Section II a

finite dimensional state-space representation of the dynamic

spatial field is derived where the continuous spatial field is

approximated using a basis function decomposition. Section III

provides conditions based on spatial frequency analysis to

determine both basis function width and spacing such that,

the main spatial frequency contents of the underlying field can

be captured. The joint estimation method for state and sparse

parameter estimation is described in Section IV. Finally the

main results of the paper are summarised in Section V.

II. SPATIOTEMPORAL MODELLING

The aim of this section is to derive a finite dimensional

state-space representation of the dynamic spatial field. The

output equation is a basis function representation of the spatial

field and the state equation describes the dynamic evolution

of the basis function weights, where the weights themselves

are modelled as a space-time autoregressive with exogenous

input (ARX) process. The resulting model represents spatio-

temporal processes as a continuous spatial field with discrete

temporal dynamics.

A. Continuous spatial field representation

The continuous spatial field is observed at spatial position

s ∈ R
ns (where ns ≤ 3) and discrete time t is given by

yt(sny
) =

∫

Ω

m(sny
− s′)zt(s

′)ds′ + ǫt(sny
), (1)

where zt(s) is the continuous spatial field, m(·) is the sensor

kernel and ǫt ∼ N (0,Σǫ) is an independent and identically

distributed (i.i.d.) Gaussian white noise process with the

covariance matrix Σǫ = σ2
ǫ Iny

, where I denotes the identity

matrix. Using an appropriate set of basis functions that spans

the function space in which the spatial field is defined, zt(s)
can be decomposed as

zt(s) =

∞
∑

i=1

xi,tφi(s), (2)

where xi,t are the dynamic coefficients of the expansion at

time t, and φi(s) are static basis functions. Truncating the

sum in equation (2) at i = nx leads to an approximate repre-

sentation with a finite number of basis functions, weighted by

a finite dimensional state vector, xt of dimension nx, i.e.,

zt(s) ≈ φ⊤(s)xt. (3)

The field basis functions used here are n-dimensional Gaussian

functions given by

φ (s) = exp

(

−
(s− µφ)

⊤(s− µφ)

σ2
φ

)

. (4)

where σφ and µφ are the basis function width and centre

respectively. The widths of the basis functions as well as

the placement of basis functions can be chosen by spectral

analysis (see Section III). Substituting equation (3) back into

equation (1) we have

yt(sny
) =

∫

Ω

m(sny
− s′)φ⊤(s′)ds′xt + ǫt(sny

). (5)

In a matrix form (5) can be re-written as

yt = Cxt + ǫt, (6)

where yt =
[

yt(s1) yt(s2) . . . yt(sny
)
]⊤

and ǫt =
[

ǫt(s1) ǫt(s2) . . . ǫt(sny
)
]⊤

. Each element of the obser-

vation matrix, C, is given by

Cij =

∫

Ω

m(si − s′)φj(s
′) ds′. (7)

When point sensors are used equation (7) simplifies to

Cij = φj(si). (8)

B. Dynamic evolution of the spatial field

In order to link the dynamic coefficients over time we

assume an evolution equation f(·) such that

xt+1 = f(xt,ut, et), (9)

where ut is the input at time t and et accounts for unmodelled

terms and approximated by a zero mean Gaussian disturbance

with the covariance matrix, Σe. Assuming f(·) is a linear time

invariant map, equation (9) can be written in a form of

xt+1 = Axt +But + et. (10)

where A ∈ R
nx×nx , B ∈ R

nx×nu . This completes the final

form of the state-space model.

The state-space representation is based on the basis de-

composition of the spatial field where the accuracy (degree

of smoothness) of the model can be determined by spatial

frequency analysis (explained in detail in the following sec-

tion). The spectral low-pass action of these basis functions

can attenuate the high spatial frequency variations in the

observed field. Therefore, care must be taken to ensure that any

estimation procedure applied to the observed field adequately

captures the high spatial frequency variations by adjustment

of the basis function hyperparameters.

III. SPATIAL FREQUENCY ANALYSIS

In order to determine the spatial field from sampled data

the number of basis functions as well as their widths should

be chosen appropriately. This can be done by spectral analysis

of the sampled field [19]. Shannon’s sampling theorem [20]

states that the observed field should be spatially band limited

to avoid aliasing. An approximate estimation of the field can
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still be found if the spatial field is only approximately band

limited, i.e.

Zt(ν) ≈ 0 ∀ν > νcy , (11)

where Zt(ν) is the spatial Fourier transform of zt(s), ν is

the spatial frequency and νcy is the cutoff frequency of the

observed field. For an approximate reconstruction of such a

band-limited field, the distance between centres of adjacent

basis functions, ∆φ, must be

∆φ ≤
1

2ρνcy

, (12)

where ρ ∈ R ≥ 1 is an oversampling parameter [14]. This

is analogous to the Nyquist criterion in temporal frequency

domain.

In case of Gaussian basis functions, for a 3 dB attenuation

at νcy the width can be obtained by [21]

σ2
φ =

ln 2

2π2

1

ν⊤
cyνcy

. (13)

The number of basis functions can be determined by dividing

spatial field of interest into ∆φ intervals. The complexity of the

state-space model (number of basis functions) can be reduced

by choosing wider basis functions. This will indeed result into

a less accurate (smoother) estimation. In this case the cut-off

frequency of the estimated field, νcφ, can be set into a desired

value by tuning the width of the basis functions , i.e.,

νcφ =
1

πσφ

√

ln 2

2
. (14)

In this case, the reconstructed field can represent the spatial

frequency contents of the observed field upto νcφ. The dis-

tance, ∆φ, can be also determined by substituting νcφ for νcy
in equation (12), i.e.,

∆φ ≤
1

2ρνcφ
. (15)

From reciprocal role of νcφ in equation (15) it follows that

for a more detailed representation of the spatial field a higher

number of basis functions is required. This, in turn, leads

to increase in number of states in the state-space represen-

tation. Therefore, a compromise should be made between the

accuracy and the computational demands of the estimation

algorithm.

IV. SPATIOTEMPORAL MODEL PARAMETER ESTIMATION

In this section, we describe the estimation procedure for

the state-space model. An iterative state-parameter estimation

algorithm with lasso is derived for sparse modelling, with

simple initialisation steps.

A. Joint sparse parameter and state estimation

Spatiotemporal systems can often incur many parameters

in their description. For instance, naive estimation of the

state-space model defined here would lead to a full state-

transition matrix, implicitly assuming non-zero spatial cor-

relations amongst all basis functions. Alternatively, we can

usually obtain a model with far fewer parameters using sparse

regression methods. Here, we use lasso to obtain a sparse

model of the system dynamics, which simultaneously identifies

spatial correlation along with model parameters.

A complication arises because the states and parameters

of the state-space model are both unknown and therefore

require joint estimation. One well-known method for joint

state-parameter estimation is to augment the state vector with

the model parameters and solve the resulting nonlinear filtering

problem via the extended Kalman filter (EKF) [22] or Rao-

Blackwellised particle filter (RBPF) [23]. A robust joint state-

parameter estimation algorithm could be used to improve the

convergence and the accuracy of the EKF algorithm [24] but

this algorithm does not give a sparse solution for the param-

eters. For the particle filter, the nature of the spatiotemporal

problem renders the state dimension too high for computing

efficiently by current RBPF algorithms.

A solution, therefore, to this problem is to use an itera-

tive two-stage state-parameter estimation algorithm: a step of

Kalman filtering (or smoothing) to estimate the state sequence,

followed by a step of parameter estimation by LS [3], [18].

We extend this algorithm here to a sparse version where we

use lasso in the parameter estimation step.

The task is to estimate both states and parameters from a

set of T data-samples,

(Θ̂, x̂1:T ) = argmin
Θ,x1:T

J (Θ,x1:T ) , (16)

where

Θ =
(

θ⊤
1 , . . . ,θ

⊤
nx

)⊤

(17)

θi = (ai,1, . . . , ai,nx
, b1,1, . . . , bi,nu

)
⊤
, i = 1, . . . , nx

(18)

where individual parameter vectors θi pertain to the dynamic

evolution of each separate basis function, where aij and bij
are the ijth elements of the transition matrix, A, and the input

matrix, B. The joint state-parameter cost function J (Θ,x1:T )
is defined as

J(Θ,x1:T ) =

T
∑

t=1

∥

∥xt+1 −A(Θ)xt −B(Θ)ut

∥

∥

2

2
,

+

T
∑

t=1

∥

∥yt − Cxt

∥

∥

2

2
+ λ

∥

∥Θ
∥

∥

1
(19)

where the system matrices are written as functions of Θ to

indicate their dependence on the model parameters. Then for

the case of a known state sequence the joint cost function

reduces to

J(θi|x1:T ) =
∥

∥zi −Xθi

∥

∥

2

2
+ λ

∥

∥θi

∥

∥

1
, i = 1, . . . , nx (20)

where λ ≥ 0 is a regularisation weighting parameter (note the

cost function reduces to the LS problem treated in [18] for

λ = 0), and where

zi = Xθi + ei, i = 1, . . . , nx (21)
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where

zi = (xi,t+1, . . . , xi,t+T )
⊤
, (22)

xi,t+1 = (x1,t, . . . , xnx,t, u1,t, . . . , unu,t)θi + ei,t, (23)

ei = (ei,t, . . . , ei,t+T )
⊤
, (24)

and

X =









x1,t . . . xnx,t u1,t . . . unu,t

x1,t+1 . . . xnx,t+1 u1,t+1 . . . unu,t+1

...
...

...
...

...
x1,t+T−1 . . . xnx,t+T−1 u1,t+T−1 . . . unu,t+T−1









.

(25)

The solution to the lasso problem defined in (20) cannot

be expressed in a closed-form but there exists many efficient

algorithms to compute the solution [25]. Here we use a

cyclical coordinate descent algorithm computed along a path

of values of the regularisation parameter λ [26]. Efficient

implementations of this algorithm are available in the Matlab

statistics toolbox (the lasso function) and the Python scikit-

learn module [27]. The regularisation parameter λ can either

be chosen by user inspection because the path algorithm

intrinsically generates results for a sequence of λ values, or λ

can be chosen by cross-validation.

For known parameters, the joint cost function J(Θ,x1:T )
reduces to

J(x1:T |Θ) =

T
∑

t=1

∥

∥xt+1 −Axt −But

∥

∥

2

2
+

T
∑

t=1

∥

∥yt − Cxt

∥

∥

2

2

(26)

which can be solved for the estimated state-sequence x̂1:T

using the Kalman smoother (or the Kalman filter for greater

computational efficiency) [28].

The joint cost function J(Θ,x1:T ) can be solved sequen-

tially by iterative minimisation of J(θi|x1:T ) and J(x1:T |Θ)
[18]. The complete estimation framework for spatiotemporal

system identification is given in Algorithm 1 with initialisation

steps for the states discussed below.

The iterative estimation of states and parameters in step 4

of Algorithm 1 can be viewed as coordinate descent in the

variables x1:T and Θ, and for λ = 0 is guaranteed convergent

to a local optimum of the cost function J(Θ,x1:T ) [18],

subject to the following conditions: (i) that the state-space

model is observable and unique - satisfied here due to the

canonical form imposed by the representation of the spatial

field basis function decomposition in the state-space model

and (ii) that the input is persistently exciting, which is satisfied

by the definition of the state noise signal et.

For λ > 0, convergence of the joint sparse parameter-

state estimation problem is dependent on convergence of the

lasso algorithm. This is usually not an issue in practice for

the fast path descent algorithm used here, but we note that

if guaranteed convergence is required then the lasso problem

is also equivalent to minimising the sum-of-squared residual

errors,
∥

∥zi−Xθi

∥

∥

2

2
, subject to the constraint |θi|1 ≤ γ, where

γ is a threshold parameter. For this constrained optimisation

problem, the cost function is convex, and the constraints define

a convex set. Hence, the lasso solution can be found by

using standard quadratic programming methods for guaranteed

convergence.

Therefore, as each step of state and parameter estimation

in Algorithm 1 is guaranteed to converge, the joint cost

function J(Θ,x1:T ) is guaranteed to be non-increasing, i.e.

Jk(Θ,x1:T ) ≤ Jk−1(Θ,x1:T ) ≤ . . . ≤ J1(Θ,x1:T ), where

the subscript k indicates algorithm iterations. The convergence

of the parameters can be monitored using a measure such as

the change in the Frobenius norm, ‖ · ‖F , of the parameters

Θ across iterations and the algorithm can be set to stop when

‖ · ‖F crosses some threshold.

B. State initialisation

The state vector comprises the basis function weights of the

spatial field decomposition. State estimation at each time-step

is therefore a straightforward task, given a defined set of basis

functions in the observation matrix C, where

x̂t = C†yt, t = 1 . . . T (27)

Note that the pseudo inverse, C† =
(

C⊤C
)−1

C⊤, for state

estimation only needs to be calculated once.

Fig. 1. Finite width spatial kernel corresponding to the fourth derivative of
a Gaussian. The spatial kernel governs the couplings between oscillators.

V. SIMULATION AND RESULTS

A. Data generation

To investigate the performance of the proposed algorithm we

use data generated using Kuramoto model of coupled phase

oscillators [29]. The Kuramoto model has been successfully

used to explicate synchronisation in a range of biological and

physical phenomena [30]. In [31] the spatial aspect of neuronal

connectivity is introduced to the Kuramoto model to exhibit

dynamics similar to cortical activities. The Kuramoto model

in this formulation is given by a set of N spatially coupled

differential equations:

θ̇n = ωn +
K

N

N
∑

m=1

W (m,n) sin (θm − θn) , (28)

where θn denotes the phase of oscillator n with the natural

frequency ωn, K is the coupling constant and W (m,n) is a

finite width and spatially homogeneous kernel describing the
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Fig. 2. Examples of actual and estimated spatial fields for three time instants. The first column shows the actual spatial fields. The second and third columns
show the estimated spatial fields using LS and lasso method respectively.

Algorithm 1. Spatiotemporal system identification.

1. Spatial field decomposition:

-define basis function widths σφ using (13),

-define basis function centres µφ ,

-construct observation matrix elements Cij using (7).

2. State initialisation:

-construct C† =
(

C⊤C
)−1

C⊤,

-estimate state sequence x̂1:T using (27),

3. Parameter initialisation:

-construct X0 from x̂1:T using (25),

-estimate parameters Θ̂0 using X0 and (20),

4. Joint state and parameter estimation:

-define stopping condition threshold ρ ,

-set k = 1,

while ||Θk −Θk−1||F > ρ

-parameterise the state-space model by Θ̂k−1,

-update the state sequence x̂1:T by

minimisation of (26) and hence redefine Xk,

-update the parameters Θ̂k using Xk and (20),

-set k = k + 1,

end while

coupling between nodes m and n. We used the code provided

by [31] to generate 2 s of data sampled at 1 kHz with a 60×60
grid of oscillators. All other parameters selected to be the same

as used in [31]. The spatial kernel is shown in Fig. 1 which

is the fourth derivative of a Gaussian function. Examples of

the simulated spatial field are plotted in the first column of

Fig. 2 which shows traveling wave-like patterns in the system.

The spatial field was observed using a 30× 30 regular lattice

of point sensors and measurements were corrupted by a zero

mean Gaussian white noise with Σǫ = 0.2× Iny
.

B. Spatiotemporal system identification

The spatiotemporal system identification algorithm defined

in Algorithm 1 was used here to identify the Kuramoto model.

The observation noise covariance was known to the estimator

and the disturbance covariance was set to Σe = 0.1× I . The

spatial frequency analysis was used to specify the arrangement

of basis functions. The lasso regularisation parameter λ was

tuned to 0.1 using the rapid parameter initialisation method,

and this value was subsequently used in the full joint state-

parameter estimation algorithm.

The cutoff frequency of the observed spatial field is

0.26 cycles/mm. Substituting this for νcy in (12) with ρ = 2
yielded a minimum spacing of 0.96, giving an equal grid of

22 × 22 basis functions. Note, such a configuration provides
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full spatial frequency contents from observations. We limited

the spatial contents of the estimated field in favour of a

simpler model with smaller number of basis functions. Setting

σ2
φ = 2.5 into (14) resulted into νcφ = 0.12. Given the

limited cutoff frequency and the over sampling parameter an

equal grid of 12 × 12 basis functions were used to construct

the state-space model. This results into a less accurate and

smoother estimation, however, has the advantage of reducing

the computational complexity of the estimation algorithm.

The results of the spatial field estimation for three time

instants are illustrated in Fig. 2, showing a good estimation

accuracy for both LS and lasso based algorithm. The effect

of using a lower cutoff frequency, νcφ, in the reconstructed

field can be seen in Fig. 3, reducing the spatial bandwidth

of the approximated field compared to the observed one. In
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Fig. 3. Spatial frequency analysis. (a) The average (over time) power in dB of
the spatial field. (b) The average (over time) power in dB of the reconstructed
field.

order to compare the two methods we calculated the root mean

square error (RMSE) over space of the field estimation for

each time instant. The result is shown in Fig. 4(a), showing a

slightly better performance where LS algorithm was used. The

accuracy of the estimates was also evaluated by comparing the

field reconstruction to the true field using the mean (over time)

of the variance account for (MVAF) over space, giving 81.4%

and 80.5% for LS and lasso based algorithm respectively.

The rates of convergence of the two methods are depicted in

Fig. 4(b), showing a slower rate for the LS based algorithm.

Here we used the absolute change in the Frobenius norms

of the successive estimates of A matrices as the stopping

criterion.

Although the performance of the LS based algorithm is

slightly better than its lasso based counterpart, the lasso based

algorithm results in far fewer model parameters as demon-

strated in Fig. 5. In fact only 43.2% of the elements in the

transition matrix, A, are non-zero. The comparison between

the two methods is summarised in Table. I. The results

demonstrate a trade-off between accuracy and sparsity but the

encouraging feature is that over half the model parameters can

be set to zero with a only a ∼ 1% drop in prediction accuracy

(i.e. for λ = 0.1).

VI. SUMMARY

In this paper we have developed a novel method for spa-

tiotemporal system identification for linear dynamical systems.

The identification framework has the following attributes: (i)

TABLE I
Comparison of LS and lasso based algorithms, and different values of

regularisation parameter λ.

Method λ value MVAF % of non-zero elements in Â

LS 0 81.4% 100%
lasso 0.01 81.4% 97%
lasso 0.1 80.5% 43.2%
lasso 0.3 77.1% 26.8%
lasso 1 56.2% 12.5%
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Fig. 4. (a) Error in the field reconstruction. The RMSE of the estimated
field over time for LS and lasso method. (b) Plot of the absolute change

in Frobenius norms of Â for successive iterations of the algorithm. In each
subplot the LS and lasso based algorithm are shown by solid and dashed lines
respectively.
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Fig. 5. Parameter estimation. (a) The result of sparse parameter estimation
using lasso. (b) The binary representation of the transition matrix estimate,

Â, using lasso method. The nonzero elements of Â is replaced by ones for a
better visualisation.

the number of spatial observation locations are decoupled from

the model order; (ii) the dynamics of the system are identified

by sparse regression (lasso), resulting in a compact model; (iii)

the model allows for spatial heterogeneity; (iv) the model rep-

resentation is continuous-over-space. We have demonstrated

by a numerical example that the proposed method can produce

compact models of complex spatiotemporal systems.
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