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Abstract 

A new locomotion method for unmanned (autonomous) ground vehicles (UGV) is 

proposed based around six independently driven wheels mounted on three separate 

modules. Each module is attached to the overall robot via a pivot point and capable of 

independently controlling its orientation and velocity. This configuration allows the UGV 

to perform maneuvers conventional vehicles cannot perform, and in particular to control 

the body orientation separately from the movement direction. The locomotion method is 

mathematically analyzed to develop appropriate control algorithms and to demonstrate the 

vehicle performance criteria. A vehicle was constructed according to the proposed 

configuration and experimentally tested in the UK MOD grand challenge. The performance 

of the developed locomotion schemes helped the robot make it to the finale of the 

competition. 

Keywords: Autonomous Ground Vehicle, Mobile Robot Design, Robot Control, Robot Motion 

Analysis. 

1. INTRODUCTION

This paper describes the development, design and control of an autonomous omni-directional vehicle 

based on independent differential-steering modules. The advantage of the vehicle lies in its 

mechanical simplicity i.e. no specialized mechanisms such as Mecanum wheels or Omni-directional 

wheels are used in the construction. It is often desirable for a small robot to carry a relatively large 

sensor resulting in a turret system severely compromising the performance of the robot; with this 

approach the sensor does not need the additional mechanical complexity and size to incorporate a 

turret. Moreover, driving whilst keeping the body in a constant orientation has advantages in 

autonomous operation, in that the sensor perspective is maintained whilst moving. As the main motors 
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are used to steer the robot it becomes highly maneuverable, performing steering maneuvers at 

relatively high speed. The information from the surveillance sensors can also be used to improve 

localization via Kalman filtering techniques, since the global motion of the robot and the surveillance 

sensor are coincident (as opposed to sensors mounted with their own actuation mechanism). The 

rationale behind the design allows the control algorithms to be extended to air vehicles and 

under-water vehicles for navigation, by treating each of the wheels as thrust vectors for its parent 

vehicle. 

The rest of this paper is organized as follows. In Section 2, related literature in the area of wheeled 

locomotion is discussed. Section 3 describes the design and construction of the robot. The control 

strategies during different modes of operation of the robot are discussed in section 4. Section 5 

presents the results of simulating complex trajectories and maneuvers for the robot. The details of the 

robot deployment in the UK Ministry Of Defense (MOD) Grand Challenge, including competition 

overview and results are discussed in Section 6, followed by conclusions in Section 7. 

2. BACKGROUND

Autonomy in mobile robots is largely determined by the locomotion method employed in the robot 

design.  Commonly used methods of locomotion in robots are wheels, legs, and caterpillar steering. 

While legs are suited to unstructured environments, permitting the robot to perform complex tasks 

such as climbing, they require huge computational resources for control and often involve 

mechanically complex design. Their speed of operation is limited on structured surfaces and they are 

less energy efficient in comparison to other locomotion methods under similar conditions. Skid steer 

systems are characterized by a larger track footprint, and hence a greater contact area, permitting them 

to maneuver easily across rocky or muddy terrain. It is however not possible to accurately obtain 

position information (odometry) to perform dead reckoning since they rely on slippage for normal 

operation. A large amount of energy is also lost in the form of friction between the skid steer and the 

surface [4]. They are also limited by the nonholonomic constraint which prevents the robot’s body 

(center of gravity) from moving in a direction perpendicular to the direction of motion of the tracks. 

Wheels are a relatively simple form of locomotion for mobile robots, where the motion is described 

using simple mathematical models. The number of wheels, their type (fixed, active or passive) and 

their arrangement determines the kinematics of the underlying platform. It is generally agreed that 2 

driven and steered wheels are sufficient to accomplish planar 2D motion [5]. If the center of gravity of 

the robot is lower than the axle attachment points, it may be sufficient to only use these 2 wheels 

without the need to have passive supporting wheels for stability. The robot is however susceptible to 

oscillations when performing certain maneuvers. A more stable configuration involves the use of a 

passive third wheel. Issues with kinematic compatibility such as resultant slip may be eliminated by 

neglecting certain control parameters; for example, in a three-wheeled robot, all compatibility 
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Differential drives systems offer a high maneuverability by permitting the robots to turn on the spot, 

with the errors in the individual wheel velocities resulting in varying trajectories and speeds. 

Incremental encoders can be mounted onto the drive motors to count the number of revolutions of the 

wheel and the equations for odometry [8, 9] can be used to compute the momentary position of the 

vehicle with respect to a known starting position. A simple differential drive system consists of two 

driven wheels with one or two passive wheels for stability. This system is again subject to the 

nonholonomic constraint. Another well-known steering mechanism is the Ackerman steering [10], 

where the inner wheel tends to be at a slightly greater angle than the outer wheel during the turn to 

prevent geometrically induced tire slippage. A noticeable feature of this steering mechanism is that the 

extended axes for all wheels intersect at a common point, meaning that each wheel follows a 

concentric arc about this point, with its instantaneous velocity vector being tangential to these arcs. 

Ackerman steering provides a fairly accurate odometry solution while supporting the traction and 

ground clearance needs of all-terrain operation and is therefore the method of choice for outdoor 

autonomous vehicles [11]. The task of controlling the robot’s body in any direction in a 2D plane can 

be accomplished using multi-degree of freedom (MDOF) systems. Multi-degree-of-freedom (MDOF) 

vehicles [12] have multiple drive and steer motors and display exceptional maneuverability in tight 

quarters in comparison to conventional 2-DOF mobility systems [13] Several design configurations 

are possible. For example, HERMIES-III, an experimental test bed designed and built at the Oak 

Ridge National Laboratory [14, 15] has two powered wheels that are also individually steered. With 

four independent motors, it is a mobile robot with omnidirectional steering and is a 

4-degreeof-freedom vehicle. Synchro-Drive mechanisms, which can be classified as MDOF systems, 

consist of three or more wheels that are mechanically coupled to rotate at the same speed and in the 

same direction, pivoting in unison about their own axes while executing a turn. The coupling is 

generally accomplished using a gear, belt or chain. Heading information is obtained through 

steering-angle encoder while the calculation of displacement is trivial using the encoder count and the 

wheel radius. A drawback with this approach is the error introduced due to compliance in drive belts, 

the need to control and coordinate the individual motors and the decreased lateral stability that may 

result from one wheel being turned in under the vehicle. To overcome this, a design (K3A) was 

proposed by Cybermotion that incorporates a dual-wheel arrangement on each axis [16]. The 

individual wheels spin in a differential configuration, with the outer wheel providing the desired 

stability during pivoting. However, since this is a synchro-drive mechanism, the orientation of the 

platform cannot be controlled, and continues to face the same direction at all times. Another 
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conditions are removed if two steering angles are held constant and the associated drive rates are left 

passive. A tricycle-drive configuration consisting of one driven front wheel and two passive rear 

wheels can derive odometry from a steering-angle encoder or indirectly from differential odometry [6] 

and is known for its inherent simplicity in control. An example is the Neptune, developed at Carnegie 

Melon [7], with a driven and steered front wheel and two fixed passive back wheels. 
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well-known multi-degree of freedom configuration is the Omni-directional configuration [17], 

consisting of three individually driven wheels arranged at the vertices of a triangle. By varying the 

angle of each wheel, it is possible to move in any direction, while also being able to turn on the spot. 

In more recent work, dual driven offset-caster designs for omni-directional mobility have been 

proposed [18], with extensions to the work handling motion in uneven terrain through the addition of 

suspension mechanisms [19, 20, 21]. While the design being proposed here-in is similar to the above 

designs, it does not employ the offset caster design. It appears that the need for the offset in the above 

work stems from the fact that two modules can be powered, while the third can be steered, with the 

offset allowing for passive steering as well as passive rotation. However, the offset means that the 

robot cannot configure to spin on the spot, since differential input with an offset will cause the module 

to drag sideways instead of rotating. 

More recently, there are several researchers who have designed mechanisms that support 

omni-directional motion including but not limited to, Omni-Ball [22, 23], Wheel-On-Limb designs 

[24], Mecanum platforms [25, 26], and MY-Wheel mechanisms [27] but these do not benefit from the 

mechanical simplicity of having three independent differential drive modules arranged in a triangular 

configuration. 

3. DESIGN AND CONSTRUCTION

Drawing from the advantages of the various wheel-configurations for mobile robots, a new 

mobile-robot wheel configuration consisting of three wheel modules was developed. Figure 1 

illustrates a corner of the vehicle with the wheel module covers removed. 

On each module, the bottom section contains two motors with gearboxes mounted side by side.  In 

the centre of the module is the potentiometer that measures the module rotation with respect to the 

vehicle orientation. The module upper row consist of a pair of motor power electronics and in the 

centre a brake that allows the module angle with respect to the vehicle to be held constant (useful 

when going over rough terrain). Table 1 has the specifications of the components used in the design 

and construction of the robot. 
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Figure 1: Close-up view of the robot wheel modules showing its components 

Table 1: Specifications of the robot components 

Description NUMBER Component 

Drive motors with gearboxes 6 Maxon RE40, 150W, 24V.  15:1 gearbox 

CPU 1 Gumstix controller 

Sonar sensors 6 Devantech SRF02 

Bullet camera 1 Sony HQ1 bullet camera 

Potentiometers 3 Vishay continuous rotation 

Batteries 2 Lead acid batteries 

Chassis & Body work 1 Carbon fibre reinforced plastic & plastic sheet 

Tyres 6 Diameter 120mm 

Vehicle weight Approximately 15kg 

Size Triangle sides 0.4m x 0.4m x0.4m 

Motor controllers 6 Devantech MD03 24V, 20A H bridge motor driver. 

The individual wheels of each module of the robot can be controlled, so that each wheel module is 

effectively a differential drive. By placing these wheel modules at the vertices of a triangle, it is possible 

to achieve the motion of an omni-directional robot. 

Additionally, it is now possible to control the orientation of the platform independently of the 

direction of motion of the robot itself, thereby permitting the use of sensors such as cameras and 

lasers on the platform to perform sweeping motions for surveillance and mapping as the robot moves 

through its environment. This configuration allows the robot to achieve the motions of a tricycle-drive, 

synchro-drive (although modules are not directly coupled and therefore subject to greater angle error 

than conventional synchro-drive), and the omnidirectional steering as required. Figure 2 depicts the 
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robot configuration when moving forward, left and during rotation. 

Figure 2: Possible motions for the 'weed' robot. 

3.1. Robot sensors and navigation 

One of the aims of the ground vehicle was to serve as a test-bed for the autonomy, electronics, and 

strategies for a hovering low flying unmanned air vehicle (UAV). This required a design that could 

offer multiple degrees of freedom that were illustrative of UAV maneuvers (excluding motion in the 

vertical plane). The proposed design allowed for testing the autonomy and electronics in a 2D plane 

while addressing maneuvers like strafing and spinning, and eliminating the risk involved in testing the 

controller on a flying vehicle. Therefore there was a size and weight limit on the sensing and 

computing components used.  This ruled out the use of any large and heavy sensors such as 2D laser 

scanning and LADAR technology.  A combination of a lightweight Gumstix CPU, an Inertial 

Measurement Unit (IMU) system by Xsens Technologies, 6 sonar sensors and a bullet camera were 

chosen for the task.  The total mass of this system was less than 250g.  Waypoints were tracked 

using a combination of the compass and GPS.  The path-following between waypoints was 

implemented using a linear trajectory with parabolic blends (gradual increase in velocity to top speed, 

then when close to the waypoint a gradual decrease in velocity to pause at the waypoint). The sonar 

sensors implemented a lower level obstacle avoidance algorithm incorporating a repulsive element 

and random direction movement for a short fixed period of time.  On encountering an obstacle the 

current position becomes a new way point and a new linear trajectory with parabolic blends was 

implemented. 

4. CONFIGURATION AND CONTROL

Figure 3 shows the configuration of the robot consisting of three wheel modules that operate 

independently of each other and can rotate between -900 and +900 about their respective joint axes. The

robot design is statically stable irrespective of the angular configuration of the wheel modules.  The 

rotation of the individual wheel modules is controlled by a differential drive control scheme involving 

the individual pair of wheels that make up each wheel module. Each wheel module i therefore has a 
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velocity Vmod i and an angle și associated with it. These are controlled by the individual wheel velocities 

(V 2i - 1, V 2i) which make up the wheel module i.  The vector sum of the individual velocities and angles 

of the wheel modules gives rise to the robot’s resultant vector (V, ș), along which it moves.  

Additionally, the configuration allows the orientation of the body to be independent of the 

direction of motion of the robot itself. i.e. the body of the robot can face a different direction to that of 

the robots’ movement, permitting the use of a sensor such as a camera to gather information about the 

surroundings while constantly being on the move. 

Figure 3: Robot design configuration and control parameters. 

The body angle șbody is controlled by implementing a modified differential control scheme using 

the individual wheel velocities of the wheel modules. The different control schemes and equations for 

control are described in the following sections. 

4.1. Orientation control of wheel modules 

The orientation of each wheel module is controlled by using differential drive that controls the 

angular velocity of the wheel module. If Ȧmod i is the angular velocity and D mod i is the distance between 

the two wheels of the ith module, the following equations are valid:

3mod
3mod

2mod
2mod

1mod
1mod

65
,

43
,

21

D

vv

D

vv

D

vv 






   (1) 

A proportional controller is used to help the wheel modules achieve their desired orientation (șd). 

Potentiometers are used to obtain the current angle of each module (șa). The proportional gain Kp and error 
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(șd - șa) determine the angular velocity Ȧmod i of the wheel module i, and the individual velocities v2i-1 and v2i 

of the wheels. The input to the motor controllers is calculated using (2): 

maxmodpmod .(K  iadi   (2) 

where Ȧmodimax  is the maximum angular velocity achievable (limited by the motor characteristics). It is clear 

from (2) that the angular velocity applied is maximum when the error in the angle is maximum. for e.g. if the 

maximum velocities achievable by the individual wheels of the i th module are v 2i-1 max and v 2i max and Kp * (șd 

- șa) is scaled to be in the range 0 to 1, (2) determines the angular velocity applied to achieve the desired 

angle. Clearly, when v 2i-1 max = -v 2i max, Ȧmod i is maximum. The individual velocities of the wheels to achieve 

(2) can therefore be written as 

max12p12 ( * K   iadi vv  (3) 

max2p2 ( * K iadi vv   (4) 

Using equations (3) and (4), the angles of the individual wheel modules of the robot can be controlled. 

Depending on the response of the wheel modules to the control signal, equations (3) and (4) can be 

easily modified to implement a Proportional Integral Derivative (PID) or Proportional Integral (PI) 

controller as required. 

4.2. Forward and reverse motion 

The simplest form of control involves forward and reverse motion of the robot. The equations in this 

case are trivial, since this does not require any differential drive and the average velocity and angle of 

each wheel module is the same i.e. 

654321 vvvvvv   (5) 

2
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  (7) 

The speed of the robot can be controlled through the use of a scaling factor k ≤ 1. If vi max is the 

maximum velocity achievable by the individual wheels, Vi max = k vi max determines the robot’s 

maximum velocity. To illustrate, the value of k can be 1 in the absence of any obstacles in the robot’s 

path. A reading from an external sensor such as a sonar or laser scanner mounted on the robot can be 

used to re-compute the value of k in real-time, to slow the robot down as it approached an obstacle 

and bring it to a complete stop when within a threshold of the obstacle. 
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4.3. Controlling robot direction and velocity 

The robot’s movement is defined by its velocity V and direction of motion ș. These variables are 

independent of the actual orientation of the robot’s body șbody. It is possible for the robot to move in any 

direction in 2D space while keeping its body orientation a constant. This form of control requires all the 

wheel modules to have the same angular velocity and average linear velocity. 

Let R define the distance between the Instantaneous Center of Rotation (ICR) and the robot center 

and vLi and vRi define the left and right wheel velocities of the ith module. The equations for the left and

right wheels can be written as 

)
2

(),
2

( mod
mod

mod
mod

i
ii

i
ii

D
RvR

D
RvL    (8) 

Since each module must have the same average linear velocity, 

Vvvvvvv 2654321  (9) 

ii RV modmod  (10) 

Using the value of Ȧmodi from (10) in (8), the velocities of the individual wheels that make up the 

module can be computed. By varying the input R in (8) as a function of time i.e. R = f (t), the robot 

can traverse smooth trajectories such as a spline between way points. 

 

4.4. Controlling robot body orientation 

The unique configuration of the robot’s steering permits it to have a different body angle șbody as 

compared to the direction of its motion ș. This can be particularly useful in allowing a fixed camera 

mounted on the body to look in a direction that is different from the direction of motion of the robot. 

To implement this form of control, it is required to have different wheel module velocities, determined 

Figure 4: Constant body orientation and translation with identical linear and angular wheel velocities 
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by different turning radii for each wheel module. Each wheel module also has a fixed angle to 

maintain during the course of steering. Figure 5 illustrates the robot configuration and the radii of the 

wheel modules from the ICR. 

Figure 5: Illustration of robot configuration and ICR during robot steering 

It can be seen that each wheel module has a different turning radius with respect to the ICR. This 

radius can be calculated as 

CRR

BRR

ARR













3mod

1mod

1mod

(11) 

The angular velocity of every module is the same as the angular velocity required to rotate the body. 

The linear velocity however changes because of the different radii. If vLi and vRi define the left and 

right wheel velocities of the ith module, the equation for the velocities is:

)
2

(),
2

( mod
modmod

mod
modmod

i
iii

i
iii

D
RvR

D
RvL   (12) 

Note that (12) differs from (8) by virtue of the latter involving the radius of the turn from the body 

center, and the former involving the different radii of turn from the individual modules. Figure 6 and 

Figure 7 illustrate the robot in motion using this scheme. The flow control for the different schemes is 

shown in Figure 8 and Figure 9. The input parameters ensure that switching between the control 

modes has no negative effect on the performance. 

Advanced Robotics

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



- 11 -    

 

 

Figure 8: Combined velocity and orientation control. The desired module velocities and orientations 

are the same as the desired robot velocity and orientation in this configuration. 

Figure 6: Varying body orientation and translation direction. Every module has a constant angle, but 

the angles differ from one another. 

Figure 7: Varying body orientation without translation by keeping wheel orientation constant – turning 

on the spot. 
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Figure 9 (a) (Left): Robot velocity control with constant body orientation. D1, D2 and D3 are the 

distances between the left and right wheels of modules 1, 2 and 3 respectively. Figure 10 (b) (Right): 

Robot velocity control with varying body orientation. D1, D2 and D3 are the distances between the 

left and right wheels of modules 1, 2 and 3 respectively. R1, R2 and R3 represent the radii Rmod1, 

Rmod2 and Rmod3 respectively. 

Figures 7, 8 and 9 are provided in specific to understand the flow-control during the process and 

facilitate the programming of the robot’s wheel modules. To help better interpret these schematics, an 

explanation of Figure 9 is provided here-in. The Robot Data consists of the potentiometer readings 

from each of the three wheel modules of the robot. This gives the orientation of each module with 

respect to its base frame (ĳ1 – ĳ3). The robot’s global path-planner (waypoint following) requests a 

robot velocity Vbody and a radius of turn Rbody (if Rbody is infinity, the robot moves in a straight line). 

The Radius of turn allows traversing ‘splines’ around obstacles rather than a ‘stop-orient-move’ 

maneuver. Figure 5 illustrates how Rbody is converted to (Rmod1 - Rmod3) for each module, which in 

turn determine their desired angles (ș1 – ș3). The desired angular velocity Ȧ is calculated as V/R 

(refer equation 10). The internal clock of the robot (microprocessor-based) is generally used along 

with the requested Ȧ to compute the actual wheel module angles (as seen in figure 8), but has been 

omitted in figure 9. It must be noted that when constant body orientation is required (Figure 8), Ȧ 

feeds into the desired module orientation, where as when the body orientation is varying, Ȧ feeds into 

the desired module velocity thereby eliminating the need to compute Ȧt in the latter form of control. A 

PID controller is used to minimize the error between desired and actual orientations, with appropriate 
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sign conventions (+/-) used to compute the velocity for each individual wheel (6 wheels, 3 modules). 

The desired module velocities are calculated from which individual wheel velocities (v1 – v6) can be 

computed (equation (12)). A vector sum of these velocities, with the velocities from the PID control is 

used to determine the final velocities for each of the wheels of the three modules to perform the 

requested robot motion. As mentioned previously, this scheme can be extended to thruster / fans for 

underwater robots and air vehicles. A video demonstration of the robot using these algorithms for 

locomotion can be found here [28]. 

5. SIMULATED TRAJECTORIES OF COMPLEX MOTION

The equations of motion developed in section 4 (equations 1 – 12) are used to simulate robot motion 

for different movement trajectories. 

5.1. Linear robot motion with constant body rotation 

This scenario involves a body movement in the y direction along the zero x-axis while the body 

rotates 360o. Figure 11 shows the position of the centroid and wheel modules of the robot during its

motion drawn to scale. The robot spins in a clockwise direction (Z-Axis points downward according 

to chosen convention), as it moves forward. The linear velocity of the robot is chosen to be 1 m/s for 

illustration. This results in the centroid covering a distance of 5m in 5s as shown in Figure 11. 
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Figure 11: Linear motion with constant body rotation. 

5.2. Curvilinear robot centroid motion with constant body rotation 

It is possible to specify independent motions in x, y and body rotation.  Here a motion is analysed 

where the robot body is controlled to move at a constant rate of 0.1 m/s in the X direction, a linearly 

increasing rate from 0 m to 0.1 m/s in the y direction and an angular rotation of 0.5235 rad/s. Figure 12 

shows the position of the robot centroid and the wheel modules. The angles of the individual wheel 

modules and the angle of the robot body are independent of each other. 

5.3. Curvilinear robot motion with body panning 

In an application where sensors are rigidly aligned to the robot body, it would be useful for the body 

to move side to side in an oscillatory rotation; a panning motion (i.e look left, right, left…). This 

complex motion is achieved by combining independent robot body control and robot trajectory. The 

robot body orientation can be controlled as a function of time – for example, the body can exhibit 

sinusoidal motion to ensure a smooth, non-jerky motion during the panning, while the robot itself 

continues along a curvilinear path. To illustrate, the angular velocity of the body is designed to be a 

function of time as shown in Figure 13. 
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Figure 12: Curvilinear robot motion with continuous body rotation. 

Figure 13: Angular velocity input for panning motion. 

The resulting position graph of the robot body and its wheel modules is shown in Figure 14.  As 

illustrated, the motion of individual wheel modules becomes very complex for this motion, but it is 

implementable.  One of the benefits of controlling the angle of individual wheel modules is that the 

drive motors are powerful and fast responding, allowing quick changes in module angle and velocities. 

One of the disadvantages of the robot design is the requirement for the wheel modules to reverse their 

orientation on completion of a 1800 pivot, to prevent the electrical wiring from getting entangled.

However, this can easily be overcome by using a slip ring arrangement or similar. Other disadvantages 

include increased control complexity, redundancy in actuators since 6 actuators are used to achieve 3 

Advanced Robotics

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



- 16 -    

degrees of freedom. There may also be a need to lock wheels over rough terrain, since steering maybe 

very difficult where terrain is continuously bumpy. 

Figure 14: Curvilinear motion with body panning. 

6. COMPETITION DISCUSSION AND PERFORMANCE

6.1. THE MOD GRAND CHALLENGE COMPETITION OVERVIEW 

The use of autonomous robots and driverless vehicles has been the focus of several Grand Challenges 

including those by the UK MOD and DARPA. The first DARPA grand challenge, held in the Mojave 

Desert region required vehicle to autonomously complete a course of nearly 150 miles. None of the 

entrants were able to successfully complete this daunting task. Just a year later, during the 2005 Grand 

Challenge, teams had made significant progress with 5 teams completing an off-road course of 132 

miles [29]. The UK ministry of defence held their first Grand Challenge with a slightly different 

objective: 

‘to deploy technological solutions to survey several square miles of hostile urban terrain to identify 

the location of threats.’ 

The competition took place in Copehill Down, a mocked-up village in the UK MOD training area, 

which was an unstructured environment with bushes, fences, and other assorted obstacles. Each team 

was allocated an hour to perform reconnaissance and identify the threats in the area. The entrants 

included several teams with a variety of technological solutions including a swarm of quadropters, 

hex-rotor UAVs, fixed-wing unmanned air vehicles, tracked-ground vehicles, and wheeled robots with 

differential drive capabilities. 

The competition consisted of 3 qualifying events and one finale. 

• Qualifying event 1:  Drive down a straight road for around ½ km and make a right turn down a side
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road for another 40m. 

• Qualifying event 2: Drive into an area ½ km x ½ km and automatically identify the location of a

truck with a gun on the back 

• Qualifying event 3: Survey an area approximately 1km x 1km and identify as many threats as

possible 

• Finale: Survey an area approximately 2km x 2km and identify as many threats and improvised

explosive devices as possible. 

A three-module differential-drive robot called ‘weed’ was designed and constructed as an entrant into 

this competition. The following sections highlight the related literature in the area, followed by 

detailing the robot’s design, construction, configuration and control. Finally, results of field 

deployment are presented. 

The designed vehicle was entered into the UK MOD grand challenge. Figure 15 illustrates the robot 

participating in the competition with the left image at a starting position and the right image showing 

the robot heading towards a cluttered environment. 

Figure 15: The ‘weed’ robot competing in the UK MOD grand challenge. 

Qualifying event 1 (travelling down a straight road) is fairly trivial for ground based vehicles using 

technologies such as laser scanners and LADAR, however it represents a significant challenge to a 

vehicle with sensors and computing weighing less than 250g.  An important lesson to limit the 

number of waypoints was learnt during this mission: Around 20 waypoints were specified for this 

mission and at each waypoint the vehicle was programmed to perform a full 3600 visual scan – this 

was a very time consuming process and severely delayed the robot’s progress.  The transition 

between each waypoint was achieved by specifying a desired angular vector between points.  If 

many waypoints are used over a short distance, then they will be close together.  If waypoints are 

close together, then position estimate error causes large angle errors in the vehicle motion resulting in 

a zig-zag motion when the vehicle should be travelling in a straight line. 

Qualifying event 2 required several turns on minor roads/dirt tracks that were difficult to make in an 

environment cluttered with trees, shrubs, telegraph poles and abandoned cars. The mission was a 

success and a clear image of the target vehicle was captured by the vehicle (Figure 16). A map of the 
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vehicle’s actual trajectory, as generated and viewed by the mission planning and analysis software, 

developed in partnership with MBDA systems, is shown in Figure 17. 

Figure 16: Target Images captured by the Robot during its mission - (left): A sniper on a building 

(right): A technical - target vehicle with mounted weapon. 

Qualifying event 3 required a large number of complex maneuvers in a densely packed environment 

consisting of abandoned cars, buildings, trees, and shrubs. During this trial the vehicle encountered an 

abandoned car in a similar scenario to that of qualifying event 2 and the improved control strategy 

successfully navigated around it. However, the inability of the vehicle to look at the ground directly in 

front of its motion (a known limitation) resulted in the vehicle unknowingly driving off a steep bank, 

causing excessive vibration and disconnection of power leads. Fortunately, at this point the vehicle 

had demonstrated sufficient capability to qualify for the final. 

For the finale, the vehicle control algorithms were set to maximum speed (until this point the control 

had been conservative to protect the vehicle). The route planned by the team was intended to be the 

most direct possible to minimize time and provide the opportunity to observe the areas most likely to 

contain threats.  The vehicle performed well, and completed a third of the trajectory exactly as 

planned. However, when a third of the trajectory had been completed, an unexpected fence was 

encountered while driving off road between buildings. The fence completely blocked the intended 

route and prevented the vehicle from finishing its mission. 
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Figure 17: Mission planning and Analysis Interface. 

Furthermore, it was apparent that running the motors at full speed had caused the motor drivers to 

overheat and it was unlikely the vehicle could have completed the course. Therefore, two lessons were 

learnt from this mission: i) it is important to include multiple backup mission trajectories that are 

activated if unexpected impassable objects are encountered. The trajectories can then be switched via 

a timeout if limited progress is made on the current mission trajectory. ii) Internal temperature 

monitoring of power electronics is crucial to ensure successful operation. Moreover, the temperature 

monitoring should be analogue or in many discrete steps to allow the vehicle controller to continue 

operation (albeit at a reduced power requirement). 

7. CONCLUSION

A locomotion method based around three differentially steered modules has been proposed. 

Mathematical analysis of the locomotion method has proven the locomotion method feasible and 

algorithms have been developed to make the robot fully controllable for independent body translation 

and rotation. A robot has been experimentally constructed to test the locomotion method in practice 

and the results have demonstrated the validity of the algorithms. The robot was successfully deployed 
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in the UK MOD grand challenge. The design and control strategies permit mounting sensors for 

surveillance without the need for turret-based sensors which require additional sensors to localize 

them and also minimizing the number of moving-parts on a robot. Future work involves modifying 

the chassis to include active suspension mechanisms for mobility on uneven terrain. 
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