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ABSTRACT 

Plantar loading may influence comfort, performance and injury risk in soccer boots. This 

study investigated the effect of cleat configuration and insole cushioning levels on 

perception of comfort and in-shoe plantar pressures at the heel and fifth metatarsal head 

region. Nine soccer academy players (age 15.7 ± 1.6 yrs; height 1.80 ± 0.40 m; mass 71.9 ± 

6.1 kg) took part in the study. Two boot models (8 and 6 cleats) and two insoles (Poron and 

Poron/gel) provided four footwear combinations assessed using pressure insoles during 

running and 180O turning. Mechanical and comfort perception tests differentiated boot and 

insole conditions. During biomechanical testing, the Poron insole generally provided lower 

peak pressures than the Poron/gel insole, particularly during the braking step of the turn. The 

boot model did not independently influence peak pressures at the fifth metatarsal, and had 

minimal influence on heel loads. Specific boot-insole combinations performed differently 

(p<0.05). The 8-cleat boot and the Poron insole performed best biomechanically and 

perceptually, but the combined condition did not. Inclusion of kinematic data and improved 

control of the turning technique are recommended to strengthen future research. The 

mechanical, perception and biomechanical results highlight the need for a multi-faceted 

approach in the assessment of footwear. 
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1. INTRODUCTION 

Soccer is a fast-paced activity involving changes of direction, sprinting and jumping actions, 

therefore soccer boots have evolved to allow a compromise between stability and freedom of 

movement for the performer (Chomiak, Junge, Peterson & Dvorak, 2000). Modern boots are 

low-profile, flexible and lightweight, but provide little protection against injury. Any 

cushioning tends to be through a thin insole issued as standard within the boot, therefore 

exposing the plantar surface of the foot to potentially damaging loads. The provision of 

cushioned insoles has been demonstrated to reduce peak pressures in military boots (Windle, 

Gregory & Dixon, 1999; Hinz, Henningsen, Metthes et al., 2008) and injury rates in military 

recruits (Schwellnus, Jordaan, & Noakes, 1999), although there is also evidence of no 

reduction in injury rate with cushioned insoles (Gardner, 1988). The effectiveness of such 

insoles has been previously assessed using in-shoe plantar pressure analysis, but despite the 

limited existing cushioning in modern soccer boots, and the importance that players place on 

boot comfort (Hennig & Sterzing, 2010), the influence of adding cushioning insoles on 

comfort or plantar loading in soccer boots is yet to be investigated.  

Running shoe comfort has been shown to vary with insole design (Chen, Nigg & de Koning, 

1994), and  literature has demonstrated experimentally (Bus, Ulbrecht & Cavanagh, 2004) 

and with mathematical modelling (Goske, Erdemir, Petre, Budhabhatti & Cavanagh, 2006) 

that altering the material, shape and thicknesses of insoles can result in different pressure 

distribution patterns. Therefore the correct choice of soccer boot insole may have the 

potential to reduce peak loads under key areas of the foot. This may subsequently reduce 

injury susceptibility and improve comfort. It is suggested that the effectiveness of such 

devices to reduce peak plantar loads should be investigated in order to help inform their 

selection. 

Overuse injuries such as Achilles tendon pathology, lower back pain and stress fracture of 

the foot are prevalent in soccer (Paavola et al., 2002). The loads occurring at heel impact 



have been previously linked with overuse injuries (Schwellnus et al., 1990). In addition, the 

reported high incidence of fifth metatarsal fracture in soccer (Knapp et al., 1998; Jaquot et 

al., 2005; Shuen et al., 2009) may be associated with repeated loading of the forefoot, 

leading to a temporary weakening of this structure and thus susceptibility to fracture in the 

absence of sufficient rest. The number of cleats is likely to directly influence peak pressures, 

with more cleats providing increased points of contact with the ground and thus a greater 

dissipation of ground reaction forces. If the sole of the boot is not sufficiently stiff to 

dissipate the force acting through the cleats, then the cleat may serve to channel vertical 

ground reaction force onto the area of the foot immediately above it. Thus, when performing 

soccer-specific activities such as running and turning, the flexible sole of the soccer boot 

may lead to areas of high pressure immediately above the cleats. Research by Eils et al. 

(2004) demonstrated that the heel region is commonly loaded in soccer specific movements, 

while Santos et al. (2001) highlighted the increased lateral forefoot loading when wearing 

soccer boots compared to running shoes. High plantar loading, leading to discomfort, pain 

and potentially injury is likely to be influenced by movement type and cleat location (Coyles 

& Lake, 1999; Lake, 2000; Queen et al., 2008), thus it is important to identify whether 

specific cleat configurations influence loading at the heel and 5th metatarsal regions during 

dynamic movements such as running and turning. 

Comfort is an important consideration in footwear selection, with players citing this as a 

high priority in boot design (Hennig & Sterzing, 2010). The interaction between the foot and 

the supporting surface may contribute to pain and discomfort in footwear, particularly where 

high plantar pressure occurs (Witana et al., 2009). In soccer boots, this may be where 

excessive localised pressures occur as the studs/cleats penetrate the playing surface.  

Therefore, by understanding the interaction between the plantar surface of the foot and the 

surface of the shoe, the level of comfort a shoe-surface combination provides may be 

inferred. Changes in peak plantar pressures have been found to correlate with changes in the 

perception of running shoe comfort (Chen et al., 1994; Jorda, Payton & Bartlett, 1997), 



however only Brizuela et al. (1998) have investigated links between plantar pressure values 

and the perception of comfort in soccer boots.  Brizuela et al. (1998) concluded that high 

comfort perception related to lower peak plantar pressures when performing in boots of 

varying cleat numbers and locations. 

Although conclusions can be made from biomechanical and mechanical test data, the 

perception of the end user is critical in judging whether or not a soccer boot insole is 

adequately improving the comfort of the boot. Clarke (2011) identified fit, 

construction/material properties, stud/cleat design, and protection as the four key dimensions 

that influence soccer boot comfort.  Of these, Clarke (2011) stresses that ‘stud pressure’ is a 

dominating factor influencing the perception of comfort during dynamic play due to its 

likelihood to cause pain, and its relationship with performance – if the studs do not penetrate 

the surface with sufficient ease to provide grip the player will not only experience 

discomfort (pressure) but associate this with poor stud performance. In line with this, it is 

expected that lower plantar pressures will be accompanied by perception of increased 

general comfort.   

The region of the 5th metatarsal has been found to be particularly susceptible to excessive 

stud pressure.  Clarke (2011) surveyed 1000 active soccer players, with 22% reporting 

regularly experiencing excessive stud pressure in this region (described as the lateral toe 

region) with their own soccer boots and 24% feeling that this region required the most 

cushioning in the boot. Soccer boots have been found to increase forefoot peak pressures by 

around 35%, in comparison with running-specific footwear (Santos et al., 2001). Santos et 

al. (2001) identified the lateral forefoot as a distinct region of increased pressure when 

wearing soccer boots, caused by the channelling of ground reaction forces through the studs. 

The aim of this study was to investigate the influence of two types of insole on plantar 

pressure at the heel and fifth metatarsal regions when placed within two soccer boot models 

with different cleat formation, during steady state running and turning. A semantic 



differential approach was used to investigate the relationship between players’ perception of 

soccer boot comfort and plantar pressures measured at the foot, for the combinations of 

soccer boot and insole.  Mechanical testing was also conducted in order to relate the soccer 

players’ feedback perceptions to physical measurements. It was hypothesised that: (a) an 

insole with greatest mechanical cushioning would result in lower pressures at the heel and 

fifth metatarsal; (b) peak pressure would be lower in the boot with the higher number of 

cleats and (c) lower pressures would be accompanied by perception of decreased stud 

pressure and increased comfort. 

 

2. METHODS 

Following approval from the University of Exeter Sport & Health Sciences Ethics 

Committee, nine injury-free youth team players (age 15.7 ± 1.6 yrs; height 1.80 ± 0.04 m; 

mass 71.9 ± 6.1 kg) from the Blackburn Rovers Football Club Academy volunteered to 

participate in the study. Two football boot models; A and B (Figure 1) and two insole 

prototypes, P and G, provided four footwear combinations for comparison: AP, AG, BP and 

BG.  Insole P was constructed of a 3mm layer of Poron, while insole G consisted of a 1.5 

mm layer of Poron, and a 1.5mm layer of gel.  

Boot A had an eight cleat configuration, while Boot B had six cleats. The six cleats under 

the forefoot of Boot A covered an area encompassing the hallux and metatarsal regions. In 

Boot B, the four forefoot cleats covered a relatively small area, and the cleats were 

positioned distal to the hallux and posterior to the fifth metatarsal (Figure 1). Both boots 

were equipped with 12.9 mm long aluminium cleats in the forefoot and 15.4 mm long 

aluminium cleats in the heel. The cleat tip diameter was 7.6 mm in all cases. 

Boot outsole stiffness was assessed by measuring the peak force required to bend the outsole 

of each boot 45º with the experimental setup shown in Figure 2. The insole was removed 

from the boot and a solid plate was inserted into the forefoot of the boot and clamped to 



allow bending at the estimated location of human metatarso-phalangeal (MTP) joint. An 

actuator, driven vertically at approximately 0.3 m.s-1, applied a vertical force that was 

recorded by a load cell. This is a bespoke method of examining outsole stiffness, adapted 

from Oleson et al. (2005).  

 

The impact attenuation properties of the insoles were assessed by an impact-testing device 

(ASTM, 2001. Test method: F1976-99, Standard Test Method for Cushioning Properties of 

Athletic Shoes Using an Impact Test. ASTM International, West Conchohocken PA, USA). 

A 45 mm diameter, 8.5 kg mass was dropped with an impact velocity of 92 cm.s-1 as in 

Stiles & Dixon (2007). The missile was positioned to strike the heel section of the boot, with 

the insole placed inside as for normal use.  

Biomechanical testing took place on a natural turf surface. The SERG impact hammer 

method (Clarke & Carré, 2010) was performed on the day of data collection. The SERG 

impact hammer has a pre-calibrated accelerometer contained within a hemispherical hammer 

profile.  As the hammer hits the ground the voltage signal from the accelerometer is sampled 

and transformed to calculate the force and displacement throughout the loading and 

unloading phase of the impact. The peak force (N) is a measure of the maximum 

deceleration of the hammer during impact. Higher impact decelerations suggest a harder 

surface.  Clarke and Carré (2010) used the SERG impact hammer test method to assess the 

hardness of a third generation (3G) artificial soccer surface and a natural soccer surface 

(with gravimetric moisture content of 30.7 ± 1.8%).  The findings by Clarke and Carré 

(2010) show that peak forces of approximately 1000 N would be considered a firm surface 

(3G artificial) and peak forces of approximately 600 N would be considered a soft playable 

natural surface.  In the present study, for comparison purposes, identical impact hammer 

tests were carried out on the test surface and two extreme natural surface samples (taken 

from Norton Playing Fields, Sheffield) with contrasting mean gravimetric moisture contents, 

12.2 ± 1.84% and 30.4 ± 1.73% respectively. The samples were watered to give extreme 



examples of playable natural soccer surfaces and were considered to be hard ground (HG) 

and soft ground (SG) surfaces respectively. Ten drops were performed over the area of each 

surface. This process was replicated on the day of testing for the present study test surface.  

Representative force-displacement curves (with two examples from the test surface) for each 

surface condition are shown in Figure 3 (the force-displacement curve that gave the median 

peak force result).  The mean peak force value was found to be 747.8 ± 17.4 N, indicating 

that the test surface can be considered a surface in a soft to firm condition. 

Figure 4 outlines the data collection set-up. Performers began jogging approximately 5-7 m 

before data collection commenced in order to reach and maintain a steady speed (3.8 m.s-1 ± 

5%, monitored with photocells). They continued at this steady speed for 15 m, before 

accelerating for 5 m, performing an 180o turn, accelerating back for 5 m, turning 180o again 

and sprinting away. Three trials were performed for each condition, providing nine running 

strides and six turning steps (three pre-steps and three push-off steps) for each participant 

per footwear combination. Footwear conditions were tested in a random order. 

Steady running steps for the left and right foot were grouped to provide a mean of 18 steady 

running steps per participant. Turning steps were identified as either the braking (or pre-) 

step (Figure 5a) or the acceleration (or push-off) step (Figure 5b), regardless of whether it 

was a left or right footstep in each case. This provided 6 of each turning step type per 

participant for analysis. 

A semantic differential questionnaire was used to compare players’ responses to the 

combinations of soccer boot and insole (Figure 6).  The questionnaire used a seven-point 

scale on which participants placed a cross on a position on the scale that best represented 

their perception. A seven point scale was used, as one with fewer than 10 points increases 

the spectrum of results by reducing central tendency biases in participants Osgood, Suci & 

Tannenbaum (1957).  The seven point range provided the participants with a scale in which 

they could differentiate their strength of a feeling towards an adjective.  Care was taken to 



ensure all the participants understood the relevance and definition of each semantic 

differential. The players’ ratings on each semantic differential scale were tabulated and 

averaged.  Non-parametric Kruskal-Wallis H tests, with a significance level of 0.05, were 

conducted to identify significant differences in perception between footwear conditions.   

Pressure insoles (RSScan International, Belgium), sampling at 500 Hz, were placed within 

the football boot to record in-shoe pressures during the trials. Mask analysis was used to 

identify peak pressures at the medial heel (HM), lateral heel (HL) and 5th metatarsal (M5) 

for each type of footstep (Figure 1). Standing trials were recorded immediately before and 

after dynamic testing of each condition to ensure that pressure insole data were not being 

influenced by sensor creep. For each footstep type (steady running, braking step and 

acceleration step), a two-way ANOVA with repeated measures was performed to examine 

effects for boot, insole, and boot*insole. Where effects for boot*insole were identified, post-

hoc Tukey’s HSD tests were performed to identify differences. An alpha level of 0.05 was 

used throughout. 

 

3. RESULTS  

Figure 7 displays the results of mechanical testing of the forefoot bending stiffness of each 

boot. The construction of each soccer boot meant the forefoot segment and the heel segment 

were not parallel when unloaded. The unloaded angle between these boot segments was 

approximately 10º for Boot A and 15º for Boot B. The mean peak force required to bend 

each boot outsole 45º from the initial position was 42.4 N ± 2.7 for Boot A and 59.6 N ± 4.5 

for Boot B, suggesting that boot B was stiffer than boot A. Table 1 displays the results of 

mechanical drop testing for the four conditions, with perception values for comfort and stud 

pressure included. Drop test results indicate that for both boot types, the Poron insole 

provided better impact attenuation then the Poron/gel condition.  



The semantic profile plot, Figure 8, reveals that the players were able to perceive differences 

between the general comfort of the boot/insole combinations. Condition AP was deemed to 

be both the most comfortable, and have the lowest perceived stud pressure, while condition 

BG was the least comfortable and had the highest perceived stud pressure. However, 

statistically the only significant difference was found between the BG and AP comfort 

rankings.  

Mean peak pressures with standard deviations for each condition are presented for steady 

running (Figure 9), the braking step of the turn (Figure 10) and the acceleration step of the 

turn (Figure 11).  

Table 2 provides the peak pressures for each condition and foot region, with significant 

differences highlighted. During steady running, there was an effect (p<0.05) for insole at the 

medial heel (HM) region, with higher pressures found wearing insole G; and for boot at the 

lateral heel (HL) region, with higher pressures in boot B. During the braking step of the turn, 

there was an effect (p<0.05) for insole at all regions, with insole G resulting in higher peak 

pressures. At the HL region, there was also an effect (p<0.05) for insole*boot during the 

braking step, with the combination of boot B and insole G resulting in significantly higher 

peak pressures than any other condition. Insole G resulted in lower peak pressure (p<0.05) at 

the M5 region during the propulsive step, while there was also a more complex boot*insole 

interaction at the HM during this step: condition AP resulted in higher peak pressures than 

condition BP (p<0.05); however condition BG resulted in higher peak pressures than 

conditions AG and BP (p<0.05). 

 

4. DISCUSSION 

This study investigated the influence of two types of cleat configuration and two types of 

insole on peak pressures at the heel and 5th metatarsal and on perceptions of comfort during 

three types of soccer-specific movement step.  The observed differences in plantar pressure 



in response to certain changes in footwear cushioning/stiffness is consistent with some 

observations in running shoe studies which have utilised pressure insoles (Dixon, 2008; 

Wiegerinck et al., 2009). Mechanical drop testing showed that insole P, constructed from 

Poron, provided the best impact attenuation mechanically and thus would be expected to 

provide better cushioning than insole G, constructed from a Poron/gel combination. Plantar 

pressure analysis revealed that where differences were observed, insole P performed better 

than insole G. Hypothesis (a) is not fully accepted, as differences were not consistently 

observed at all regions, for all movements. The influence of insole was seen most 

prominently during the braking step of the turn, where insole P outperformed insole G at all 

three regions. It is possible that the strength of the gel construction insole is under shear 

loading (Curryer & Lemaire, 2000), rather than normal loading. Pressure insoles detect 

normal loading, therefore this speculation could not be assessed in the present study. While 

further investigation of the influence of shear loads on plantar discomfort and the ability of 

insoles to reduce this is warranted, the present results indicate that a Poron insole offers 

better protection overall against high plantar pressures when worn in a soccer boot. 

The eight-cleat boot (Boot A) was expected to distribute force more evenly than the six-cleat 

boot (Boot B), resulting in lower peak pressures at the investigated regions. While each boot 

had two heel cleats, the cleat configuration at the forefoot varied. Boot A included two more 

cleats, covering a larger area of the mid/forefoot, thus greater expectation of an effect for 

boot might be expected at the M5 than the heel. Contrary to this expectation, boot type had 

no influence on M5 pressures in any movement. At the heel, the model of boot alone 

influenced peak pressure at the HL during steady running, while a mixed effect was seen at 

this region in the braking step of the turn. These results suggest that hypothesis (b) should 

therefore be rejected. One possible explanation for the observed result is that Boot B had a 

stiffer outsole than Boot A. This added stiffness may have offset the lower number of 

contact points with the ground by better dissipating the force channelled above each cleat. 

Mechanical principles suggest that, if the outsole stiffnesses of the two boots were similar, 



the model with more cleats would provide lower peak pressures. The implication of the 

present results however, is that variation in other components of boot construction will 

combine to influence overall performance. As shown by the significant mixed effects, 

certain boot-insole combinations may produce optimal conditions for certain movements. 

This highlights the importance of dynamic, sport-specific movements when testing footwear 

conditions, in agreement with a number of previous studies (Eils et al., 2004; Ford et al., 

2006; Muller et al., 2010).  

Hypothesis (c) is partially accepted because there was a significant difference in players’ 

perception of condition AP (most comfortable) and BG (least comfortable), while boot A 

and insole P performed better than their alternatives. A significant difference in ‘General 

Comfort’ was found between the AP and BG conditions, with AP providing the best comfort 

overall and BG the worst. Within each boot the Poron insole was perceived to give higher 

comfort and lower stud/cleat pressure. Recent research provides evidence that the kinematics 

of the shank and foot change in response to differences in cleat configuration (Muller et al., 

2010). Such changes could have affected the pressure distribution in the present study, 

particularly if resulting in a greater proportion of shear forces being applied to the foot, 

which are undetectable by the pressure insoles. Future research should add kinematic 

analysis to the approach presented here, in order to better understand these relationships. 

For the turning movement, there was evidence of distinct loading patterns of the foot during 

the braking and acceleration steps. The braking step caused a greater concentration of 

pressure on the HL region than the M5 and HM regions. The acceleration step caused a 

greater concentration of pressure on the HM compared to the HL, both of which were much 

higher than at the M5 region. The technique of the braking step is likely to involve initial 

contact with the lateral aspect of the heel (Smith, Dyson & Janaway, 2004) and thus the cleat 

in this location may have initially penetrated the surface and accepted most of the load at 

this phase of the turn. During acceleration, the participant’s low body position and abducted 

hip (Figure 5(b)) lends itself to pressure being exerted on the medial aspect of the foot. This 



pattern of pressure distribution corresponds with the observations of Wong et al. (2007), 

who concluded that plantar pressures were highest in the medial aspect of the foot in turning 

and cutting movements. However, these authors did not investigate the 180 degree turn 

specifically and only considered the dominant turning leg. It is interesting that boot*insole 

effects were seen at the regions that accepted the greatest load during these steps. For both 

movements, condition BG performed poorly, but condition AP also performed poorly during 

the acceleration step where the HM is highly loaded. The explanation for this is unclear, but 

the result indicates the need to test boot-insole combinations for a variety of movements, as 

the scores for comfort perception and peak pressures for other movements were favourable 

for this condition. 

Previously, perception of comfort has been positively correlated with plantar pressure 

distribution in walking (Jordan & Bartlett, 1995) and walking and running on a treadmill 

(Chen et al., 1994). In the light of inconsistent findings here, it is possible that the 

relationship between perception and plantar pressure distribution is not as straight forward 

when a turning component is included in the testing protocol. The observed inconsistency 

between the results of mechanical and biomechanical testing, as observed for the turning 

movements in particular, has been demonstrated previously (Nigg & Yeadon, 1987; Stiles & 

Dixon, 2006), further emphasising the need for the testing of materials in sport-specific 

situations, rather than relying solely on mechanical test results.  

The high standard deviations in the turning data were indicative of the difficulty in 

standardising the turning protocol. The technique was demonstrated to participants and 

practice trials performed, however there was some variation in the way performers executed 

the movement, potentially affecting recorded pressure values through different proportions 

of shear force. The integration of a force plate could improve the study through 

quantification of shear loads. Average running speed was monitored, but participants were 

told to simply ‘accelerate hard’ when they reached the relevant point. As a result, the 

velocity at the point of turn is likely to have varied, thus effecting pressure results. Further 



standardisation of the turning manoeuvre is therefore required to strengthen procedures in 

any future testing. 

 

5. CONCLUSION  

The measurement of peak plantar pressures at three regions of the foot while wearing four 

boot-insole combinations during running and turning has revealed differences in the 

performance of boots, insoles and specific boot-insole combinations at different regions of 

the foot and during different movements. The location of these differences was dependent on 

whether running or turning was being assessed, highlighting the importance of sports-

movement-specific testing. Mechanical testing provided some indication of biomechanical 

performance, as did player perceptions of comfort, however there were inconsistencies 

between results obtained from these different forms of analysis. The combination of 

biomechanical, perception and mechanical assessment used in this study present a unique 

insight into the various factors determining the effectiveness of different boot-insole 

combinations. Given previous disagreement between mechanical and biomechanical data 

when assessing cushioning properties, and the similarity between mechanical and perception 

data presented here, a protocol combining perception and biomechanical analysis seems the 

most appropriate approach for improving the provision of insoles for players in future. 
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TABLES 

Table 5.1. Mechanical drop test data showing ‘Peak g’ for each footwear condition and the 

perception of ‘General Comfort’ and ‘Stud Pressure’. The mean (SD) of twenty impacts is 

shown. 

 

Condition ‘Peak g’ ‘General Comfort’ ‘Stud Pressure’ 

AG 
20.15 
(0.50) 

1.33 
(1.12) 

-0.56 
(1.88) 

AP 
19.14 
(0.37) 

1.78 
(1.1) 

-1.11 
(1.45) 

BG 
19.32 
(0.56) 

-0.22 
(1.86) 

0.11 
(1.53) 

BP 
18.68 
(0.51) 

0.44 
(1.74) 

-0.67 
(1.5) 

AG = boot A (8 cleats) with insole G (Gel/Poron); AP = boot A with insole P (Poron only); 
BG = boot B (6 cleats) with insole G; BP = boot B with insole P. 

 

 

 

 

 

 

 

 

 

 

 



Table 5.2. Mean (SD) peak pressures (in N/cm2) for each footwear condition, at each region 

defined for plantar pressure analysis. One-way ANOVA with repeated measures was 

performed to compare differences between footwear conditions for each region (P=0.05). 

The results of post-hoc Tukey’s tests are displayed where significant differences were 

identified by ANOVA (P=0.05). 

Movement 
& Foot 

Region 
Footwear Condition P 

value 
Tukey’s HSD 

AP AG BP BG 

Left foot 
during steady 

running 

M5 
42.20 
(5.04) 

43.05 
(3.57) 

48.32 
(3.90) 

49.79 
(5.67) 

 
.120 

 
n/a 

HM 
24.14 
(4.26) 

29.67 
(9.48) 

28.44 
(9.24) 

28.66 
(10.53) 

 
.577 

 
n/a 

HL 
33.25 
(7.98) 

33.14 
(3.54 

40.17 
(4.56) 

42.43 
(8.16) 

 
.018* 

BP>AP, BP>AG, 
BG>AP, BG>AG, 

BG>BP 

Right foot 
during steady 

running 

M5 
41.62 
(5.40) 

44.21 
(3.15) 

42.33 
(9.18) 

46.45 
(12.93) 

 
.754 

 
n/a 

HM 
34.55 

(11.19) 
34.75 
(9.00) 

32.63 
(12.48) 

36.84 
(15.36) 

 
.666 

 
n/a 

HL 
36.12 
(6.63) 

35.57 
(6.54) 

41.41 
(8.76) 

45.00 
(12.09) 

 
.090 

 
n/a 

Braking step 
of the 180o 

turn 

M5 
47.21 

(13.11) 
41.91 
(6.60) 

54.15 
(16.08) 

66.01 
(17.34) 

 
.043* 

BP>AG, BG>BP, 
BG>AP, BG>AG 

HM 
51.15 

(14.79) 
50.82 

(15.96) 
37.48 

(12.06) 
59.92 

(17.88) 
 

.286 
 

n/a 

HL 
58.45 

(10.98) 
54.73 
(8.40) 

53.82 
(10.26) 

79.78 
(9.36) 

 
.008* 

BG>AP, BG>AG, 
BG>BP 

Acceleration 
step of the 
180o turn 

M5 
29.44 
(6.75) 

36.45 
(7.38) 

35.91 
(8.12) 

42.02 
(12.09) 

 
.336 

 
n/a 

HM 
79.71 

(15.18) 
68.22 

(13.50) 
66.45 

(17.61) 
79.05 

(14.40) 
 

.029* 
AP>BP, BG>AG, 

BG>BP 

HL 
59.65 
(6.18) 

59.94 
(9.57) 

65.82 
(11.19) 

72.01 
(8.49) 

 
.088 

 
n/a 

AG = boot A (8 cleats) with insole G (Gel/Poron); AP = boot A with insole P (Poron only); 
BG = boot B (6 cleats) with insole G; BP = boot B with insole P. M5 = region of fifth 
metatarsal head; HM = medial heel region; HL = lateral heel region. 
 

 

 



Figure legend 

Figure 1. The approximate location of cleats relative to analysed regions of the foot in Boot 

A (left) and Boot B (right). 

Figure 2. Experimental setup for testing of boot outsole bending flexibility. 

Figure 3: Representative force-displacement curves, obtained on the surfaces using the 

SERG impact hammer with hemispherical profile. (HG – Hard ground, SG – Soft Ground) 

Figure 4. Schematic of trial. 

Figure 5. Pre- or braking step (a) and push-off or acceleration step (b) of the 180 degree turn. 

Figure 6. The semantic differential questionnaire used in the study. 

Figure 7. Force-flexion angle plots for both boot conditions. 

Figure 8. The semantic profile plot showing the semantic differential pairs and the mean 

perceived ratings on the semantic differential scales. 

Figure 9. Mean peak pressures and standard deviations for each location and condition 

during steady running. 

Figure 10. Mean peak pressures and standard deviations for the braking step of the turn 

Figure 11. Mean peak pressures and standard deviations for the acceleration step of the turn. 


