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ABSTRACT
....................................................................................................................................................

Objective Literature-based discovery (LBD) aims to identify “hidden knowledge” in the medical literature by: (1) analyzing documents to identify
pairs of explicitly related concepts (terms), then (2) hypothesizing novel relations between pairs of unrelated concepts that are implicitly related via
a shared concept to which both are explicitly related. Many LBD approaches use simple techniques to identify semantically weak relations between
concepts, for example, document co-occurrence. These generate huge numbers of hypotheses, difficult for humans to assess. More complex tech-
niques rely on linguistic analysis, for example, shallow parsing, to identify semantically stronger relations. Such approaches generate fewer hy-
potheses, but may miss hidden knowledge. The authors investigate this trade-off in detail, comparing techniques for identifying related concepts
to discover which are most suitable for LBD.
Materials and methods A generic LBD system that can utilize a range of relation types was developed. Experiments were carried out comparing a
number of techniques for identifying relations. Two approaches were used for evaluation: replication of existing discoveries and the “time slicing”
approach.1

Results Previous LBD discoveries could be replicated using relations based either on document co-occurrence or linguistic analysis. Using relations
based on linguistic analysis generated many fewer hypotheses, but a significantly greater proportion of them were candidates for hidden
knowledge.
Discussion and Conclusion The use of linguistic analysis-based relations improves accuracy of LBD without overly damaging coverage. LBD sys-
tems often generate huge numbers of hypotheses, which are infeasible to manually review. Improving their accuracy has the potential to make
these systems significantly more usable.

....................................................................................................................................................
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INTRODUCTION
The number of academic papers being published is now so large that
researchers are unable to read everything potentially relevant to their
research and normally focus only on publications that are directly rele-
vant to their particular specialisation. However, this can lead to novel
connections between sub-fields being missed.2 Literature-based dis-
covery (LBD) aims to (semi-)automate the process of identifying these
connections. A number of possible applications exist, such as: identifi-
cation of treatments for diseases, drug re-purposing, disease candi-
date gene discovery, or drug side effect prediction.3 For example,
Swanson4 found a connection between Raynaud’s disease and fish oil
due to connecting a publication describing the effect of Raynaud’s
phenomenon on blood viscosity with a separate publication containing
fish oil’s effect on the same. This approach to LBD, through an overlap
of relationships between terms across multiple publications, is known
as the A-B-C model. If the relationship between A and C was not pre-
viously known then it is considered an example of “hidden knowl-
edge.” Other techniques have been proposed, for example, discovery
patterns which rely on patterns that are matched against documents.
The patterns may be either manually created5 or inferred from data.6

Discovery patterns have proved useful for the discovery of novel drug
applications, an application that focuses on a restricted set of con-
cepts and clearly defined relations between them. It is not clear if this
technique can be applied to more open ended literature based discov-
ery problems.

LBD systems rely on being able to identify relationships between
terms within documents. For example, the A-B-C model relies on the
identification of the relationship between A and B, as well as the rela-
tionship between B and C. In closed discovery, both A, the source
term, and C, the target term, are specified, and only the linking terms
(with relationships to both A and C) are sought; while open discovery
explores a much larger space with only the source term being speci-
fied and all relationships being pursued. However, identification of re-
lations is a difficult problem and despite the significant amount of
research that has been carried out on the topic,7,8 one that has not yet
been solved. Consequently, researchers working on LBD have adopted a
number of approaches to identifying relations. One simple technique is
term co-occurrence, which assumes that terms that are found in the
same document are somehow semantically related. This approach is sim-
ple to compute but is likely to over-generate relations, as the semantic re-
lation between two terms that do no more than occur in the same
document is liable to be very tenuous. An alternative, more complex
method is to carry out some sort of linguistic analysis of the text in order
to identify related terms. This approach generates fewer relations and the
generated relations are likely to signal closer semantic association. How-
ever, it requires significantly more computation and the value of the rela-
tions identified depends on the accuracy of the linguistic analysis. This
paper compares these two approaches to identifying relations within doc-
uments and the effect they have within an LBD system. We focus on the
A-B-C model due to its generality.
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BACKGROUND AND SIGNIFICANCE
Swanson’s discoveries,4,9–11 showed the potential impact of LBD, but
also highlighted the scale of the search space.12 Within the biomedical
domain, knowledge discovery is frequently based on (a subset of)
MEDLINE, the US National Library of Medicine’s database of medical
journal publications, which in its 2011 release indexed over 19 million
articles. To reduce the search space, replication of Swanson’s discov-
eries has been frequently based on shorter time intervals, such as
1983–8513 or 1960–85.2

Another approach to search space reduction involves restricting
the type of terms that can appear as linking (B) or target (C) terms (in
open discovery) in the A-B-C model. A hidden connection to the term
fish oil is much more informative than a hidden link to the very general
term severe pain. Term reduction can take the form of removing fre-
quent terms,14 restricting target terms by the Unified Medical
Language System metathesaurus (UMLS) semantic type,15–17 or using
association rules.17,18 Medical Subject Heading terms have also been
used as underlying concepts.19

It is not only the number of terms that determines the complexity
of the task. The number of hidden connections will also be propor-
tional to the number of relations between these terms. Most
approaches follow Swanson’s work in employing co-occurrence based
relations,20 but other semantic based approaches are possible.

Two evaluation methods for LBD systems have been described in
the literature. Replication of previous discoveries measures an LBD
system’s ability to reproduce discoveries made by previous LBD sys-
tems, normally those described by Swanson.2,21 The timeslicing ap-
proach evaluates LBD systems by comparing the hypotheses that are
generated by analysing the set of documents published before some
cut-off-date against the connections that are explicitly stated in the lit-
erature published after that date.1

MATERIALS AND METHODS
We implemented an LBD system based on the A-B-C model that can
be configured to use different relations between terms and used it to
carry out experiments comparing a range of different types of rela-
tions. For all our experiments, we use UMLS22 Concept Unique
Identifiers (CUIs) as terms (as identified by MetaMap), although the
system is not limited to these and can work with terms directly (see
discussion in Section “Focus on Scale” below).

The LBD system assumes the existence of a binary relation R be-
tween terms. Let aij of the term-term matrix A describe the frequency
with which term ti is related to term tj in the document collection (i.e.,
the frequency of ti Rtj ). Any non zero terms in

norm A2
� �

� norm Að Þ;

where norm converts all non zero values to 1, represent indirectly re-
lated concepts which are connected through one interlinking term.
The following aspects of the matrix can be varied:

1. relation: The relation used to describe the relationship between
terms – ti and tj may be related under one relation, but not another.

2. weight: The weight, rather than frequency, assigned to each rela-
tionship (which will yield a resulting weight for each hidden con-
nection, allowing a ranking to be constructed).

3. size: The size of the collection from which the matrix is built—this
can be restricted to a particular time interval or possibly even par-
ticular category of abstracts.

We explored 6 different types of relations, the first three of which are
based on co-occurrence and the remaining three on linguistic analysis.

The relations were used to populate the matrix A in our LBD system
with weights as described below. The collection size was changed in
line with evaluation type.

• c-doc: Co-occurrence of terms based on the entire document
(in this case, a document is an abstract). Pairs of terms are con-
sidered to co-occur if they are found in the same document and
the strength of their co-occurrence is based on the number of
documents in which they co-occur. Using this approach the
number of times the two terms ai and aj appear within the
same documents is stored in the position aij of A.

• c-sent: A more restrictive approach is to consider terms to co-
occur if they are found in the same sentence within a document
(abstract). In this case, the strength of co-occurrence between a
pair of terms is based on the number of documents which con-
tain at least one sentence in which both terms occur.

• c-title: The final co-occurrence-based relation uses only the titles
of documents. Pairs of terms are considered to co-occur if they
are found in the same document title and the co-occurrence
strength is based on the number of titles in which they co-occur.

• SemRep: SemRep,23 a publicly available tool, extracts subject-
relation-object triples (such as X treats Y ) from biomedical text
using underspecified syntactic processing and UMLS domain
knowledge. Position aij stores the count of the triple ai Raj .

• ReVerb: The publicly available ReVerb Information Extraction
system24 extracts binary relations expressed by verbs based on
imposed syntactic and lexical constraints. Position aij contains
the count of occurrences of the relation ai Raj .

• Stanford: The publicly available Stanford parser25 generates
typed grammatical relations, such as subject, between pairs of
words extracted from phrase structure trees. A number of gram-
matical relation patterns were manually constructed and the
number of times ai is linked to aj throughout the document col-
lection is stored in aij .

Figure 1 shows the difference between c-sent, c-doc, and c-title
on a small scale example, a document collection consisting of two
very short abstracts. While none of the A matrix instances contain a
link between FO and RS, it can be seen that in this example the rele-
vant A2 field will be non-zero for c-doc and c-sent, and the link will be
suggested.

FOCUS ON SCALE
As the quantity of data used for LBD increases, so does the amount of
hidden knowledge generated from it. Large quantities of hidden
knowledge are difficult to evaluate and may not be helpful to users of
the LBD system. Past research addressed this issue using various
techniques, including: filtering terms prior to generation, restricting ei-
ther the time period from which hidden knowledge is generated or
the segment of the abstract that knowledge is drawn from (e.g.,
titles only) and re-ranking of the subsequently produced hidden knowl-
edge. While these approaches make the task more computationally
tractable, there is an increased risk of discarding important links or
terms, or failing to include crucial knowledge from a previous time
period.

Term reduction
Term reduction has been explored in a number of different forms:
Swanson et al.26 used a semi-automatically created stoplist of 9500
terms. They also carry out further reduction at an earlier stage: the lit-
erature for terms “A” and “C” is pre-filtered by subject heading—for
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term “X,” the literature only includes abstracts in which “X” is the
Medical Subject Heading subject heading and appears in the title.
While both techniques decrease complexity and reduce the number of
spurious links, restricting the literature on a per term pair basis re-
quires prior knowledge of intended search terms, and therefore needs
tuning prior to execution.

A more general filtering approach is suggested by Weeber et al.2

who filter out noncontent words by switching LBD from terms to
UMLS22 CUIs, which only exist for terms appearing in the UMLS
Metathesaurus. They use the MetaMap tool27 to identify CUIs in docu-
ments; a further advantage of MetaMap is its ability to identify multi-
word units and map these to CUIs—both features of MetaMap greatly
reduce the number of ‘terms’ given to the LBD system, and help the
system avoid spurious connections due to term ambiguity.

Within our large scale, open discovery system, we employ
MetaMap as outlined in,2 to remove non content words and identify
multiwords, and we carry out further term reduction as follows:

1. CUIs which appear in many abstracts are removed. Setting the
threshold to 150,000 abstracts results in the removal of 924
terms. This value was manually determined so no obviously “use-
ful” terms were discarded.

2. UMLS contains a list of pairs of CUIs believed to be synonyms, for
example, C0034734 (Raynaud disease) and C0034735 (Raynaud
Phenomenon). Merging synonymous CUIs allow (a) the retrieval of
more hidden knowledge if either is the “A” term, and (b) the po-
tential creation of more hidden knowledge if these terms occur as
linking terms (since “A” connected to C0034734 and “C” con-
nected to C0034735 would not have been recognized as being in-
directly related previously). This reduces the 561,155 CUIs in
UMLS to 540,440 CUI equivalence classes.

3. The UMLS Semantic Network consists of 133 semantic types, a type
of subject category, and each CUI is assigned a type. Many of these
types are unhelpful for knowledge discovery (e.g., geographic area
or language). Seventy semantic types (which can be viewed at
Online Supplementary Appendix A) were manually identified as not
being useful, leading to the removal of a further 121,284 CUIs.

RESULTS AND DISCUSSION
Two evaluations are performed: (1) replication of existing discoveries
and (2) timeslicing.

Replication of existing discoveries
From the LBD literature we identified seven separate discoveries that
have previously been used for replication experiments. The time seg-
ments from which these were derived are included whenever they
could be found in the original paper and used for our experiments:

1. A connection between Raynaud disease and fish oil was found
using Medline articles from three periods: 1983–1985,21

1980–1985,13 and 1960–1985.2 We present results from the
1960 to 1985 period.

2. A connection between Somatomedin C and arginine was identified
using Medline articles from 1960 to 1989.28 (Somatomedin C and
arginine appear together in 27 abstracts which are removed.)

3. A link between migraine disorders and magnesium was derived
from articles in the range 1980–1984.13

4. Magnesium deficiency was linked to neurologic disease.29

5. A link between Alzheimer’s and indomethacin based on Medline
articles between 1966 and 1996.30 (The six abstracts mentioning
both were removed.)

6. A link between Alzheimer’s disease and estrogen.31 (25 abstracts
mentioning both are removed.)

7. A link between schizophrenia and Calcium-Independent
Phospholipase A2 based on 1960–1997 Medline.32 (One abstract
contained both terms.)

Table 1 presents the results of the replication discovery experi-
ments. The table shows the number of linking terms that are identified
based on the SemRep, ReVerb, and Stanford-based relations. The LBD
system identifies the hidden knowledge in all cases where at least one
linking term is identified. The results show that the existing discoveries
can be replicated in the majority of cases. The SemRep relations repli-
cate all seven discoveries, and generally identify several linking terms.
The other two relations, ReVerb and Stanford, each replicate five of
the discoveries. There appear to be fewer linking terms for the discov-
eries that are not identified by these two relations. These results dem-
onstrate that relations based on linguistic analysis can replicate a
range of existing discoveries in the majority of cases.

Results for the co-occurrence-based relations are not included
since searching through their output is impractical given the volume of
hidden knowledge they generate (see discussion in “Timeslicing” sec-
tion). However, two of the co-occurrence based relations (c-doc and
c-sent) are guaranteed to generate all of the relations that are

Figure 1: A small scale example illustrating the difference between the co-occurrence based relations.
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generated by the approaches presented in the table and will therefore
identify all of the existing discoveries.

The amount of hidden knowledge generated from ReVerb is con-
sistently lower than that generated by the other relations. ReVerb rela-
tionships center around a verb. However, a substantial amount of
information in Medline is contained within the title, which is, in almost
all cases, missing a verb, and thus no ReVerb connections arise from
it. This is frequently the cause of the low number of linking terms pro-
duced by this relation.

Every piece of hidden knowledge is generated by a set of linking
terms which connect the “A” and “C” terms. While a connection may
be found between the replication source and target terms, examining
the linking terms reveals the value of filtering; for example, the terms
linking Raynaud’s and fish oil prior to synonym merging and semantic
type filtering are found to be CUIs corresponding to patient and volun-
teer helper and the frequently cited blood viscosity link is missing.
Based on these linking terms, the connection should be discarded.
However, when synonyms are merged the list of linking terms ex-
pands to include blood viscosity, antimicrobial susceptibility, acetylsa-
licyclic acid, measurin, ecotrin, and brain infarction. Furthermore,
restricting by semantic types leads to patient and volunteer helper be-
ing dropped. As an aside, after synonym application and semantic
type filtering the amount of hidden knowledge (i.e., number of linked
term pairs “A” and “C” not previously known to be connected) gener-
ated by the SemRep relation on the 1960–1985 segment drops from
1,784,468,135 to 223,655,269 (i.e., almost a factor of 8).

Timeslicing
The replication of an existing discovery is focused on one pair of terms
– while the hidden connection is known to have been found previously
using some LBD system, there is no guarantee that a new LBD system
will make the discovery. However, the correlation between a system’s
inability to replicate one (or seven) given discoveries (which could be
due to a simple misidentification of a multiword, or the failure to spot
one related pair of terms) and the overall ability to produce useful hid-
den knowledge is unclear.

A more representative evaluation would involve identifying more
hidden knowledge pairs – an evaluation which would allow a mean-
ingful computation of both precision and recall. This is possible with
timeslicing: hidden knowledge is generated from all data up to a cho-
sen cut-off-date and is evaluated against the novel ideas presented in
publications after the cut-off date (i.e., the assumption is that some of
the hidden knowledge will be “discovered” soon after the inference is

possible). However, identifying novel ideas, the “new knowledge,” in
publications after the cutoff date is not straightforward: for example,
extracting all newly co-occurring pairs of CUIs will clearly give a very
large and noisy “gold standard” and will favor LBD quantity over qual-
ity. The linguistic principled approaches (SemRep, ReVerb, and
Stanford) extract real interactions and should therefore produce more
accurate gold standards. Clearly, a piece of new knowledge identified
by all three approaches is a highly reliable novel discovery. However,
insisting on knowledge identified by all three approaches produces a
very small gold standard.

Hidden knowledge is generated from the 2000 to 2005 segment,
and an evaluation is performed against a gold standard generated
from the 2006 to 2010 segment. Based on relation pairs found after a
timeslice at the end of 2005 (removing all relation pairs already seen
between the start of Medline and the end of 2005) up to the end of
2010 for the SemRep (1,195,925 relation pairs), ReVerb (486,011 re-
lation pairs), and Stanford (384,934 relation pairs) relations, three dif-
ferent new knowledge gold standards are created:

1. intersection of the three sets of relation pairs (4,106 pairs),
2. relation pairs corresponding to the majority (i.e., appearing in at

least two relations) (98,747 pairs), and
3. the union of the three sets of relations (1,964,016 pairs).

Note that the techniques are employed purely to create a gold
standard: any LBD approach can be evaluated against the gold stan-
dard produced, and should another approach to producing a non-noisy
gold standard be available, this could easily be substituted.

Results for all 6 relations, including the three based on co-occur-
rence (c-doc, c-sent, c-title) and the three that use linguistic analysis
(SemRep, ReVerb, and Stanford), are displayed in Table 2. A column
describing the relation employed is followed by a column containing
the number of hidden knowledge pairs produced by each of the rela-
tions. The subsequent columns are paired, the first being the number
of hidden knowledge pairs identified in the given gold standard, the
second the corresponding F1 -measure. The F1 -measure is a mea-
sure of accuracy which combines both precision (the number of pairs
within the gold standard correctly identified over the number of pairs
in the gold standard, i.e., “correct”/“gold standard”) and recall (the
number of pairs within the gold standard correctly identified over the
number of pairs generated, i.e., “correct”/“hidden knowledge”)

F1 ¼
2� precision� recall

precisionþ recall
;

weighing down the precision of systems producing a large number of
spurious pairs which are likely to be unsuitable for users (e.g., return-
ing all possible pairs should result in 100% precision): the highest F-
measure value for each gold standard is shown in bold and represents
the combination which generates the highest proportion of “correct”
pairs.

While the co-occurrence approaches clearly return a larger propor-
tion of the gold standard, this is at the expense of generating a much
larger volume of hidden knowledge over all. (Note that the lower number
of gold standard pairs returned by c-doc vs c-title is genuine: the term-
term A matrix representing the frequency of occurrence of each related
pair, see “Materials and Methods,” section will be much less sparse
for c-doc than c-title due to the volume of data included. This results in
a more populated A2 for c-doc than c-title, but removing the large
number of previously related pairs (norm (A)) dramatically reduces the
number of non zero pairs in norm(A2) – norm(A).) The F-measure
shows the complete picture: the semantic knowledge based rela-
tions outperform the co-occurrence information each time, and the best

Table 1: Number of linking terms for replication of ex-
isting discoveries with synonym merging and
semantic type filtering

SemRep ReVerb Stanford

RD – fish oil 4 0 1

Somatomedin C – Arg 130 22 27

Migraine – Mg 47 3 13

Mg deficiency – ND 43 5 0

AD – estrogen 331 64 76

AD – INN 234 47 49

Schizophrenia – Ca2þiPLA2 13 0 0
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such relation is at least 10 times better than the best co-occurrence
relation.

The importance of reducing the amount of spurious hidden knowl-
edge candidates cannot be underestimated. Table 3 depicts the num-
ber of hidden knowledge pairs generated using each of the 6 relations
(# pairs column) as well as the average (mean, median, and mode)
number of hidden knowledge candidates per term (the “Terms” col-
umn depicts the number of distinct terms appearing in any relation in-
stance—co-occurrence includes most of the terms present in Medline
as all pairs are related, while less productive relations involve fewer
terms). These figures indicate the average amount of hidden knowl-
edge a user will need to evaluate when they use an LBD system for
hypothesis generation. Table 3 also shows that these figures are
1 to 2 orders of magnitude higher when the co-occurrence based rela-
tions are used. Note that without synonym merging and semantic type
filtering, the amount of hidden knowledge is even larger: c-title yields
a total of 9 921 824 584 pairs with a mean of 20 435 pairs per term
and c-doc produces 86 955 899 148 with a mean of 179 091 pairs.

CONCLUSION
LBD systems rely on the identification of relations between terms
mentioned within documents. In the previous literature on LBD, vari-
ous approaches have been explored that vary in terms of the nature of
the relations between terms that they identify, in particular whether
they simply determine term–term co-occurrence within the same doc-
ument or same sentence, or whether they perform linguistic analysis.

This paper investigated a range of these approaches to relation identi-
fication and studied them within an LBD system.

We found that approaches that use relations extracted through au-
tomatic linguistic analysis identify several orders of magnitude fewer
instances of hidden knowledge than approaches that use term co-oc-
currence relations, but that these relations are sufficient to replicate
existing discoveries in the majority of cases. In addition, we found that
the amount of hidden knowledge generated when the linguistic analy-
sis approaches are used appears to be tractable, that is, an interested
user could potentially review it all. This contrasts with the term co-oc-
currence based approaches where the sheer volume of hidden knowl-
edge produced exceeds human capacity to review it. We conclude that
using automated linguistic analysis in relation identification for LBD
provides significant benefits, in terms of reducing the number of spuri-
ous links identified, while still identifying sufficient links to enable po-
tentially interesting discoveries.
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FUNDING
This work was supported by the Engineering and Physical Sciences Research

Council grant number EP/J008427/1.

COMPETING INTERESTS
None.

CONTRIBUTORS
All authors designed and conceived of the study. Judita Preiss implemented the

system and carried out all experiments. All authors read and approved the final

manuscript.

REFERENCES
1. Yetisgen-Yildiz M, Pratt W. A new evaluation methodology for literature-based

discovery. J Biomed Inform. 2009;42(4):633�643.
2. Weeber M, Vos R, Klein H, de Jong-van den Berg LTW. Using concepts in lit-

erature-based discovery: simulating Swanson’s Reynaud - fish oil and mi-
graine - magnesium discoveries. J Am Soc Inform Sci Technol. 2001;52(7):
548�557.

3. Hristovski D, Rindflesch T, Peterlin B. Using literature-based discovery to
identify novel therapeutic approaches. Cardiovasc Hematol Agents Med
Chem. 2013;11(1):14–24.

4. Swanson DR. Fish oil, Raynaud’s syndrome, and undiscovered public
knowledge. Perspect Biol Med. 1986;30:7–18.

Table 2: Timeslice evaluation pre-slice 2000–2005, new knowledge generated from 2006 to 2010, merging synonyms, fil-
tering semantic types.

Hidden knowledge Union Majority Intersection

Correct F Correct F Correct F

c-doc 14 601 340 987 762 474 1.04e-04 25 089 3.44e-06 954 1.31e-07

c-sent 5 697 603 946 1 104 869 3.88e-04 41 147 1.44e-05 1485 5.41e-07

c-title 786 977 001 1 392 441 3.53e-03 68 393 1.74e-04 2808 7.14e-06

SemRep 197 590 213 1 268 934 1.27e-02 74 508 7.54e-04 3781 3.83e-05

ReVerb 91 950 221 1 068 498 2.28e-02 66 070 2.39e-03 3314 7.21e-05

Stanford 74 442 449 885 203 2.32e-02 60 120 1.61e-03 3049 8.19e-05

Table 3: Hidden connection breakdown (with synonym
merging and semantic type filtering).

No. of pairs Terms Mean Median Mode

2000–2005

c-doc 29 202 681 794 233 446 60 145 117 127 78 405

c-sent 11 395 207 892 227 869 50 007 35 071 10 987

c-title 1 573 954 002 138 622 11 354 5679 3

SemRep 395 180 426 88 525 4464 1734 1

ReVerb 183 900 442 90 742 2027 662 1

Stanford 148 884 898 71 389 2086 685 1

RESEARCH
AND

APPLICATIONS
Preiss J, et al. J Am Med Inform Assoc 2015;22:987–992. doi:10.1093/jamia/ocv002, Research and Applications

991

http://jamia.oxfordjournals.org/lookup/suppl/doi:10.1093/jamia/ocv002/-/DC1
http://jamia.oxfordjournals.org/


5. Hristovski D, Friedman C, Rindflesch TC. Exploiting semantic relations for lit-
erature-based discovery. In: Proc AMIA Annual Symp. 2006;2006:349–353.

6. Cohen T, Widdows D, Schvaneveldt RW, Davies P, Rindflesch TC.
Discovering discovery patterns with predication-based semantic indexing. J
Biomed Inform. 2012;45(6):1049–1065.

7. Tsujii J, Kim J-D, Pyysalo S, eds. In: Proceedings of BioNLP Shared Task
2011 Workshop. Association for Computational Linguistics; June 2011;
Portland, Oregon, USA.

8. Cohen KB, Demner-Fushman D, Ananiadou S, Pestian J, Tsujii J, eds. In:
Proceedings of the 2013 Workshop on Biomedical Natural Language
Processing. Association for Computational Linguistics; August 2013. Sofia,
Bulgaria.

9. Swanson DR. Two medical literatures that are logically but not bibliographi-
cally connected. J Am Soc Inform Sci. 1987;38:228–233.

10. Swanson DR. Migraine and magnesium - 11 neglected connections.
Perspect Biol Med. 1988;31(4):526–557.

11. Swanson DR. A second example of mutually isolated medical literatures
related by implicit, unnoticed connections. J Am Soc Inform Sci. 1989;40:
432–435.

12. Hearst MA. Untangling text data mining. In Dale R, ed. Proceedings of the 37th
Annual Meeting of the Association for Computational Linguistics. Morgan
Kaufmann; 1999: 3–10.

13. Hu X, Zhang X, Yoo I, Zang Y. A semantic approach for mining hidden links
from complementary and non-interactive biomedical literature. In: SDM; 2006.
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