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Aberrant activation of intracellular signalling pathways confers malignant properties on cancer cells. Targeting intracellular
signalling pathways has been a productive strategy for drug development, with several drugs acting on signalling pathways
already in use and more continually being developed. The JAK/STAT signalling pathway provides an example of this paradigm in
haematological malignancies, with the identification of JAK2 mutations in myeloproliferative neoplasms leading to the
development of specific clinically effective JAK2 inhibitors, such as ruxolitinib. It is now clear that many solid tumours also show
activation of JAK/STAT signalling. In this review, we focus on the role of JAK/STAT signalling in solid tumours, examining the
molecular mechanisms that cause inappropriate pathway activation and their cellular consequences. We also discuss the degree
to which activated JAK/STAT signalling contributes to oncogenesis. Studies showing the effect of activation of JAK/STAT
signalling upon prognosis in several tumour types are summarised. Finally, we discuss the prospects for treating solid tumours
using strategies targeting JAK/STAT signalling, including what can be learned from haematological malignancies and the extent
to which results in solid tumours might be expected to differ.

The JAK/STAT pathway regulates embryonic development and is
involved in the control of processes such as stem cell maintenance,
haematopoiesis and the inflammatory response. The pathway
transduces signals from cytokines, interleukins and growth factors
that act through a number of transmembrane receptor families.
Type I receptors include the erythropoietin receptor and the
granulocyte colony-stimulating factor (G-CSF) receptor. The
granulocyte-macrophage colony-stimulating factor receptor is a
type IIa receptor and the type IIb subfamily includes the receptors
for interleukin-6 and leukaemia inhibitory factor. The intracellular
tails of these receptors are constitutively associated with inactive
kinases named janus kinases (JAKs). Ligand binding produces
conformational changes in receptors that alters the alignment of
receptor-associated JAKs, enabling phosphorylation of specific
tyrosine residues that converts inactive JAKs into a catalytically
active tyrosine kinases (Brooks et al, 2014). In some cases,
signalling through STATs can be activated by receptors with
intrinsic tyrosine kinase activity such as epidermal growth factor

receptor and platelet-derived growth factor receptor (Silvennoinen
et al, 1993), although this sometimes also involves the cytoplasmic
tyrosine kinase Src (Olayioye et al, 1999; Niu et al, 2002).

Active JAKs phosphorylate tyrosine residues in the cytoplasmic
region of the receptor creating binding sites that recruit signal
transducers and activators of transcriptions (STATs). The STATs
form dimers that translocate to the nucleus when phosphorylated
on highly conserved tyrosine residues (termed pSTAT) by JAKs or
other tyrosine kinases. The STAT dimers bind specific promoter
sequences and modulate transcription of genes controlling cellular
processes including proliferation, differentiation and apoptosis
(Figure 1A).

There are four JAK family members in humans, JAK1, JAK2,
JAK3 and TYK2 (Figure 1B). The family is defined by the presence
of two adjacent kinase domains, JH1 and JH2, resembling the two
faces of the Roman god Janus from which their name is derived.
JH1 performs the phosphorylation involved in pathway activation,
whereas JH2 regulates JH1 function. JH2 lacks amino acids
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previously thought to be essential for catalytic activity so has been
termed a pseudokinase, but in fact retains kinase activity, which
may mediate its regulatory functions. Janus kinases are able to
form homodimers and heterodimers.

Seven STAT family members are found in humans, STAT 1-4,
STAT5A, STAT5B and STAT6 (Figure 1C). Across the diversity of
receptors that act via the JAK/STAT pathway, there is no simple
relationship between which JAK family members activate which
STAT family members. In general, STAT3 and STAT5A/B
promote oncogenesis, whereas STAT1 activation has opposing
effects. The functional domains of STATs include an SH2 domain
(Src homology 2), which mediates binding to phosphorylated
tyrosine residues and a C-terminal transactivation domain
required for activation of transcription.

As in other signalling cascades, activation of the JAK/STAT
pathway is tightly controlled by negative regulators acting at

multiple levels. Several families of phosphatases remove phosphate
groups from JAKs and STATs. Protein inhibitors of activated
STAT (PIAS) proteins inhibit STAT–DNA binding, control STAT
cellular location and facilitate post-translational modifications of
STATs. Suppressor of cytokine signalling (SOCS) proteins are
competitive inhibitors of STAT receptor binding and also act as
ubiquitin ligases that target pathway components for proteosomal
degradation. STATs positively regulate transcription of SOCS
genes, creating a negative feedback loop that imposes a fine level of
control on the pathway.

JAK and STAT pathway components also have effects on gene
expression outside the ‘canonical’ signalling phosphorylation
cascade, by contributing to epigenetic modifications of chromatin.
It has been reported that activated JAK2 can enter the nucleus and
modify histones (Dawson et al, 2009), although this finding
remains controversial (Girodon et al, 2011). Dimers of unpho-
sphorylated STAT5A can localise to the nucleus and influence
heterochromatin formation by binding heterochromatin protein 1
(Hu et al, 2013). STATs are traditionally thought of as facilitating
activation of transcription, but data emerging from large-scale gene
expression profiling experiments show that activated STATs also
downregulate expression of a substantial number of genes. STATs
have also been shown to have effects on the cell that are
independent of transcription, by altering mitochondrial function.
STAT3 can localise to the mitochondria when phosphorylated on a
specific C-terminal serine residue, where it augments activity of the
electron transport chain (Gough et al, 2009). This serine
phosphorylation is dependent upon the Ras/Raf/MEK/ERK
cascade, and is required for Ras-mediated transformation
(Gough et al, 2013).

JAK/STAT ACTIVATION IN HAEMATOLOGICAL
MALIGNANCIES

JAK/STAT activation in haematological malignancies has been
comprehensively examined in recent reviews (Chen et al, 2012;
Vainchenker and Constantinescu, 2013), and provides a basis for
its examination in solid tumours. The pathway came to
prominence with the identification that 50–95% of patients with
classical myeloproliferative neoplasms (MPNs) polycythaemia vera
(PV), essential thrombocytosis (ET) and primary myelofibrosis
(PMF) have an activating mutation in JAK2 (a valine to
phenylalanine change, V617F) in the malignant clone. The
demonstration that JAK2V617F caused a PV phenotype in a
mouse model, and that Stat5a/b is necessary for the development of
PV in these mice provided evidence for a causative role for JAK2-
STAT5 activation in MPNs. The role of STAT3 in MPNs is less
well understood. Deletion of Stat3 in a mouse MPN model
enhances aspects of the MPN phenotype and shortens survival,
suggesting that STAT3 may be restraining malignant proliferation.
This seems in part to be related to secondary changes in STAT1
activation (Grisouard et al, 2015). The exact role of JAK/STAT
signalling in oncogenesis in MPNs and other cancers is also
challenged by the consideration of rare families with germline
mutations causing weak JAK activation (Dusa et al, 2008; Mead
et al, 2013; Marty et al, 2014). The mutations cause a hereditary
thrombocytosis, but haematopoiesis is polyclonal and individuals
do not develop haematological malignancies or solid tumours,
suggesting that JAK/STAT activation alone does not drive
malignant disease.

The identification of JAK/STAT activation in MPNs led to the
development of specific JAK1/2 inhibitors, one of which,
ruxolitinib, has been examined in phase 3 trials (Harrison et al,
2012). Activating mutations affecting JAK/STAT signalling have
been identified in other groups of patients with haematological
malignancies and there have been calls for clinical trials of JAK
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Figure 1. (A) An overview of the JAK/STAT signalling pathway.
(1) Receptor complexes at the cell surface are associated with inactive
JAK dimers, which bind close to the transmembrane region of the
receptors. (2) Binding of ligand produces a conformational change in
the receptor complex that changes the relative position of the JAKs,
leading to phosphorylation and activation of their tyrosine kinase
activity. The activated JAKs phosphorylate tyrosine residues in the
cytoplasmic tails of receptors. (3) Cytoplasmic STATs bind to the
phosphorylated receptors, becoming substrates for JAKs. (4)
Phosphorylated STATs form dimers and accumulate in the nucleus,
where they activate transcription of specific genes. (B) Schematic
structure of JAK proteins. The FERM domain (4.1 protein, ezrin, radixin
and moesin) mediates the interaction with receptor complexes. The
SH2 domain is a protein domain that binds to phosphorylated tyrosine
residues. The JH2 pseudokinase domain regulates kinase activity of the
JH1 kinase domain. P marks conserved tyrosine residues in JH1 whose
phosphorylation is essential for JAK activation. N and C indicate the
amino terminus and carboxy terminus. (C) Schematic structure of STAT
proteins. The SH2 domain binds phosphorylated tyrosines. The carboxy
terminus transactivation domain is required for full transcriptional
activation. P marks the conserved tyrosine residue whose
phosphorylation is essential for STAT activation.
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inhibitors in these groups (Bain and Ahmad, 2014). It needs to be
established, however, to what extent JAK/STAT activation is driving
disease in these groups. For example, in T-cell acute lymphoblastic
leukaemia activating mutations in JAK1 have been identified in a
substantial proportion of patients, where they are thought to
promote survival of malignant cells but JAK mutations are not
thought to be the primary driver of disease (Flex et al, 2008).

Understanding the degree to which JAK/STAT activation is
driving disease has implications for determining the effect of JAK
inhibitors upon the malignant clone in MPNs, illustrated by
comparison with chronic myeloid leukaemia (CML). In BCR–
ABL-positive CML, the BCR–ABL fusion gene drives the disease.
Targeted kinase inhibitors such as imatinib produce a marked
reduction in the clone size and prevent progression to accelerated
phase/blast crisis (Hughes et al, 2010). In contrast, ruxolitinib
treatment in myelofibrosis leads to a much more modest reduction
in the size of the malignant clone (Cervantes et al, 2013), and there is
not yet clear evidence that it alters progression to acute myeloid
leukaemia. Furthermore, ruxolitinib is also an effective treatment in
patients lacking the JAK2V617F mutation. This suggests the role of
JAK2 in MPNs is less fundamental than that of BCR–ABL in CML.

Myeloproliferative neoplasms were the subject of a further
interesting development at the end of 2013, with whole-exome
sequencing studies revealing that a substantial proportion of
patients with ET and PMF lacking the JAK2V617F mutation have
mutations in CALR, the gene encoding calreticulin (Klampfl et al,
2013; Nangalia et al, 2013). A diverse range of mutations have been
observed, but all cause a frameshift that encodes an identical novel
C-terminal peptide. There is some evidence that these CALR
variants promote STAT activation, but further elucidation of their
contribution to disease pathogenesis will be interesting.

MECHANISMS OF JAK/STAT ACTIVATION IN CANCER

In many cancers where JAK/STAT activation is a feature, the
mechanism underlying inappropriate pathway activation is not
known. Examining the instances in which a mechanism has been
identified shows that cancer cells employ a diverse range of
strategies to activate the pathway. Defining the mechanisms
causing JAK/STAT pathway activation does not, however, indicate
whether the pathway activation contributes significantly to
oncogenesis in these cancers.

In head and neck squamous cell carcinoma, phosphorylation of
STAT3 is a consequence of increased production of IL-6 by tumour
cells (Sriuranpong et al, 2003). Increased expression of the G-CSF
receptor is observed in high-grade ovarian epithelial tumours, and
experiments in cell culture suggest that G-CSF contributes to JAK/
STAT activation in this disease (Kumar et al, 2014).

Gain-of-function mutations in JAKs have been observed to
cause pathway activation in haematological malignancies. More
recently, large-scale sequencing efforts have identified genetic
changes affecting JAKs in certain solid tumours. Missense
mutations in JAK1 have been identified in 9% of patients with
Hepatitis B-associated hepatocellular carcinoma, and validation in
cell culture shows that these mutations increase phosphorylation
of JAK1 and STAT3 and enable cytokine-independent growth
(Kan et al, 2013). In gastric adenocarcinoma, a comprehensive
molecular characterisation project has revealed frequent amplifica-
tion of the chromosomal locus containing JAK2. Corresponding
increases in JAK2 messenger RNA suggest that this may increase
JAK2 protein levels and pathway activity (The Cancer Genome
Atlas Research Network, 2014).

Activating mutations in STATs, although generally rare, have
been described in cancer. In large granular lymphocytic leukaemia,
40% of patients have mutations affecting the SH2 domain of

STAT3. These introduce hydrophobic residues thought to stabilise
STAT dimers, and lead to increased STAT-responsive transcription
(Koskela et al, 2012). Amplification of the STAT5A/B locus has
been described in prostate cancer, and is associated with increased
expression and nuclear localisation of STAT5 in tumour samples.
These amplifications increase cell survival in culture and promote
tumour growth in a xenograft model (Haddad et al, 2013).

Reduced expression of negative regulators can cause increased
pathway activation. In non-small cell lung cancer (NSCLC) tumour
samples, expression of SOCS3 is lost due to promoter hyper-
methylation, an epigenetic change that reduces gene transcription.
The impact of this on pathway activation was validated using a
NSCLC cell line, where restoration of SOCS3 expression reduced
constitutive STAT3 phosphorylation (He et al, 2003). The PIAS3
protein levels have been shown to be reduced in glioblastoma,
possibly due to increased protein degradation. In glioblastoma
tissue samples, low levels of PIAS3 are associated with increased
pSTAT3 and increased expression of proteins produced from
STAT target genes (Brantley et al, 2008).

EFFECT OF JAK/STAT SIGNALLING ON MALIGNANT
CELLS AND THE TUMOUR MICROENVIRONMENT

In order for solid tumours to enlarge, cancer cells must not only
increase in number but also adapt to and alter their microenviron-
ment. Genes controlled by STATs have roles in both of these
aspects of the malignant phenotype, although in many cases
further study is required to establish to what extent persistent
JAK/STAT activation drives these phenotypic changes and what
contribution is made by other changes in malignant cells.

Preclinically, therapies that inhibit STAT activity decrease
proliferation and increase apoptosis in cell culture studies and
tumour xenograft models. STAT3 facilitates cell cycle progression
by promoting activation of cyclin-dependent kinases (CDKs). It
increases transcription of positive regulators such as cyclin D2 and
downregulates transcription of CDK inhibitors such as p21. STAT5
confers protection from apoptosis, by activating transcription of
Bcl-x, to produce the anti-apoptotic protein Bcl-xL.

Cancer cells undergo changes in energy metabolism, switching
from mitochondrial oxidative phosphorylation to glycolysis for
ATP production. STAT3 reduces expression of genes encoding
mitochondrial proteins and increases expression of genes involved
in glycolysis, such as pyruvate dehydrogenase kinase 1. These
effects are dependent upon transcription of the hypoxia-inducible
factor HIF-1a, which is induced by STAT3 (Demaria et al, 2010).
STAT3 has a global role in the adaptation of tumour cells to a
hypoxic environment. It physically associates with HIF1a and is
required for the full transcriptional activation of HIF1a-regulated
genes in hypoxia (Pawlus et al, 2014). Angiogenesis is required for
tumour growth, with a key role played by vascular endothelial
growth factor (VEGF). STAT3 binds to the VEGF promoter and
induces VEGF expression. In tumour allograft models, expression
of a constitutively active STAT3 leads to increased VEGF
expression and increased vasculogenesis.

A key feature in the interaction of malignant cells with the
tumour microenvironment is their ability to suppress antitumour
immune responses. This is illustrated by the importance of the
graft vs tumour effect in allogeneic stem cell transplantation in
haematological malignancies (Andersen, 2014), and by the effects
of immune checkpoint inhibitors in certain solid tumours (Victor
et al, 2015). Activation of STAT1 by interferons promotes immune
surveillance and antitumour immunity, partly by upregulating
MHC class I-mediated antigen presentation by tumour cells. In
contrast, STAT3 and STAT5 signalling in immune cells appears to
suppress antitumour immunity. Antitumour immune responses in
mice are enhanced by ablation of STAT3 from haematopoietic
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cells and by drugs that block STAT3 (Kortylewski et al, 2005).
The enhanced antitumour immunity observed in these mice is in
part due to a reduction in tumour-infiltrating regulatory T cells, a
cell type whose development is dependent on the STAT3/5 target
gene FOXP3 (Zorn et al, 2006).

JAK/STAT activation contributes to acquisition of properties
required for tumour invasion and metastasis. This is in part
mediated by activation of the programme of epithelial to
mesenchymal transition (EMT) involved in embryonic develop-
ment. The transcription factor TWIST1 is a key regulator
of the induction of EMT. STAT3 is required for TWIST1
expression, as abrogation of STAT3 activity by siRNA knockdown,
pharmacological inhibition of STAT3 or mutation of the
STAT-binding site in the promoter of TWIST1 reduces its
expression (Cho et al, 2013). STAT3 can activate transcription of
matrix-degrading enzymes such as matrix metalloproteinase-2.
Inhibiting STAT3 reduces invasion through an in vitro basement
membrane model, and prevents the establishment of metastatic
tumours in a mouse model.

INTERACTIONS BETWEEN JAK/STAT SIGNALLING AND
OTHER ONCOGENIC SIGNALLING PATHWAYS

Although frequently described as discrete pathways, intracellular
signalling cascades are probably more accurately considered as
networks made up of multiple interactions between pathways.
Physical interactions and functional effects have been described for
interactions between JAK/STAT signalling and a number of other
signalling pathways known to be involved in oncogenesis,
including signalling downstream of the epidermal growth factor
receptor and androgen receptor signalling. The recognition of
interactions between pathways has implications for improving the
effectiveness of targeted therapies, by combining therapies acting
on interacting pathways to overcome resistance. This has been
demonstrated in in vitro models in melanoma, where STAT3 is
required for full activation of transcription downstream of mutant
B-RAF (Becker et al, 2014). Suppression of STAT3 phosphoryla-
tion by siRNA knockdown of STAT3 or with an inhibitor of JAK2
restores sensitivity to a B-RAF inhibitor in melanoma cell lines
with acquired resistance to B-RAF inhibition (Liu et al, 2013).
Understanding how pathway interactions cause JAK-independent
activation of STATs is also relevant for therapy as it may explain
the failure of JAK inhibitors in clinical trials in solid tumours.

JAK/STAT SIGNALLING IN SOLID TUMOURS

Early evidence that JAK/STAT signalling is activated in solid
tumours was derived from cancer cell lines. There is now
substantial data demonstrating tyrosine phosphorylation and
nuclear localisation of STATs, indicative of STAT activation, in
tumour tissue derived from a large number of patients across a
range of tumour types. A relationship between JAK/STAT
activation and prognosis has been observed in many of these
tumour types (Table 1). In general, activation of STAT3 or STAT5
is associated with a worse prognosis, although in breast cancer and
in some studies in colorectal cancer and head and neck squamous
cell carcinoma it appears to be associated with more favourable
outcomes. In breast cancer, this relationship is consistent with the
role of pSTAT5 in normal physiology—constitutive phosphoryla-
tion of STAT5 is a feature of normal breast epithelial cells, where it
is thought to promote differentiation (Peck et al, 2011). For other
tumour types, differences in the strategies used to quantify STAT
phosphorylation, which vary across all the studies described below,
may account for the apparently conflicting associations between

STAT phosphorylation and outcome (Monnien et al, 2010).
Interestingly, there is some evidence that in MPNs STAT3 may
oppose malignant proliferation (Grisouard et al, 2015), suggesting
this may also occur in certain situations in solid tumours.
Activation of STAT1, in contrast, is generally associated with
better outcomes across all tumour types.

Although STAT activation has now been observed in a wide
range of tumour types, in many cases the mechanisms causing
STAT activation have not been well defined. More importantly,
these studies describe associations between JAK/STAT activation
and outcomes but do not indicate whether the observed JAK/STAT
activation has a causal role in the diseases. Further study is needed
to establish this, and is particularly relevant for considering the
JAK/STAT pathway as a therapeutic target.

THE JAK/STAT SIGNALLING PATHWAY AS A
THERAPEUTIC TARGET IN CANCER

The evidence that the JAK/STAT pathway is activated in a large
proportion of solid tumours and that its activation contributes to
the malignant properties of cancer cells makes the JAK/STAT
pathway a promising target for the development of new therapies.
The effectiveness of targeting JAK/STAT signalling has been
demonstrated in phase 3 trials in patients with PMF and
myelofibrosis secondary to PV and ET. The JAK1/2 inhibitor
ruxolitinib improves symptoms and prolongs survival (Harrison
et al, 2012). JAK inhibitors have also been developed for the
treatment of autoimmune diseases, in particular tofacitinib, a JAK3
inhibitor, has been shown in phase 3 trials in patients with
rheumatoid arthritis to improve joint signs and symptoms and
reduce joint damage (Lee et al, 2014).

In contrast to myelofibrosis, where JAK/STAT activation is
frequently associated with a gain-of-function mutation in JAK2,
the cause of JAK/STAT activation in solid malignancies is less well
defined. Indeed, in a phase 1 trial of a JAK1/2 inhibitor in patients
with solid tumours no response was seen, when assessed according
to Response Evaluation Criteria in Solid Tumours. There was,
however, a reduction in pSTAT3 in granulocytes and in tumour
tissue in one patient who had pre- and post-treatment biopsies
(Plimack et al, 2013).

Approaches to develop therapies have also focussed on suppres-
sing the activity of STATs. The beneficial effect of reducing STAT3
and STAT5 activity in cancer has been demonstrated in cell culture
and animal models using overexpression of dominant negative
STATs and knockdown of STAT expression with siRNAs.
Translating findings based on experimental genetic techniques into
therapies that can be administered to patients has been challenging,
but approaches that disrupt protein–protein interactions needed for
STAT phosphorylation or inhibit STAT–DNA binding have shown
promise in preclinical studies. Both strategies have been shown to
affect cancer cell proliferation and apoptosis, and decrease tumour
growth in mouse models. The natural product withacnistin inhibits
the binding of STAT3 and STAT5 to the cytoplasmic region of
receptors, thus preventing the recruitment of STATs for phosphor-
ylation (Zhang et al, 2014). High-throughput methods to develop
peptide drugs with the capacity to enter cells have been employed to
create an inhibitor of STAT3 activation, which acts by binding the
SH2 domain (Kim et al, 2014). A small-molecule inhibitor of STAT3
that is thought to interact with the SH2 domain has been examined
in a phase 1 trial in patients with solid tumours. No further
investigation of this molecule is planned, however, as pharmacoki-
netic studies showed that plasma concentrations in patients were
extremely variable and substantially lower than those observed in
preclinical models (Bendell et al, 2014). A synthetic inhibitor of
STAT–DNA binding has shown promise in cell and animal models,
including in vitro effects on tumour cells from the ascites of patients
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with ovarian cancer (Rath et al, 2014). The STAT–DNA interaction
has also been disrupted by ‘decoy oligonucleotides’ that contain
STAT-binding sequences and competitively inhibit STAT binding to
genomic DNA. A decoy oligonucleotide-targeting STAT3 has been
shown to decrease expression of STAT target genes in head and neck
squamous cell carcinoma when injected into tumours intraopera-
tively (Sen et al, 2012).

It is hoped that some of the JAK/STAT-targeted therapies
shown to be beneficial in preclinical models will soon enter
clinical trials. In order for these therapies to be examined
in appropriate patient groups, a better understanding of the
mechanisms causing JAK/STAT activation and the degree to which
pathway activation drives disease in different tumour types is
required. Combining strategies to target STAT activation with those
affecting other signalling pathways, such as B-RAF and BCR–ABL
may be particularly effective, as has already been demonstrated in

preclinical models of melanoma and CML (Liu et al, 2013; Gallipoli
et al, 2014).

CONCLUSION

Direct examination of tissue samples has shown that a large
number of solid tumours exhibit activation of the JAK/STAT
signalling pathway. The central position of JAK/STAT signalling in
a network of signalling pathways whose deregulation contributes to
cancer suggests that targeted inhibition of JAK/STAT signalling
could be harnessed therapeutically to treat patients with solid
tumours. However, further work is required to establish to what
extent the observed activation of JAK/STAT signalling is driving
disease. This may determine the extent to which inhibition of the
pathway brings therapeutic benefits. The near future should see the

Table 1. Summary of studies describing STAT activation and its clinical implications in solid tumours

Cancer type Reference
STAT activation,
tissue sample Number of patients

Clinical implications of
STAT activation

NSCLC Xu and Lu, 2014 STAT3 and pSTAT3 detection
with immunohistochemistry

1793 (meta-analysis of 17
studies)

Positivity for STAT3 or pSTAT3
associated with reduced overall survival
(HR¼ 0.67, Po0.0001)

Prostate Mirtti et al, 2013 Nuclear STAT5A/B,
immunohistochemistry on
tissue microarrays from
prostatectomy or TURP

562 radical prostatectomy Presence of nuclear STAT5 associated
with early recurrence (HR¼1.6,
P¼0.012)

106 palliative treatment Presence of nuclear STAT5 associated
with prostate cancer-specific death
(HR¼ 1.59, P¼0.034)

Breast Sonnenblick et al, 2013 Immunohistochemistry for
pSTAT3 on tissue microarrays

137 out of 375 positive (36%) Presence of pSTAT3 associated with
improved overall survival in patients
receiving adjuvant chemotherapy (10
year survival 79% for pSTAT3 positive,
vs 61.5% for pSTAT3 negative,
HR¼ 0.48, P¼0.01)

Peck et al, 2011 Immunohistochemistry and
immunofluorescence for
nuclear pSTAT5 on tissue
microarrays

208 out of 421 positive (49%).
Node negative, with no
adjuvant therapy

Absence of activated STAT5 associated
with decreased cancer-specific survival
(HR¼ 2.39, P¼0.023)

Rectal/colorectal Monnien et al, 2010 Immunohistochemistry for
nuclear pSTAT3

39 out of 104 (37.5%)
positive. 104 rectal, T3 or
resectable T4M0

Presence of activated STAT3 associated
with better overall survival (HR¼0.3,
P¼0.01)

Kusaba et al, 2006 Immunohistochemistry for
pSTAT3

62 out of 108 (57%) positive.
Colorectal adenocarcinoma

Presence of activated STAT3 associated
with worse overall survival (Po0.001)

Oral squamous
cell carcinoma

Macha et al, 2011 Immunohistochemistry for
nuclear pSTAT3

63 out of 94 (67%) positive
(follow-up data for 71)

Nuclear pSTAT3 associated with shorter
median disease-free survival (13months
vs 64 months, P¼ 0.019).

Pectasides et al, 2010 AQUA immunohistochemistry
for nuclear STAT3

High nuclear STAT3 associated with
improved overall survival (Mean 119
months vs 57.3 months, P¼0.009)

Cervical
squamous cell
carcinoma

Takemoto et al, 2009 Immunohistochemistry for
nuclear pSTAT3

71 out of 125 (56.8%) positive Nuclear pSTAT3 associated with
reduced overall survival (5 year survival
79.2 months vs 95.3 months, P¼0.006)

Malignant
melanoma

Messina et al, 2008 Immunohistochemistry for
pSTAT1 and pSTAT3

6 out of 14 primary tumours
positive for nuclear pSTAT3,
16 out of 26 lymph node
metastases positive for
pSTAT3, 6 out of 23 positive
for STAT1

In patients with lymph node metastases,
higher rates of recurrence with high
pSTAT3 staining compared with low-
grade staining (9 out of 16 vs 3 out of 10).
Lower rates of recurrence with high
pSTAT1 staining (8 out of 23 vs 2 out of 6)
in lymph node and brain metastases

Renal cell
carcinoma

Horiguchi et al, 2002 Immunohistochemistry for
nuclear pSTAT3

24 out of 48 (50%) positive Nuclear pSTAT3 associated with
shortened cancer-specific survival
(P¼ 0.0439)

Glioblastoma Birner et al, 2010 Immunohistochemistry for
pSTAT3 on tissue microarrays

58.8% of 111 positive High or very high numbers of cells
positive for pSTAT3 associated with
reduced overall survival (P¼0.001)

Abbreviations: AQUA¼ automated quantitative analysis; HR¼ hazard ratio; NSCLC¼ non-small cell lung cancer; STAT¼ signal transducers and activators of transcription; TURP¼ transurethral
resection of prostate.
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transition of drugs that inhibit JAK/STAT signalling from
preclinical models into early phase clinical trials in solid tumours.
Large-scale sequencing projects are starting to reveal subgroups of
patients whose tumours harbour mutations in JAK/STAT
components. Targeting drugs that inhibit JAK/STAT activation
to these groups of patients is likely to be particularly promising.
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