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Metrical Diophantine approximation for quaternions

By MAURICE DODSON† and BRENT EVERITT‡

Department of Mathematics, University of York,

York, YO10 5DD, UK

(Received ; revised)

Dedicated to J. W. S. Cassels.

Abstract

Analogues of the classical theorems of Khintchine, Jarńık and Jarńık-Besicovitch in

the metrical theory of Diophantine approximation are established for quaternions by

applying results on the measure of general ‘lim sup’ sets.

1. Introduction

Diophantine approximation begins with a more quantitative understanding of the den-

sity of the rationals Q in the reals R. For any real number ξ, one considers rational

solutions p/q to the inequality
∣

∣

∣

∣

ξ − p

q

∣

∣

∣

∣

< ε,

where ε is a small positive number depending on p/q. Dirichlet’s theorem [41, Chap. XI],

where ε = (qN)−1 for any N ∈ N and a suitable positive integer q ! N , is fundamental to

the theory. Holding for all real numbers, it is a global result in Sprindžuk’s classification

of Diophantine approximation [70, pg. x], in contrast with individual results, which hold

for special numbers, such as the golden ratio φ, e, π, etc., and with the metrical theory.

The last theory uses measure theoretic ideas to describe sets of number theoretic interest

and is the setting of this paper.

Dirichlet’s theorem underpins four major theorems – or the Four Peaks – in the met-

rical theory of Diophantine approximation for R. These results are concerned with the

measure (usually Lebesgue or Hausdorff) of real numbers that infinitely often are ‘close’

to rationals, and those which ‘avoid’ rationals; these are called well approximable and

badly approximable numbers respectively (definitions are given below). The four results

are Khintchine’s theorem (Theorem 3·1), two theorems of Jarńık (Theorems 3·2 and 3·4)

the celebrated Jarńık-Besicovitch theorem (Theorem 3·3). Three of the peaks concern

well-approximable numbers and one badly-approximable numbers. The quantitative form
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Institute for Geometry and its Applications, University of Adelaide, Australia. He is grateful for
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of Khintchine’s theorem (see [63, 70]) certainly merits peak status as well but will not

be considered here.

This basic setting can be generalised in a number of directions: one ‘topological’,

where the reals are replaced by Rn or even submanifolds of Rn and the nature of the

Diophantine approximation modified appropriately; another is ‘geometrical’ where the

reals are replaced by limit points of a discrete group acting on hyperbolic space; while yet

another is ‘algebraic’, where the field R is replaced by other fields, skew-fields or division

algebras, and Q is replaced by the field of fractions of ‘integral’ subrings. This paper

follows the third direction: the approximation of quaternions H by ratios of integer-like

quaternions. For us, ‘integer-like’ will mean the Hurwitz integers H: these turn out to be

the simplest subring of H with sufficiently nice algebraic properties – such as a division

algorithm – for an interesting quaternionic number theory (see §4·1 and [18, 44]).

As far as we can determine, little has been published on quaternionic Diophantine

approximation. A. Speiser obtained an approximation constant for irrational quater-

nions [69]; his work was extended and sharpened by A. L. Schmidt [61, 62]. K. Mahler

proved an inequality for the product of Hurwitzian integral linear forms [53] but we can

find nothing explicitly on the metrical theory. This paper sets out to fill this gap by estab-

lishing quaternionic analogues of the Four Peaks. Limitations of space and complications

arising from non-associativity prevent including the further extension to octonions and

completing the picture for real division algebras.

After some basic measure theory in §2 and a brief survey of real, complex and more gen-

eral Diophantine approximation in §3, we set the stage for the quaternionic theory in §4.

The main result here is a quaternionic analogue of Dirichlet’s theorem (Theorem 4·1).

The badly approximable quaternions are then defined in §4·3. Section 5 extends the fun-

damental Dirichlet inequality to the notion of Ψ-approximability. The ideas of resonance

and near-resonance are explained and the basic structure of the set of Ψ-approximable

numbers is described.

We are finally ready for the quaternionic Four Peaks in §6. The First Peak is the quater-

nionic Khintchine theorem (Theorem 6·1). Each of the statement and proof falls into two

cases: convergence and divergence. The convergence case is the easier of the two and is

established in §8. The divergence case, proved in §9, is much harder and requires deeper

ideas, such as ubiquity (§7) and the mass transference principle (§9·1). The quaternionic

Dirichlet’s theorem (Theorem 4·1) is used in §9 to show that the Hurwitz rationals Q

are a ubiquitous system. This involves rather lengthy and delicate analysis but is a pre-

requisite to applying the powerful Beresnevich-Velani Theorem, established in [10]. This

is adapted to our needs as Theorem 9·2 and used to yield the analogue of Khintchine’s

theorem. The extension to quaternions of the quantitative form of Khintchine’s theorem

is an interesting open question.

The proof of Theorem 6·2, the quaternionic analogue of the Jarńık’s extension of Khint-

chine’s theorem to Hausdorff measure, follows similar lines and is sketched. Theorem 6·6,

the analogue of the Jarńık-Besicovitch theorem, is a corollary of Theorem 6·2. Finally,

some related ideas are used in §10 to prove Theorem 6·7 on the Hausdorff measure and

dimension of the set of badly approximable quaternions.

A knowledge of measure theory and particularly Lebesgue and Hausdorff measure in

Rk will be assumed. For completeness and to fix notation the elements of the theory are

sketched. The reader is referred to [11, 26, 27, 28, 54, 59] for further details.
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2. Measure and dimension

We consider points in subsets of general Euclidean space Rn, our primary interest of

course being in R4, the underlying set of H. When defined, the Lebesgue measure of a

set E will be denoted by |E|. The set E ⊆ F ⊆ Rn is said to be null if |E| = 0 and full in

F if its complement F \ E is null (reference to F will be omitted when there is no risk

of ambiguity). Hausdorff measure and Hausdorff dimension are much more general and

can be assigned to any set. In particular they can be applied to different null sets (also

referred to as exceptional sets), so offering a possible means of distinguishing between

them.

A dimension function f : [0,∞) → [0,∞) is a generalisation of the usual notion of

dimension; m-dimensional Lebesgue measure corresponds to f(t) = tm. More generally,

the function f will be taken to be increasing on [0,∞), with f(x) > 0 for x > 0 and

f(x) → 0 as x → 0. For convenience f will be assumed to be continuous, so that f(0) = 0.

The Hausdorff f -measure H f (or generalised Hausdorffmeasure with dimension function

f) is defined in terms of a ε-cover Cε = {Ci} of a set E, so that E ⊆
⋃∞

i=1 Ci, where

diam(Ci) ! ε. The measure H f (E), defined as

H
f (E) := lim

ε→0
inf{

∑

i

f(diam(Ci)) : Ci ∈ Cε}, (2·1)

is a Borel measure and regular on Borel sets [26, 54]. Hausdorff s-measure H s corre-

sponds to the function f being given by f(t) = ts, where 0 ! s < ∞. When s = m a

non-negative integer, Hausdorff s-measure is comparable with Lebesgue’s m-dimensional

measure. Indeed

H
m(E) = 2m|B(0, 1)|−1|E|, (2·2)

where B(0, 1) is the unitm-dimensional ball, and the two measures agree whenm = 1 [54,

pg. 56]. The 4-dimensional Lebesgue measure (4-volume) of the 4-ball B(4)(ξ, r) of radius

r (and diameter 2r) centred at ξ is given by

|B(ξ, r)| =
π2

2
r4 & r4. (2·3)

For each set E the Hausdorff dimension dimHE of E is defined by

dimHE := inf{s ∈ R : H
s(E) = 0},

so that

H
s(E) =

{

∞, s < dimH E,

0, s > dimH E.

Thus the dimension is that critical value of s at which H s(E) ‘drops’ discontinuously

from infinity. Hausdorff dimension has the natural properties of dimension. For example,

if E ⊆ E′, then dimH E ! dimH E′; and an open set, or a set of positive Lebesgue

measure in Rn, has maximal or full Hausdorff dimension n. Different null sets can have

different Hausdorff dimension and so can be distinguished (e.g., Theorem 3·3).

The Hausdorff s-measure at the critical point can be 0, ∞ or any intermediate value.

Methods for determining the Hausdorff dimension, such as the regular systems given

in [4] or the ubiquitous systems of [25], do not specify the s-measure at the critical point

in general and a deeper approach is usually needed (see Theorem 9·1). In the case of lim

sup sets, such as the Ψ-approximable numbers defined below, the measure of a natural
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cover arising from the definition leads to a sum which determines the Hausdorff measure

at the critical point.

3. Real and complex metrical Diophantine approximation

Some of the salient features of metrical Diophantine approximation for the real and

complex numbers are set out to aid comparison with the quaternions.

3·1. Metrical Diophantine approximation for real numbers

Historically, metrical Diophantine approximation began with Borel’s study of the set

Wv :=

{

ξ ∈ R :

∣

∣

∣

∣

ξ − p

q

∣

∣

∣

∣

< q−v for infinitely many p ∈ Z, q ∈ N

}

,

where Wv = R for v ! 2 and is null for v > 2 [15]. More generally, the function

x '→ x−v is replaced by an approximation function Ψ, defined here to be a function

Ψ : (0,∞) → (0,∞) with Ψ(x) → 0 as x → ∞. One studies the Lebesgue measure

|W (Ψ)| of the set

W (Ψ) :=

{

ξ ∈ R :

∣

∣

∣

∣

ξ − p

q

∣

∣

∣

∣

< Ψ(q) for infinitely many p ∈ Z, q ∈ N

}

of Ψ-approximable numbers. Unless otherwise stated, the approximation function Ψ will

be taken to be decreasing (which we will take to mean non-increasing).

For technical reasons, it is often better to work within a compact set and we choose

the subset V (Ψ) := W (Ψ) ∩ [0, 1]. There is no loss in generality since R is the union

of integer translates of [0, 1], the integers Z are a null set and Lebesgue measure is

translation invariant, allowing the measure of W (Ψ) to be deduced from that of V (Ψ).

In particular, V (Ψ) is full (in [0, 1]) iff A(Ψ) is full (in R). Four of the principal results

– the Four Peaks – in the theory for R now follow.

3·2. The Four Peaks in the theory of real metrical Diophantine approximation.

The First Peak: Khintchine’s theorem for R. In 1924 Khintchine introduced a ‘length’ cri-

terion that gave a strikingly simple and almost complete answer to the ‘size’ ofW (Ψ) [48],

extended to Rn (simultaneous Diophantine approximation) in [49]. The conditions on Ψ

have been improved since (see for example [16, Ch. VII], [70, Ch. 1] and §9·8) to give

the following result for R:

Theorem 3·1. Let Ψ : (0,∞) → (0,∞). Then

W (Ψ) and V (Ψ) are

{

null when
∑∞

m=1 mΨ(m) < ∞,

full when Ψ is decreasing and
∑∞

m=1 mΨ(m) = ∞

Note that W (Ψ) being full implies the weaker statement that |W (Ψ)| = ∞, while

|V (Ψ)| = 1 is equivalent to W (Ψ) being full. Other approximation functions can be

used: e.g., ψ(x) = xΨ(x), where ∥ξ∥ is the distance of ξ from the nearest integer, which

allowing the inequality to be expressed in the concise form ∥qξ∥ < ψ(q) (e.g., [11, 16]),

with the numerator p suppressed, while Dennis Sullivan in [71] uses a(x) = x2
Ψ(x) (he

also uses an equivalent integral criterion instead of the sum
∑

m∈N
a(m)/m). The subset

W ′(Ψ) ⊂ W (Ψ) of points ξ approximated by rationals p/q with p, q coprime will not be

considered.
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It is evident that the value of the sum
∞
∑

m=1

mΨ(m)

in Theorem 3·1 determines the Lebesgue measure of W (Ψ) and so will be called a critical

sum for W (Ψ). Note that if the above critical sum converges, Ψ must converge to 0 and

moreover there is no need in this case for Ψ to be monotonic. Khintchine’s theorem is

related to the ‘pair-wise’ form of the Borel-Cantelli Lemma (see [8, 23, 42]) which also

falls into two cases according as a certain sum of probabilities converges or diverges.

The interpretation of the rationals as the orbit of a point at infinity under the action

of the modular group provides a powerful geometrical approach to Diophantine approxi-

mation in the reals (e.g., [58, 68]) and more generally [1, 5, 55, 56]. It was the basis of

Sullivan’s proof [71, Th. 3] of a slightly stronger form of Khintchine’s theorem and more

(see §3·3 below).

The Second Peak: Jarńık’s Hausdorff f -measure theorem for R. In 1931, Jarńık obtained

Hausdorff measure results for simultaneous Diophantine approximation in Rn, providing

a more general measure theoretic picture of the sets involved [47] (see also [8, pg. 3]).

This did not include Lebesgue measure which is excluded by a growth condition on f at

0. Although originally proved for Rn, Jarńık’s result is again stated for the case n = 1,

with some unnecessary monotonicity conditions omitted.

Theorem 3·2. Let f be a dimension function such that f(x)/x → ∞ as x → 0 and

f(x)/x decreases as x increases. Then

H
f (W (Ψ)) = H

f (V (Ψ)) =

{

0 when
∑∞

m=1 mf(Ψ(m)) < ∞,

∞ when Ψ is decreasing and
∑∞

m=1 mf(Ψ(m)) = ∞.

The condition f(x)/x → ∞ as x → 0 means that Jarńık’s theorem does not imply

Khintchine’s theorem since the dimension function f for 1-dimensional Lebesgue measure

is given by f(x) = x. However, using the idea of ubiquity (explained below in §7),

V. V. Beresnevich and S. L. Velani have united Theorem 3·1 and Jarńık’s theorem into a

single general ‘Khintchine-Jarńık’ theorem [10, §2.3]. The sum
∑∞

m=1 mf(Ψ(m)) is the

corresponding critical sum.

The Third Peak: the Jarńık-Besicovitch theorem for R. In 1929 Jarńık [45, 46] obtained

the Hausdorff dimension of the set Wv, proved by Besicovitch independently in 1934 [13].

This result is readily seen as a consequence of Jarńık’s result above by putting f(x) = xs

and Ψ(x) = x−v, v > 0.

Theorem 3·3. Let v " 0. Then the Hausdorff dimension of Wv is given by

dimHWv = dimHVv =

⎧

⎨

⎩

1 when v ! 2,
2

v
when v " 2.

When 1/Ψ has lower order λ(1/Ψ) := lim infN→∞(log 1/Ψ(N))/(logN), then

dimHW (Ψ) = dimHV (Ψ) =

⎧

⎨

⎩

1 when λ(1/Ψ) ! 2,
2

λ(1/Ψ)
when λ(1/Ψ) " 2

(see [22, 25]).
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The Fourth Peak: Jarńık’s theorem for B, the set of badly approximable numbers. A real

number β is said to be badly approximable if there exists a constant c = c(β) such that
∣

∣

∣

∣

β − p

q

∣

∣

∣

∣

"
c

q2

for all rationals p/q. The set of badly approximable numbers is denoted by B and can be

regarded as a ‘lim inf’ set [26, pg. 1]. In his pioneering paper of 1928, Jarńık established

the Lebesgue measure and Hausdorff dimension of B [45].

Theorem 3·4. The set B is null with full Hausdorff dimension, i.e., |B| = 0 and

dimH(B) = 1.

The strengthening of this result by W. M. Schmidt, who showed that B was a ‘winning

set’ in a certain game [64], will not be considered for quaternions.

3·3. Metrical Diophantine approximation for the complex numbers

Approximating complex numbers by ratios of Gaussian integers Z[i], a half way house

to approximating quaternions by ratios of Lipschitz or Hurwitz integer quaternions, was

studied by Hermite and Hurwitz in the 19th century [50, Chapter IV,§ 1]. Continued

fractions for complex numbers, so simple and effective for real numbers, turn out to be

much more difficult than the real case [16, 41, 67, 29]. In the 1950s, Farey sections

for complex numbers, analogous to Farey fractions for real numbers, were developed by

Cassels, Ledermann and Mahler, who carried out a detailed study [17] of a programme

sketched out by Hurwitz [43, §8]; their work was simplified and extended by LeVeque [52].

A. L. Schmidt developed a natural and effective approach in [60, 66], subsequently

extended to the even more difficult case of quaternions [61, 62].

Each of the Four Peaks has an analogue in the complex numbers. That of Khintchine’s

theorem was by proved by LeVeque [52], who combined Khintchine’s continued fraction

approach with ideas from hyperbolic geometry. Later Patterson, Sullivan and others made

full use of groups acting on hyperbolic space to prove Diophantine approximation results

in more general settings. Sullivan established a Khintchine theorem for Diophantine ap-

proximation in the imaginary quadratic fields Q(
√
−d), where d is a positive non-square

integer [71, Theorem 1], corresponding to the Bianchi groups. In the case d = 1, the

field is the complex numbers, corresponding to the Picard group, and Theorem 1 in [71]

reduces to the complex analogue of Khintchine’s theorem.

The Mass Transference Principle (see §9·1) could be applied to the complex analogue

of Khintchine’s theorem to deduce the complex analogue of Theorem 3·2 (indeed more

general analogues involving Bianchi groups could be deduced from the more general ana-

logues of Khintchine’s theorem). The complex Jarńık-Besicovitch theorem and a stronger

form of Jarńık’s Theorem for badly approximable complex numbers were also proved

in [24], using respectively ubiquity (Theorem 6.1; see also [8, Cor. 7]) and the (α,β)

games of W. M. Schmidt [64] (Theorem 5.2).

3·4. Generalisations

The above results, with appropriate modifications, hold for simultaneous Diophantine

approximation and more generally for systems of linear forms (where the Khintchine-

Groshev theorem takes the place of Khintchine’s theorem) [21, 65, 70]. The Khintchine-

Groshev theorem was extended to non-degenerate manifolds in the case of convergence by

Beresnevich, D. Y. Kleinbock and G. A. Margulis in [12, 6] and in the case of divergence
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by the preceding authors and V. I. Bernik in [7]. The idea of ubiquity [25], which is

closely related to regular systems, has been extended by Beresnevich, H. Dickinson and

Velani to lim sup sets in compact metric spaces supporting a suitable non-atomic measure

to create a broad unifying theory [8, 9, 10]. In particular, the results in [8] imply that

the measure in the Beresnevich-Velani theorem [10, Th. 3] covers both Lebesgue and

Hausdorff measure and will be applied to establish the first three of the quaternionic

Four Peaks.

The approach using discrete group actions on hyperbolic space for R and C, already

alluded to above, leads naturally to the more general setting of Kleinian group actions

on hyperbolic space ([14] has a comprehensive list of references). Beresnevich, Dickinson

& Velani have established metrical Diophantine approximation results for more general

Kleinian group analogues of the first three of the Four Peaks [8]. These specialise to

metrical Diophantine approximation results for real and complex numbers, corresponding

to the modular and Picard group respectively. The quaternionic case would correspond

to the group PSp2,1(H) but different normalisations require reconciling and the proofs

would also require a knowledge of the theory of discrete groups acting on (quaternionic)

hyperbolic space. A more direct and less abstract approach is taken in this paper.

In a continuation of [9], S. Kristensen, R. Thorn & Velani [51] extend the definition of a

badly approximable point to a metric space. This allows the metrical structure of BH, the

quaternionic analogue of badly approximable points, to be read off once a few geometric

conditions are verified (see §4·3). It could also be possible to use the equivalence of

badly approximable points and ‘bounded’ orbits (for details see [20]). ‘Divergent’ orbits

correspond to well-approximable points but the results are less precise [19].

4. Quaternionic Diophantine approximation

We begin our study of quaternionic Diophantine approximation by identifying the

appropriate analogues of the classical case and then proving an analogue of Dirichlet’s

theorem.

4·1. Preliminaries on quaternionic arithmetic

The skew field H of quaternions consists of the set

{ξ = a+ bi+ cj + dk : a, b, c, d ∈ R},

subject to i2 = j2 = k2 = ijk = −1 and i, j, k anticommuting: ij = −ji, jk = −kj and

ik = −ki. The norm of a quaternion ξ is taken to be the usual Euclidean norm

|ξ|2 := (ξξ)1/2 = (|a|2 + · · ·+ |d|2)1/2,

where ξ = a−bi−cj−dk. This norm is multiplicative, with |ξξ′|2 = |ξ|2|ξ
′|2 = |ξ′|2|ξ|2 =

|ξ′ξ|2 for ξ, ξ′ ∈ H (in [41, §§20.6–20.8] and [44] ‘norm’ is used in a different sense, with

N(ξ) = |ξ|22). When convenient, we will write ξ = a + bi + cj + dk = (a, b, c, d) and

a = ℜ(ξ).
There are 24 multiplicative units in H:

±1,±i,±j,±k and ±
1

2
+±

1

2
i+±

1

2
j +±

1

2
k,

forming the vertices of a regular 24-cell in R4.

The simplest-minded notion of integers in H is that of the Lipschitz integers L =
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Z[i, j, k] = Z+ iZ+ jZ+ kZ ∼= Z4. However, this choice has a number of shortcomings:

it does not include all the H-units and is not a Euclidean domain, as the centre of a

4-dimensional cube has Euclidean distance 1 from the closest integral points (to be an

integral domain, the distance of a quaternion to the closest integral point should always be

< 1). For these reasons, the usual choice for quaternionic integers is the set H consisting

of the quaternions a+ bi+ cj+dk, where either all of a, b, c, d ∈ Z or all a, b, c, d ∈ Z+ 1
2 ,

i.e.,

H = L ∪
(

L+
1

2
(1 + i+ j + k)

)

.

Thus H consists of Z4 together with the mid-points of the standard 4-dimensional unit

cubes in Z4 and is an integral domain with division algorithm, i.e., if p,q ∈ H with

q ̸= 0, then there exist s, r ∈ H with |r|2 < |q|2 and

p = sq+ r,

(for example, see [41, Th. 373]). As a result, up to a multiplicative unit, any two Hurwitz

integers have a unique greatest right (respectively left) common divisor up to a left (resp.

right) unit, whence Hurwitz integers have essentially a unique factorisation [18]. Two

Hurwitz integers q,q′ are said to be right (or left) coprime when their right (or left)

greatest common divisor is a unit; we will write (q,q′)r = 1. Two coprime integers

q,q′ generate H in the sense that H is a sum of the principle ideals they generate, i.e.,

qH+q′H = H. A prime quaternion ξ is divisible only by a unit and an associate of ξ, i.e.,

if in the factorisation ξ = qq′, either q or q′ is a unit. Prime integer quaternions have a

neat characterisation (modulo units) in terms of rational primes: an integer quaternion

ξ is prime if and only if |ξ|22 is a rational prime [41, Th. 377].

As a subgroup of R4, the Hurwitz integers H are free abelian with generators {i, j, k,
1
2 (1+ i+ j+ k)} and form a scaled copy of the lattice spanned by the root system of the

simple Lie algebra f4. A fundamental region for H is given by the half-closed region in

R4 with vertices 0, 1, i, j and 1
2 (1+ i+ j+ k). It has 4-dimensional Lebesgue measure, or

4-volume, |∆| = 1/2. For convenience we choose the simpler region

∆ = {ξ ∈ H : 0 ! a, b, c < 1, 0 ! d < 1/2} = [0, 1)3 × [0, 1/2). (4·1)

The Hurwitz rationals Q are defined to be

Q := {pq−1 : p,q ∈ H,q ̸= 0}.

A quaternion is said to be irrational if at least one of its (real) coordinates is irrational.

Approximating quaternions by Hurwitz rationals pq−1 ∈ Q, where the Hurwitz integer q

can be regarded as a ‘denominator’ of the Hurwitz rational pq−1, is an obvious analogue

of approximating a real number by rationals p/q ∈ Q. Distinct Hurwitz rationals enjoy

essentially the same ‘separation’ property as distinct rationals.

Lemma 4·1. If pq−1 ̸= rs−1, then

|pq−1 − rs−1|2 " |q|−1
2 |s|−1

2 .

On expanding |pq−1 − rs−1|22 qq s s and multiplying out, one gets

0 < |pq−1 − rs−1|22 |q|
2
2 |s|

2
2 = |p|22 |s|

2
2 + |r|22 |q|

2
2 − 2ℜ(pq s r) ∈ N

and the lemma follows.
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For the rest of this paper, p and q will denote Hurwitz integers with q ̸= 0 unless

otherwise stated.

4·2. Dirichlet’s theorem for quaternions

The quaternions H =
⋃

q∈H
(∆+q), the union of translates of the fundamental region

∆. Hence for any ξ ∈ H and any non-zero q ∈ H, there exists a unique p = p(ξ,q) ∈ H

such that {ξ}∆, the Hurwitz fractional part of ξ (the analogue of the fractional part {α}

of a real number α), satisfies

{ξ}∆ := ξ − p ∈ ∆,

so that

|{ξ}∆| = |ξq− p|2 !

√
13

4
< 1.

This inequality can be strengthened by restricting the choice of q to give a quaternionic

version of a uniform Dirichlet’s theorem, where the approximation is by Hurwitz rationals

Q with the Euclidean norm. A short geometry of numbers proof is given; it will be used

in Lemma 9·3. The multiplicative constant 2 in (4·2) is chosen for convenience and could

be replaced any number greater than 4/π 2 without affecting the results sought. Whether

4/π is best possible is an open question.

Theorem 4·1. Given any ξ ∈ H and any integer N > 1, there exist p,q ∈ H with

1 ! |q|2 ! N such that
∣

∣ξ − pq−1
∣

∣

2
<

2

|q|2N
. (4·2)

Moreover there are infinitely many p,q ∈ H such that

∣

∣ξ − pq−1
∣

∣

2
<

2

|q|22
. (4·3)

Proof. We seek non-zero p,q ∈ H as components for vectors in the set

K =

{(

x

y

)

∈ H 2 : |ξy − x|2 < ε, |y|2 ! N

}

.

Now the set K is convex and

T (K) =

{(

x

y

)

∈ H2 : |x|2 < ε, |y|2 ! N

}

= B(0, ε)×B(0, N),

where the matrix T =

(

−1 ξ

0 1

)

has determinant detT = −1 and |T (K)| = | detT | |K| =

|K|, the 8-volume of K. Hence

|K| = |B(0, ε)|× |B(0, N)| =
π2

2
ε4

π2

2
N4 =

π4

4
ε4N4.

The 4-volume of a fundamental region ∆ of the Hurwitz lattice is 1/2, so the 8-

volume of ∆2 in H2 is 1/4. Hence by Minkowski’s theorem [41, Theorem 447], if |K| =

π4ε4N4/4 > 28/4, i.e., if ε > 4/(πN), then K contains a non-zero lattice point (p,q)

with |q|2 ! N and |ξq− p|2 < ε. Choosing ε = 2/N > 4/(πN) gives

∣

∣ξ − pq−1
∣

∣

2
<

ε

|q|2
=

2

|q|2N
,
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where |q|2 ! N , which is (4·2).

To show that there are infinitely many pairs p, q in H satisfying (4·2), observe that

the quaternionic rationals are not required to be in lowest terms, so that when ξ = ab−1,

|ξ−ab−1|2 = |ab−1−ap(bp)−1|2 = 0 for all non-zero p ∈ H. Thus the inequality (4·3)

holds for infinitely many pairs ap, bp. Note that if p,q are coprime and ξ = ab−1 ̸=
pq−1, where a,b ∈ H, then |pq−1−ab−1|2 " (|q||b|)−1 by Lemma 4·1, so that |b| < |q|

and there are only finitely many solutions for (4·3).

The case when ξ is not a Hurwitz rational remains, i.e., ξ ̸= ab−1 for any a,b ∈ H,

so that for all pq−1, |ξ − pq−1|2 > 0. Suppose that the inequality (4·3) holds only for

pq−1 = p(m)(q(m))−1, where m = 1, . . . , n and |q(m)|2 ! N . Then

0 < min

{

|q(m)|2
2

∣

∣

∣ξ − p(m)(q(m))−1
∣

∣

∣

2
: j = 1, . . . , n

}

= η

for some η > 0. Let N = [1/η]+ 1 > 1/η, where [x] is the integer part of the real number

x. Then by (4·2), there exist p′,q′ ∈ H with |q′|2 ! N such that

∣

∣ξ − p′(q′−1)
∣

∣

2
<

2

|q′|2 N
,

whence

|q′|2
2

∣

∣ξ − p′(q′−1)
∣

∣

2
<

1

N
< η,

and p′(q′)−1 cannot be one of the p(m)(q(m))−1. This contradiction implies the re-

sult.

The smaller constant

c(ξ) = lim inf{|ξq− p|2 |q| = |(ξ − pq−1)q2|2 : pq−1 ∈ Q} !
√

2/5 (4·4)

was established by Speiser [69] for asymptotic approximation, i.e., for all ξ ∈ H, there

exist infinitely many pairs p,q ∈ H such that

∣

∣ξ − pq−1
∣

∣

2
!

√

2

5

1

|q|22
<

1

|q|22
. (4·5)

A. L. Schmidt [61] showed that
√

2/5 could not be reduced, so that it is analogous

to Hurwitz’s best possible rational approximation constant 1/
√
5 for real numbers [41,

§11.8] and Ford’s 1/
√
3 for complex numbers [29] (see also [72]). Since the approximating

rational quaternions are not required to be in their lowest terms here, the inequality (4·5)

holds for all ξ ∈ H.

4·3. Badly approximable quaternions

In parallel with the classical case, Dirichlet’s theorem for quaternions is best possible

in the sense that the exponent 2 in (4·3) is best possible. Accordingly, a quaternion ξ for

which there exists a constant c > 0 such that

|ξ − pq−1| "
c

|q|22

for all pq−1 is called badly approximable. By (4·5), c !
√

2/5. The set of badly approx-

imable approximable quaternions will be denoted BH.
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5. Ψ-approximable quaternions

The inequality (4·5) establishes that there are infinitely many p, q−1 in H such that

the approximants pq−1 ∈ Q of Euclidean distance are at most |q|−2
2 from the quaternion

ξ ∈ ∆. As in the real case, it is natural to replace the error by a general approximation

function Ψ, i.e., a function Φ : (0,∞) → (0,∞) such that Ψ(x) → 0 as x → ∞. We then

consider the general inequality

|ξ − pq−1|2 < Ψ(|q|2) (5·1)

for ξ ∈ H, or without loss of generality, for ξ in the compact set ∆ with ∆ the H-

fundamental region from (4·1). The Euclidean norm |q|2 chosen for quaternions and the

argument |q|2 of the approximation function Ψ being defined on
√
N = {

√
k : k ∈ N}.

(This minor complication would be avoided by working with the square of the norm

but then the analogy with R would not be so close.) To make life simpler and to make

comparison with other types of Diophantine approximation easier, we will take Ψ to be

a step function satisfying

Ψ(x) = Ψ([x]),

where [x] is the integer part of x.

The main objective of this paper is to determine the metrical structure of the set

W(Ψ) =
{

ξ ∈ H : |ξ − pq−1|2 < Ψ(|q|2) for infinitely many p,q ∈ H
}

and some related sets. Choosing the approximation function Ψ as above is natural and fits

in with a Duffin-Schaeffer conjecture [70, pg. 17] for quaternions that we will not address

here. Nevertheless, the conjecture is still problematic as a more appropriate choice of

argument for Ψ would be the Hurwitz integer q rather than an integer k (see [42]).

Restricting the approximating Hurwitz rationals pq−1 to those with p,q coprime, i.e.,

to the subset

W
′(Ψ) =

{

ξ ∈ H : |ξ − pq−1|2 < Ψ(|q|2) for infinitely many p,q ∈ H, (p,q)r = 1
}

of W(Ψ), raises some minor technicalities and will not be considered.

Henceforth, unless otherwise stated, Ψ : N → (0,∞) will be a (monotonic) decreasing

approximation function.

Theorem 4·1 implies that if Ψ(x) increases, then W(Ψ) = H. Removing monotonicity

altogether turns out to be a difficult and subtle problem, associated with the Duffin-

Schaeffer conjecture. Although we will be concerned mainly with monotonic decreasing

approximation functions, we could, without loss of generality, take Ψ to be simply mono-

tonic in some general statements. The union of translates by Hurwitz integers of the

compact subset

V(Ψ) := W(Ψ) ∩∆ =
{

ξ ∈ ∆ : |ξ − pq−1|2 < Ψ(|q|2) for infinitely many p,q ∈ H
}

,

of W(Ψ) yields

W(Ψ) =
⋃

p∈H

(V(Ψ) + p). (5·2)

Thus the measure of W(Ψ) can be obtained from that of V(Ψ). The same holds for the

set V′(Ψ) := W′(Ψ) ∩∆.
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5·1. Resonant points, resonant sets and near-resonant sets

Diophantine equations and approximation can be associated with the physical phe-

nomenon of resonance and for this reason the rationals p/q are referred to as resonant

points in R (the terminology is drawn from mechanics, see for example [2, §18]). From

this point of view, the Hurwitz rationals pq−1 ∈ Q are resonant points in H. In view

of (5·2), there is no loss of generality in considering quaternions restricted to ∆. For each

non-zero q ∈ H, the lattice Rq of Hurwitz rationals or resonant points pq−1 in ∆ given

by

Rq =
{

pq−1 : p ∈ H
}

∩∆

is useful in calculations. This resonant set is an analogue in H of the set of equally spaced

points {p/q : 0 ! p ! q} in [0, 1].

For each q, the number #Rq of Hurwitz rationals pq−1 in ∆ is the number of p in

q∆, i.e.,

#Rq =
∑

p∈H : pq−1∈∆

1 = |q|42 +O(|q|32) & |q|42. (5·3)

The set R := {Rq : q ∈ H \ {0}} = Q ∩∆ consists of the Hurwitz rationals Q in ∆.

Let B0 := B(ξ0; r) = {ξ ∈ H : |ξ − ξ0|2 < r} be the quaternionic ball centred at ξ0
with radius r and 4-volume |B0| = π2r4/2 & r4 (2·3). The number of Hurwitz integers p

in N ∆ is N4 + O(N3). Thus by volume considerations, the number of resonant points

pq−1 with |p|2 < |q|2 satisfies

∑

p∈H : |p|2<|q|2

1 = 2
π2

2
|q|42 +O(|q|32) = π2|q|42 +O(|q|32) & |q|42.

The number of resonant points pq−1 with p,q coprime could be considered by using the

quaternionic analogue of Euler’s φ function but this raises some complicated technicalities

and will not be pursued here.

For each non-zero q ∈ H, let

B(Rq; ε) =
⋃

p∈H

B(pq−1, ε) ∩∆ =
{

ξ ∈ ∆ :
∣

∣ξ − pq−1
∣

∣ < ε for some p ∈ H
}

be the set of balls B(pq−1, ε) in ∆. The points in B(Rq, ε) are within ε of a resonant

point and so will be called near-resonant points. The centres pq−1 lie in Rq and the

number of such balls is & |q|4. Clearly B(Rq, ε) is a finite lattice or array of quaternionic

balls B(pq−1, ε) ∩∆. By (2·3) and (5·3), we have |B(pq−1, ε)| 1 ε4 and, provided ε is

small enough, the near-resonant set B(Rq, ε) has Lebesgue measure

|B(Rq, ε)| & |q|42 ε
4. (5·4)

5·2. The structure of V(Ψ)

It is readily verified that the set V(Ψ) ⊂ ∆ can be expressed in the form of a ‘limsup

set’ involving unions of near-resonant sets as follows:

V(Ψ) =

∞
⋂

N=1

∞
⋃

n=N

⋃

[|q|2]=n

B(Rq,Ψ(|q|2)) =

∞
⋂

N=1

⋃

|q|2!N

B(Rq,Ψ(|q|2))

:= lim sup
|q|2→∞

B(Rq,Ψ(|q|2)). (5·5)
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Similarly

W(Ψ) =
∞
⋂

N=1

⋃

|q|2!N

⋃

p∈H

B(pq−1,Ψ(|q|2)) = lim sup
|q|2→∞

⋃

p∈H

B(pq−1,Ψ(|q|2)). (5·6)

It follows that V(Ψ) has a natural cover

CN (V(Ψ)) = {B(Rq,Ψ(|q|2)) : |q|2 " N} (5·7)

for each N = 1, 2, . . . . By (5·4), the Lebesgue measure of B(Rq,Ψ(|q|2)) satisfies

|B(Rq,Ψ(|q|2))| & |q|42Ψ(|q|2)
4.

5·3. Approximation involving a power law

In the special case that Ψ(x) := x−v, (v > 0), we write V(Ψ) := Vv and W(Ψ) := Wv.

When v = 2, it follows from their definitions ((5·5), (5·6)) and from (4·5) that

V2 = lim sup
|q|2→∞

B(Rq, |q|
−2
2 ) = ∆ and W2 = lim sup

|q|2→∞

⋃

p∈H

B(pq−1, |q|−2
2 ) = H. (5·8)

It is evident that for v′ " v, Wv′ ⊆ Wv and Vv′ ⊆ Vv. For v > 2, Wv will be called

the set of very well approximable quaternions. Analogous definitions can be made for Rn

and other spaces.

6. Metrical Diophantine approximation in H: the quaternionic Four Peaks

In order to provide a convenient comparison with the real case, the analogous results

for quaternions are now set out in the same order as in §3·2.

The First Peak: Khintchine’s theorem for H. As in the real case, the quaternionic Khint-

chine’s theorem relates the Lebesgue measure of the set W(Ψ) of Ψ-approximable quater-

nions to the convergence or divergence of a certain ‘volume’ sum while the analogue for

Jarńık’s extension of Khintchine’s theorem does the same for Hausdorff f -measure. The

quaternionic version of Khintchine’s theorem is now stated.

Theorem 6·1. Let Ψ : N → (0,∞). Then the sets

W(Ψ) and V(Ψ) are

{

null when
∑∞

m=1 Ψ(m)4 m7 < ∞,

full when Ψ is decreasing and
∑∞

m=1 Ψ(m)4 m7 = ∞.

Note that when V(Ψ) has full Lebesgue measure, |V(Ψ)| = |∆| = 1/2. Again, it is evident

that the value of the critical ‘volume’ or ‘measure’ sum
∞
∑

m=1

Ψ(m)4m7 (6·1)

determines the Lebesgue measure of W(Ψ) and V(Ψ). Similar critical sums are associated

with Hausdorff measures.

The Second Peak: Jarńık’s Hausdorff measure theorem for H.

Theorem 6·2. Let f be a dimension function with f(x)/x4 decreasing and f(x)/x4 →
∞ as x → 0. Then

H
f (W(Ψ)) = H

f (V(Ψ)) =

{

0 when
∑∞

m=1 m
7f(Ψ(m)) < ∞,

∞ when Ψ is decreasing and
∑∞

m=1 m
7f(Ψ(m)) = ∞.
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The sum
∞
∑

m=1

m7f(Ψ(m)) (6·2)

is the critical sum for Hausdorff f -measure. This f -measure version of Theorem 6·1 does

not hold for Lebesgue measure but the two theorems can be combined into a single

quaternionic ‘Khintchine-Jarńık’ result (see [10, §2.3]).

Theorem 6·3. Let f be a dimension function with f(x)/x4 decreasing. Then

H
f (V(Ψ)) =

{

0 when
∑∞

m=1 m
7f(Ψ(m)) < ∞,

H f (∆) when Ψ is decreasing and
∑∞

m=1 m
7f(Ψ(m)) = ∞.

The Mass Transference Principle (see §9·1 below) can also be used to deduce this theorem

from Theorem 6·1. Specialising Theorem 6·2 to Hausdorff s-measure, where f(x) = xs,

gives

Theorem 6·4. Suppose 0 ! s < 4. Then

H
s(W(Ψ)) = H

s(V(Ψ)) =

{

0, when
∑∞

m=1 m
7
Ψ(m)s < ∞,

∞, when Ψ is decreasing and
∑∞

m=1 m
7
Ψ(m)s = ∞.

Specialising further to the Hausdorff s-measure for a power law approximation function,

i.e., to Ψ(m) = m−v, where v > 0, gives

Theorem 6·5. Suppose v > 2. Then

H
s(Wv) = H

s(Vv) =

{

0 when s > 8/v,

∞ when s ! 8/v.

The Third Peak: the Jarńık-Besicovitch theorem for H. The Hausdorff dimension of Wv

is the point of discontiunuity of the Hausdorff measure H s(Wv) and so the quaternionic

version of the Jarńık-Besicovitch theorem follows by definition from the above result.

Theorem 6·6. Let v " 0. Then the Hausdorff dimension of Wv is given by

dimHWv = dimHVv =

⎧

⎨

⎩

4 when v ! 2,
8

v
when v > 2.

Note that H s(Wv) = ∞ when s = dimHWv = 8/v. A proof of this result will also

be given in §9·2 below, using the Mass Transference Principle (see §9·1 below) and the

quaternionic Dirichlet theorem (Theorem 4·1).

The Fourth Peak: Jarńık’s theorem for BH. The definition of BH, the set of badly ap-

proximable quaternions, is given in §4·3 above.

Theorem 6·7. The set BH is null with full Hausdorff dimension, i.e., |BH| = 0 and

dimH(BH) = 4.

7. Ubiquitous systems

As has been pointed out in §4, the metrical structure of lim sup sets which arise in

number theory and elsewhere can be analysed very effectively using ubiquity. A ubiqui-

tous system (or more simply ubiquity) is a more quantitative form of density underlying
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the classical Lebesgue and the more delicate Hausdorff measure results. Originally in-

troduced to investigate lower bounds for Hausdorff dimension [25], ubiquitous systems

have been extended considerably and now provide a way of determining the Lebesgue

and Hausdorff measures of a very general class of ‘limsup’ sets [8, Theorems 1 & 2]. In-

deed using the Mass Transference Principle, these two measures have been shown to be

equivalent for this class of limsup sets, rather than Hausdorff measure being a refinement

of Lebesgue [10].

7·1. A metric space setting

The definition of ubiquity given in [8] applies to a compact metric space (Ω, d) with

a non-atomic finite measure µ (which includes n-dimensional Lebesgue measure). The

resonant sets play the role of the approximants, which in the real line consist of the

rationals. We will give a simplified version appropriate for Diophantine approximation in

H. The deep arguments in [8, 51] are based on dyadic dissection suited to the Cantor-

type constructions used in the proof. Thus the important ubiquity sum (9·7) is 2-adic,

unlike the critical sum (6·1) which emerges from simpler standard estimates.

We start with a family R of resonant sets Rj in Ω, where j lies in a countable discrete

index set J with each j ∈ J having a weight ⌊j⌋. The number of j satisfying ⌊j⌋ ! N

is assumed to be finite for each N ∈ N. In H we take j = q , the index set J = {q ∈
H : q ̸= 0}, and the weight ⌊j⌋ = ⌊q⌋ := |q|2. The resonant set Rj = Rq corresponds to

the lattice Rq of resonant points pq−1 ∈ H or in H ∩∆. In the general formulation, the

resonant sets Rj can be lines, planes etc.

Let B0 := B(ξ0, r) = {ξ ∈ Ω : d(ξ, ξ0) < r}, for r > 0, be any fixed ball in Ω and let R

be the family {Rj : j ∈ J} of resonant points in Ω. Further, let Ψ be an approximation

function, i.e., Ψ : (0,∞) → (0,∞) converges to 0 at ∞. Let ρ : N → (0,∞) be a function

with ρ(m) = o(1). If for a given B0,

µ(B0 ∩
⋃

1"⌊j⌋"N

B(Rj , ρ(N))) 4 µ(B0), (7·1)

where the implied constant in (7·1) is independent of B0, then the family R = {Rj : j ∈
J} is said to be a (strongly) ubiquitous system with respect to the function ρ and the

weight ⌊ · ⌋. The idea here is that the family of near-resonant balls B(Rj , ρ(N)) meets the

arbitrary ball B0 in Ω substantially and covers it at least partially in measure. This can

be regarded as a fairly general Dirichlet-type condition in which a ‘significant’ proportion

of points is close to some resonant point Rj . It is evident that we want ρ as small as

possible. Note that in [25], ρ was required to be decreasing; this condition is no longer

required in the improved formulation in [8]. In applications, ρ can often be chosen to be

essentially a simple function, such as a power. In particular, for quaternionic Diophantine

approximation, the choice of exponent is 2 (see §9·4). This is the same exponent as the

ubiquity function for rational approximation on the real line R and is quite different

from that for simultaneous rational approximation (see §9·8). The reason goes back to

the similarity between the Dirichlet’s theorems for the two spaces.

The set of points in Ω which are Ψ-approximable by the family R = {Rj : j ∈ J} with

respect to the weight ⌊·⌋ is defined by

Λ(Ψ) := {ξ ∈ Ω : ξ ∈ B(Rj ,Ψ(⌊j⌋)) for infinitely many j ∈ J}. (7·2)

If the family R is a ubiquitous system with respect to a suitable ρ and weight, then the
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metrical structure of Λ(Ψ) can be determined. Note that the set on the right hand side of

(7·2) can be rewritten as a ‘limsup’ set (and hence falls into the ambit of the framework

in [8]) as follows,

Λ(Ψ) =

∞
⋂

N=1

∞
⋃

m=N

⋃

⌊j⌋]=m

B(Rj ,Ψ(⌊j⌋)) =
⋃

⌊j⌋!N

B(Rj ,Ψ(⌊j⌋)) = lim sup
⌊j⌋→∞

B(Rj ,Ψ(⌊j⌋)).

Thus for each N = 1, 2, . . . , we have

Λ(Ψ) ⊆
⋃

⌊j⌋!N

B(Rj ,Ψ(⌊j⌋)) = CN ,

where CN = {B(Rj ,Ψ(⌊j⌋)) : ⌊j⌋ " N} is the natural cover for Λ(Ψ); the cover for V(Ψ)

given in (5·7) is a special case.

8. The proof of Khintchine’s theorem for H when the critical sum converges

The straightforward proof follows from (5·5) and the form of the natural cover CN (V(Ψ))

for V(Ψ) (5·7). It follows by (5·4) that for each N = 1, 2, . . . , the Lebesgue measure of

V(Ψ) satisfies

|V(Ψ)| !

∞
∑

m=N

∑

m"|q|2<m+1

|B(Rq,Ψ(|q|2))| 1
∞
∑

m=N

∑

m"|q|2<m+1

|q|42 Ψ(|q|2)
4 (8·1)

By [41, Th. 386], the number r4(m) of Hurwitz integers q with |q|22 = m is given by

r4(m) = 8
∑

d|m, 4 ̸ | d

d

but for our purposes a simpler estimate suffices. By volume considerations,

∑

|q|2<m+1

1 =
π2

2
2m4 +O(m3) ∼ π2m4,

whence for each m ∈ N,
∑

m"|q|2<m+1

1 =
∑

|q|2<m+1

1−
∑

|q|2<m

1 1 m3,

where in the sum on the left hand side, |q|2 ranges over the 2m+ 1 values

m,
√

m2 + 1, . . . ,
√

(m+ 1)2 − 1.

But Ψ(|q|2) := Ψ([|q|2]) = Ψ(m) when m ! |q|2 < m+ 1, so that

|V(Ψ)| 1
∞
∑

m=N

Ψ(m)4(m+ 1)4
∑

m"|q|2<m+1

1 1
∞
∑

m=N

Ψ(m)4m7. (8·2)

Thus for each N = 1, 2, . . . , the measure of V(Ψ) satisfies

|V(Ψ)| 1
∞
∑

m=N

Ψ(m)4m7.

Since N is arbitrary, if the critical sum (6·1) converges then the tail
∑∞

m=N Ψ(m)4m7

converges to 0 and V(Ψ) is a null set, i.e.,

|V(Ψ)| = |W(Ψ)| = 0.



Metrical Diophantine approximation for quaternions 17

This is the convergence part of Theorem 6·1, the quaternionic analogue of Khintchine’s

theorem. Note that since V ′(Ψ) ⊂ V(Ψ), the convergence of the critical sum implies that

|V′(Ψ)| = |W ′(Ψ)| = 0 also.

9. The proof when the critical sum diverges

The case of divergence is much more difficult. The ideas involved, particularly ubiquity

(see §7) and the remarkable Mass Transference Principle (see §9·1), require some further

definitions and notation. First we explain the principle in a simple setting to clarify the

ideas and give an application to indicate its power. Then we explain ubiquity.

9·1. The Mass Transference Principle

The Mass Transference Principle, introduced by Beresnevich and Velani in [9], is a

remarkable technique which allows Lebesgue measure results for lim sup sets to be trans-

ferred to Hausdorff measures. A version adapted to our purposes is now given. Let n be

a non-negative integer and let f be a dimension function (see §2) such that x−nf(x) is

monotonic. For any ball B = B(c, r) centred at c and radius r, let

Bf := B(c, f(r)1/n).

When for s > 0, f(x) = x−s, write Bf = Bs, so that Bs(c, r) = B(c, rs/n); note that

Bn = B. Similarly for a family B = {B(ci, ri)} of balls in Ω, let

B
f := {B(ci, f(ri)

1/n)},

so that Bn = B. Let {Bi = ∪jB(cij , ri) : i ∈ N} be a family of finite unions of balls

B(cij , ri) in Rn with the same radius ri → 0 as i → ∞. Suppose that for any ball

B0 ∈ Rn,

|(B0 ∩ lim sup
i→∞

B
f
i )| = |B0|.

Then the Mass Transference Principle asserts that

H
f (B0 ∩ lim sup

i→∞
Bi) = H

f (B0).

Thus the appropriate version of Khintchine’s theorem would imply Jarńık’s f -measure

theorem. This has not been proved for quaternions but (4·4) can be used with the mass

transference principle to prove Theorem 6·6, the quaternionic analogue of the Jarńık-

Besicovitch theorem.

9·2. An application to Vv : the quaternionic Jarńık-Besicovitch theorem

In §9·1, take n = 4, f(x) = xs, s < 4 and Ψ(x) = x−v, v > 0, ci = pq−1 (recall

that p,q are not necessarily coprime) and ri = Ψ(|q2|). Let the set Bq := B(Rq, |q|
−v
2 )

correspond to the set Bi in §9·1 and B
8/v
q = B(Rq, |q|

−2
2 ) correspond to B

8/v
i .

Suppose v ! 2. Then by (5·8),

Vv = lim sup
|q2|→∞

B(Rq, |q|
−v
2 ) = ∆,

whence a fortiori, |Vv| = |∆| = 1/2 and dimVv = 4.

Suppose v > 2. By the definition of B
8/v
q and by (4·5),

lim sup
|q|

2
→∞

B
8/v
q

= lim sup
|q|

2
→∞

B(Rq, |q|
−2
2 ) = ∆,
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whence
∣

∣

∣

∣

∣

B0 ∩ lim sup
|q|

2
→∞

B
8/v
q

∣

∣

∣

∣

∣

=
∣

∣B0 ∩∆
∣

∣ = |B0| .

It follows by the Mass Transference Principle that

H
8/v

(

B0 ∩ lim sup
|q|

2
→∞

Bq

)

= H
8/v (B0 ∩ Vv) = H

8/v(B0) = ∞

since B0 is open and 8/v < 4. But B0 ∩ Vv ⊂ Vv, whence for s ! 8/v,

H
s(Vv) = H

8/v(Vv) = ∞

and from the definition of Hausdorff dimension, dimHVv " 8/v.

Next suppose s > 8/v. By (5·7), for each N = 1, 2, . . . , the family of balls

{B(pq−1, |q|−2
2 ) : |p|2 ! |q|2, |q|2 " N}

is a cover for Vv. Hence by (2·1), for each N ∈ N,

H
s(Vv) !

∞
∑

m=N

∑

m"|q|2<m+1

∑

p : p∈∆q

(

diamB(pq−1, |q|−v
2 )

)s

1
∞
∑

m=N

∑

m"|q|2<m+1

∑

p : p∈∆q

|q|−sv
2 1

∞
∑

m=N

∑

m"|q|2<m+1

|q|42|q|
−sv
2

1
∞
∑

m=N

m4−sv
∑

m"|q|2<m+1

1 1
∞
∑

m=N

m7−vs → 0 as N → ∞,

since s > 8/v. Thus H s(Vv) = 0 for s > 8/v and dimHVv ! 8/v. Combining the values

of H s(Vv) gives for v > 2,

H
s(Wv) = H

s(Vv) =

{

∞ when s ! 8
v ,

0 when s > 8
v ,

which is Theorem 6·2, which in turn implies Theorem 6·6, the quaternionic Jarńık-Besi-

covitch theorem. Note that the Hausdorff s-measure is infinite at s = dimHVv.

Since Ψ is decreasing and f increasing, the composition f ◦Ψ is decreasing. Thus Khint-

chine’s Theorem for quaternions (Theorem 6·1) implies that when the sum
∑

m f(Ψ(m))m7

diverges,

|B0 ∩ (lim sup
|q|2→∞

B(Rq, f(Ψ(|q|2))))| = |B0|.

Hence by the Mass Transfer Principle,

H
f (B0 ∩ V(Ψ)) = H

f (∆),

so that divergent case of Khintchine’s theorem implies that of Jarńık’s f -measure theo-

rem. However, this case of Khintchine’s theorem needs to be proved and more ideas are

needed to deal with the general decreasing approximation function Ψ.

9·3. The quaternionic Khintchine theorem in the divergent case

The objective here is to complete the determination of the Lebesgue and Hausdorff

measures of Ψ-approximable quaternions when the critical sums diverge. We recall that



Metrical Diophantine approximation for quaternions 19

the quaternions H form a 4-dimensional metric space which naturally carries Lebesgue

measure. It is convenient to work with the compact set [0, 1]3 × [0, 1/2] = ∆, given

in §5·1 above, for Ω and with the set of Ψ-approximable quaternions in ∆, i.e., with

V(Ψ) = W(Ψ) ∩∆ instead of with W(Ψ).

We begin by stating a simplified version of the Beresnevich-Velani theorem [10, Th. 3]

for the ubiquitous systems described in §7, and then deduce the analogue of Khintchine’s

theorem for H in the divergence case. The Beresnevich-Velani theorem holds for a com-

pact metric space with a measure comparable to Lebesgue measure. The theorem can

be regarded as a general Khintchine-Jarńık result and illustrates the power of ubiquity

and mass transfer (see §9·1 above). Note that in addition to converging to 0 at infinity,

the ubiquity function ρ must also satisfy the technical condition that for some positive

constant c < 1,

ρ(2r+1) ! cρ(2r) (9·1)

for r sufficiently large. Such functions will be called dyadically decaying, a condition

which is satisfied in the applications considered here. This condition is weaker than the

requirement in earlier work (see for example [25]) that ρ be decreasing. Note that the

definition in [8] is more general: ρ is ‘u-regular’, a condition which involves a sequence

(un : n ∈ N). The very general Theorem 2 in [8] could also be used to first prove the ana-

logue of Khintchine’s theorem and then the analogue of the Khintchine-Jarńık theorem

deduced via mass transference §9·1. The dyadic decay condition can be imposed on Ψ

instead.

Theorem 9·1 (Beresnevich-Velani). Let (Ω, d) be a compact metric space equipped

with a Borel measure µ which for some δ > 0 satisfies

µ(B(ξ, r)) & rδ (9·2)

for any sufficiently small ball B(ξ, r) in Ω. Suppose that the family R of resonant sets in

Ω is a strongly µ-ubiquitous system relative to the dyadically decaying function ρ and that

Ψ is a decreasing approximation function. Let f be a dimension function with f(x)/xδ

monotonic. If for some κ > 1, the ubiquity sum

∞
∑

m=1

f(Ψ(κm))

ρ(κm)δ
(9·3)

diverges, then the Hausdorff f -measure H f (Λ(Ψ)) is given by

H
f (Λ(Ψ)) = H

f (Ω).

The hypotheses of Theorem 9·1 imply that µ is comparable to the δ-dimensional Haus-

dorff measure H δ and that dimΩ = δ. Note that in the Beresnevich-Velani theorem, the

sum (9·3) is ‘κ-adic’, whereas we have been working with ‘standard’ sums such as (6·1).

By the choice of ρ we will make and by Lemmas 9·1 and 9·2, the critical sum (6·1) will

be comparable to the ubiquity sum (9·3).

9·4. Perturbing divergent sums

The following lemma, drawn from [16], is needed to construct the ubiquity function ρ.

Lemma 9·1. Let F : N → (0,∞) satisfy
∑∞

m=1 F (m) = ∞. Then there exists a de-

creasing function η : N → [0, 1] with η(m) = o(1), such that for any α > 0, the sequence
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mη(m)α → ∞ as m → ∞, η(2r) ! 2η(2r+1) and such that
∑∞

m=1 F (m) η(m) = ∞,

r = 1, 2, . . . .

Proof. Since
∑∞

m=1 F (m) = ∞, we can choose a strictly increasing sequence (mi : i =

1, 2, . . . ) with m1 = 1 such that mi+1 " 2mi " · · · " 2i and
∑

mi"m<mi+1

F (m) > 1.

Define η : N → [0, 1] by

η(m) = i−1, m ∈ [mi,mi+1). (9·4)

Evidently η is decreasing, o(1) and

m η(m)α "
mi

iα
" 2i i−α → ∞

as i and hence m → ∞. In addition, if η(2r) = 1/i, then by the choice of the intervals

[m1,mi+1), η(2
r+1) = 1/i or 1/(i+ 1), whence η(2r+1) ! η(2r) ! 2η(2r+1).

Moreover
∞
∑

m=1

F (m)η(m) =

∞
∑

i=1

∑

mi"m<mi+1

η(m)F (m) =

∞
∑

i=1

i−1
∑

mi"m<mi+1

F (m) >

∞
∑

i=1

i−1 = ∞.

Thus F can be replaced by a smaller function Fη without affecting the divergence of the

sum. Clearly η depends on F .

9·5. The functions η and ρ

Let η = η(F ) be the function in Lemma 9·1 corresponding to F (m) = f(Ψ(m))m7;

recall that in the divergent case
∑

m f(Ψ(m))m7 = ∞ by hypothesis. Define the function

ρ : N → (0, 1] by

ρ(m) :=
2

η(m)1/4m2
. (9·5)

Then the function ρ is the product of an inverse square and the slowly increasing function

1/η. It turns out that η decreases sufficiently slowly to ensure that ρ(m′) ! 21/4ρ(m) for

m′ " m (so that ρ is decreasing modulo 21/4).

Lemma 9·2. The function ρ satisfies
(i) ρ(m) = o(1),

(ii) ρ(m)−1 = o(m2),

(iii) ρ(m′) 1 ρ(m) for all m′ " m,

(iv) ρ decays dyadically.

Proof.
(i) By Lemma 9·1, η(m)1/4m → ∞ as m → ∞, so ρ(m) := 2(η(m)1/4 m2)−1 → 0.

(ii) Since ρ(m) := 2(η(m)1/4 m2)−1, we have that ρ(m)−1m−2 = η(m)1/4/2 → 0 as

m → ∞.

(iii) Suppose m ! m′. We consider cases; recall i ∈ N and that mi+1 " 2mi. When

m ! m′ and m,m′ ∈ [mi,mi+1),

ρ(m′) =
2

η(m′)1/4m′2
=

2i1/4

m′2
!

2i1/4

m2
= ρ(m).
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If m ∈ [mi,mi+1) and m′ ∈ [mi+1,mi+2), then

ρ(m′) =
2(i+ 1)1/4

m′2
<

2i1/4

m2

(

i+ 1

i

)1/4

! 21/4ρ(m),

since (1 + i)/i ! 2. In the remaining case m ∈ [mi,mi+1) and m′ ∈ [mi′ ,mi′+1),

where i′ = i+ j " i+ 2, and m and m′ satisfy

m′
" mi+j " 2j−1mi+1 > 2j−1m.

It follows that

ρ(m′) =
2i′

1/4

m′2
!

2(i+ j)1/4

22j−2 m2
=

2i1/4

m2
2−2j+2

(

i+ j

i

)1/4

<
31/4

4
ρ(m) < ρ(m)

for i " 1, j " 2.

(iv) To establish dyadic decay, first suppose 2r, 2r+1 ∈ [mi,mi+1). Then

ρ(2r+1) =
2i1/4

22(r+1)
=

2

4

i1/4

22r
=

1

4
ρ(2r).

Next suppose 2r ∈ [mi,mi+1) and 2r+1 /∈ [mi,mi+1). Then since mi+2 " 2mi+1,

it follows that 2r+1 ∈ [mi+1,mi+2) and

ρ(2r+1) =
2(i+ 1)1/4

22(r+1)
=

2

4

i1/4

22r

(

i+ 1

i

)1/4

.

But 1 < (1 + i)/i ! 2 for i ∈ N, whence for each r ∈ N,

1

4
ρ(2r) < ρ(2r+1) !

21/4

4
ρ(2r) < ρ(2r).

Thus ρ decays dyadically (see (9·1)).

The main part of the proof is to use the quaternionic Dirichlet Theorem (Theorem 4·1)

to establish that the Hurwitz rationals Q form a ubiquitous system.

Lemma 9·3. The Hurwitz rationals Q in ∆ are ubiquitous with respect to the function

ρ and the weight given by ⌊q⌋ = |q|2.

Proof. By the uniform Dirichlet theorem for H (Theorem 4·1), any point ξ in B0 in ∆

can be approximated with an error 2/(|q|2N) for some q with |q|2 ! N . Thus for each

N ∈ N,

B0 ⊆
⋃

1"|q|2"N

B

(

Rq;
2

|q|2N

)

and so

B0 = B0 ∩

⎛

⎝

⋃

1"|q|2"N

B

(

Rq;
2

|q|2N

)

⎞

⎠ ,

where we recall Rq = {pq−1 ∈ ∆}.

To remove the dependence of the radius on the denominator q, we select ‘large’ de-

nominators q with ϖ(N) ! |q|2 ! N, where ϖ : N → (0,∞) is given by

ϖ(m) = η(m)1/4m, (9·6)
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and where, by Lemma 9·1, ϖ(m) → ∞ as m → ∞. We remove Hurwitz rationals with

‘small’ denominators as follows. Let E(N) be the set of ξ ∈ B0 with ‘small’ denominator

approximants pq−1, 1 ! |q|2 < ϖ(N) with |ξ − pq−1| < 2(|q|2N)−1. Then B0 =

E(N) ∪ (B0 \ E(N)) and

E(N) ⊆
⋃

1"|q|2<ϖ(N)

B

(

Rq,
2

N |q|2

)

.

By (5·4) and other estimates in §5·1, the Lebesgue measure of E(N) satisfies

|E(N)| !

∣

∣

∣

∣

∣

∣

⋃

1"|q|2<ϖ(N)

B

(

Rq,
2

|q|2N

)

∣

∣

∣

∣

∣

∣

!
∑

1"|q|2<ϖ(N)

∣

∣

∣

∣

B

(

Rq,
2

|q|2N

)

)

∣

∣

∣

∣

!
∑

1"|q|2<ϖ(N)

24

|q|42N
4
|q|42 =

24

N4

∑

1"|q|2<ϖ(N)

1

1 N−4
∑

1"m<ϖ(N)

m3 1 N−4ϖ(N)4.

Since ϖ(N) = η(N)1/4N , it follows that ϖ(N)/N = o(1). Thus |E(N)| → 0 and |B0 \

E(N)| → |B0| as N → ∞. But by definition and by (9·6), for each ξ ∈ B0 \E(N), there

exist p,q ∈ H with ϖ(N) ! |q|2 ! N such that

|ξ − pq−1| <
2

|q|2N
!

2

ϖ(N)N
=

2

η(N)1/4N2
= ρ(N)

by (9·5) and (9·6). Moreover by Lemma 9·2, ρ is dyadically decaying. Now

B0 \ E(N) ⊆ B0 ∩

⎛

⎝

⋃

ϖ(N)"|q|2"N

B(Rq, ρ(N))

⎞

⎠ ⊆ B0 ∩

⎛

⎝

⋃

1≤|q|2≤N

B(Rq, ρ(N))

⎞

⎠

and it follows that for N sufficiently large,
∣

∣

∣

∣

∣

∣

B0 ∩
⋃

1≤|q|2≤N

B(Rq, ρ(N))

∣

∣

∣

∣

∣

∣

" |B0 \ E(N)| "
1

2
|B0| (4 r4),

whence by (7·1) the Hurwitz rationals Q are ubiquitous with respect to the function ρ

given by (9·5) and the weight | · |2.

Note that the Hausdorff dimension of V(Ψ) in terms of the lower order of Ψ can be

obtained with less difficulty from this ubiquity result using the methods in [11, 25]. To

determine the measure requires the extra power of the Beresnevich-Velani Theorem.

We now state the specialisation of Theorem 9·1 to H and to Lebesgue and Hausdorff

measure. This theorem unites the divergent cases of the quaternionic Khintchine and

Jarńık theorems.

Theorem 9·2. Let Ω = ∆ ⊂ H and J = H \ {0}, so that δ = 4, R = Q ∩∆, j = q,

Rj = Rq and Λ(Ψ) = V(Ψ). Let f be a dimension function with f(x)/x4 increasing and

let ρ be given by (9·5), so that Q ∩ ∆ is a ubiquitous system with respect to the weight

⌊q⌋ = |q|2 and ρ. Suppose the ubiquity sum

∞
∑

r=1

f(Ψ(2r))

ρ(2r)4
(9·7)
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diverges. If f(x) = x4, then

H
4(V(Ψ)) = H

4(∆) = 25π−2 (9·8)

and if f(x)/x4 → ∞ as x → 0, then

H
f (V(Ψ)) = H

f (∆) = ∞.

9·6. The proof of Theorem 6·1 (Khintchine’s theorem for H)

The proof when the critical sum (6·1) converges is given in §8. In the case of divergence,

divergent dyadic and standard sums need to be compared.

Lemma 9·4. Let Ψ be a decreasing approximation function and let f be a dimension

function. If the sum (6·1) diverges, then the ubiquity sum (9·7) also diverges.

Proof. Take F (m) = f(Ψ(m))m7 in Lemma 9·1. Then by (9·5), by the choice of η in

equation (9·4) and by Lemma 9·1, the divergence of the sum
∑∞

m=1 f(Ψ(m))m7 implies

that the sum
∞
∑

m=1

f(Ψ(m))m7η(m) =
∞
∑

m=1

f(Ψ(m))m7 1

m8 ρ(m)4
=

∞
∑

m=1

1

m

f(Ψ(m))

ρ(m)4
(9·9)

also diverges. Now since f(Ψ(m)) decreases as m increases and since ρ(m′) 1 ρ(m) when

m′ " m (Lemma 9·2),

∞
∑

m=1

1

m

f(Ψ(m))

ρ(m)4
=

∞
∑

r=0

∑

2r≤m<2r+1

1

m

f(Ψ(m))

ρ(m)4

1
∞
∑

r=0

2−rf(Ψ(2r))ρ(2r+1)−4
∑

2r≤m<2r+1

1

1
∞
∑

r=0

f(Ψ(2r))ρ(2r)−4

and the result follows.

Thus the divergence of the critical sum
∑∞

m=1 f(Ψ(m))m7 (6·1) implies that the ubiq-

uity sum (9·7) also diverges. When the dimension function f is given by f(x) = x4, it

follows from (9·8) and (2·2) that |V(Ψ)| = |∆| = 1/2.

9·7. Proofs of Jarńık’s Hausdorff measure theorem and the Jarńık-Besicovitch Theorem

for H

Theorem 9·2 and Lemma 9·4 can also be applied when f(x)/x4 → ∞ as x → 0.

Alternatively the Mass Transference Principle could be invoked (see §9·2).

Jarńık’s Hausdorff measure theorem (Theorem 6·2). Recall from (6·2) the definition of

the critical sum:
∞
∑

m=1

m7f(Ψ(m)).

The case when the critical sum converges: By (5·7), for each N = 1, 2, . . . , the family of

balls

{B(pq−1,Ψ(|q|2)) : |p|2 ≤ |q|2, |q|2 " N}
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is a cover for V(Ψ). Hence by (2·1), for each N = 1, 2, . . . , the Hausdorff f measure of

V(Ψ) satisfies

H
f (V(Ψ)) !

∞
∑

m=N

∑

m"|q|2<m+1

∑

|p|2≤|q|2

f(diamB(pq−1,Ψ(|q|2)))

1
∞
∑

m=N

∑

m"|q|2<m+1

|q|42 f(2Ψ(|q|2)) 1
∞
∑

m=N

m4 f(2Ψ(m))
∑

m"|q|2<m+1

1

1
∞
∑

m=N

m7 f(2Ψ(m)).

But by hypothesis, f(x)/x4 decreases as x increases and so

H
f (V(Ψ)) 1

∞
∑

m=N

m7 f(2Ψ(m)) (2Ψ(m))−4 (2Ψ(m))4

1
∞
∑

m=N

m7 f(Ψ(m)) (Ψ(m))−4 24(Ψ(m))4

1
∞
∑

m=N

m7 f(Ψ(m)).

Thus H f (V(Ψ)) = 0 when
∑∞

m=1 m
7 f(V (Ψ)) converges.

The case when the critical sum diverges: Lemma 9·4 implies that the ubiquity sum (9·7)

also diverges. Hence by Theorem 9·2,

H
f (V(Ψ)) = H

f (∆) = ∞

when f(x)/x4 → ∞ as x → 0, which is Theorem 6·2.

Theorem 6·4 and the Jarńık-Besicovitch Theorem (Theorem 6·6). The Hausdorff s-measure

result follows by putting f(x) = xs.

The Hausdorff dimension is the point of discontinuity of H s(Wv); this occurs at s =

8/v.

9·8. Simultaneous Diophantine approximation in R4

The theorems of Dirichlet, Khintchine, Jarńık and Jarńık-Besicovitch on simultaneous

Diophantine approximation in 4-dimensional euclidean space R4 are stated for compari-

son with quaternions. First, Dirichlet’s theorem in R4 [41] is stated.

Theorem 9·3. For each α = (α1,α2,α3,α4) ∈ R4 and N ∈ N, there exists a p =

(p1, p2, p3, p4) in Z4, q ∈ N such that

max
1≤m≤4

{∣

∣

∣

∣

αm − pm
q

∣

∣

∣

∣

}

=

∣

∣

∣

∣

α− p

q

∣

∣

∣

∣

∞

<
1

qN1/4
.

Moreover there are infinitely many p ∈ Z4, q ∈ N such that
∣

∣

∣

∣

α− p

q

∣

∣

∣

∣

∞

<
1

q5/4
.
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In the more general form of approximation, writeW (4)(Ψ) for the set ofΨ-approximable

points in R4, i.e., points α such that
∣

∣

∣

∣

α− p

q

∣

∣

∣

∣

∞

< Ψ(q)

for infinitely many p ∈ Z4 and q ∈ N. Khintchine’s theorem for the set W (4)(Ψ) takes

the form

Theorem 9·4. The Lebesgue measure of W (4)(Ψ) is null or full according as the crit-

ical sum
∞
∑

m=1

m4
Ψ(m)4

converges or diverges.

Gallagher [40] showed that Ψ need not be decreasing in dimensions " 2, and Pollington

& Vaughan established that the Duffin-Schaeffer Conjecture also holds in this case [57].

Jarńık’s Hausdorff f -measure result [8, Theorem DV, pg. 66] is now stated for W (4)(Ψ).

Theorem 9·5 (Jarńık). Let f be a dimension function such that f(x)/x4 decreases as

r increases and f(x)/x4 → ∞ as x → 0. Then

H
f (W (4)(Ψ)) =

{

0 when
∑∞

r=1 r
4f(Ψ(r)) < ∞

∞ when
∑∞

r=1 r
4f(Ψ(r)) = ∞ and Ψ decreasing.

As in the case for R, the two results can be combined into a single ‘Khintchine-Jarńık’

theorem.

Let Wv denote the set of Ψ-approximable points in R4 when Ψ(x) = x−v. The Jarńık-

Besicovitch theorem on simultaneous Diophantine approximation in R4 follows by taking

the dimension function f(x) = x−s, s > 0.

Corollary 9·6.

dimH(Wv) =

{

5
v when v ≤ 5/4

4 when v ≥ 5/4.

It is evident that exponents in the sums and the Hausdorff dimension are quite different.

Note that the the identitity pq−1 = pq/n, where n = q21 + · · · + q24 , gives a natural

embedding of W(Ψ) into W (4)(Ψ◦ )
√

(recall Ψ(x) = Ψ([x])). In particular Wv →֒ W
(4)
v/2.

10. Jarńık’s theorem for badly approximable quaternions

The set BH of badly approximable quaternions is defined analogously to the real case

in §4·3 and are quaternions for which the exponent in Theorem 4·1 cannot be increased.

As with ubiquitous systems in §7, this notion can be placed in a general setting of a

metric space (X, d) with a compact subspace Ω which contains the support of a non-

atomic finite measure µ and a family R = {Rj : j ∈ J} of resonant sets, where J is a

countable discrete index set (see [51]). The Hausdorff dimension of the set BΩ of badly

approximable points in Ω can be determined if the following two conditions on µ and Ψ

hold.

First, for each ball B(ξ, r), the measure µ satisfies

arδ ≤ µ(B(ξ, r)) ≤ brδ,
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where 0 < a ≤ 1 ≤ b. This condition is satisfied by Lebesgue measure and implies that

the Hausdorff dimension of Ω is given by dimH(Ω) = δ.

Secondly, for κ > 1 sufficently large, Ψ satisfies the ‘κ-adic’ decay condition

ℓ(κ) ≤ Ψ(κn)

Ψ(κn+1)
≤ u(κ), n ∈ N,

where ℓ(κ) ≤ u(κ) and ℓ(κ) → ∞ as κ → ∞ (cf (9·2) in Theorem 9·1). It is convenient

to write for each n ∈ N

νn = νn(Ψ,κ) :=

(

Ψ(κn)

Ψ(κn+1)

)δ

.

Recall from §4·3 that a point β ∈ Ω which for some constant c(β) > 0 satisfies

d(ξ, Rj) " c(β)Ψ(⌊j⌋) for all j ∈ J

is called Ψ-badly approximable. The set of Ψ-badly approximable points in X will be

denoted by BX(Ψ). For each n ∈ N, let ξ ∈ Ω and write for convenience

B(n) := B(ξ,Ψ(κn)) = {ξ′ ∈ Ω : d(ξ, ξ′) ≤ Ψ(κn)}

and its scaling by θ ∈ (0,∞) as

θB(n) := B(ξ, θΨ(κn)) = {ξ′ ∈ Ω : d(ξ, ξ′) ≤ θΨ(κn)}.

Apart from some changes in notation, the following is Theorem 1 in [51] and gives

conditions under which the Hausdorff dimension of the set of Ψ-badly approximable

points in Ω can be obtained.

Theorem 10·1. Let (X, d) be a metric space and (Ω, d, µ) a compact subspace of X

with a measure µ. Let the measure µ and the function Ψ satisfy conditions (A) and

(B) respectively. For κ " κ0 > 1, suppose there exists some θ ∈ (0,∞) so that for

n ∈ N and any ball B(n), there exists a collection C(n+1) of disjoint balls 2θB(n+1) =

B(c, 2θΨ(κn+1)) in θB(n), satisfying

#C
(n+1)

" K1νn (10·1)

and

#

⎧

⎪

⎨

⎪

⎩

2θB(n+1) ⊂ θB(n) : min
j∈J,

κ
n−1"⌊j⌋<κ

n

d(c, Rj) ! 2θΨ(κn+1)

⎫

⎪

⎬

⎪

⎭

! K2νn, (10·2)

where K1,K2 are absolute constants, independent of κ and n, with K1 > K2 > 0. Fur-

thermore suppose that dimH(∪j∈JRj) < δ. Then

dimHBΩ(Ψ) = δ.

The general metric space setting is again specialised to H to give the analogue of

Jarńık’s theorem for the Hausdorff measure and dimension of the set BH of badly ap-

proximable quaternions. When X = H and Ω = ∆, the measure µ is 4-dimensional

Lebesgue measure, δ = 4, the resonant set Rj is the point pq−1 ∈ Q and ⌊j⌋ = |q|2. In

view of the exponent 2 in (4·5) being extremal, we can take

Ψ(|q|2) = |q|−2
2 ,
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so that BX(Ψ) = BH. Thus in this case

νn =

(

Ψ(κn)

Ψ(κn+1)

)δ

=

(

κ−2n

κ−2(n+1)

)4

= κ8,

whence νn is independent of n and satisfied (10).

Let

θ = 2−1κ−2

and let the 4-ball B(n) = B(ξ,κ−2n) lie in∆. Then the shrunken ball θB(n) = B(ξ, θκ−2n)

has radius 2−1κ−2(n+1). A collection C(n+1) of closed disjoint balls in θB(n) is constructed.

Divide the ball θB(n) into hypercubes H(n+1) of side length ℓ = 25/4κ−2(n+2). The

number of such hypercubes is at least

1

2

|θB(n)|

ℓ4
=

π2

4
2−4κ−8(n+1) × 2−5 κ8(n+2) =

π2

211
κ8.

Let C(n+1) be the collection of balls 2θB(n+1) of radius κ−2(n+2), centred at the centre c

of a hypercube H(n+1). The number #C(n+1) of such balls satisfies

#C
(n+1)

" 2−11π2 κ8

and we can choose K1 = π2/211 in (10·1).

The distance between two points in the ball θB(n) = B(ξ, θκ−2n) is at most κ−2(n+1).

Consider two distinct Hurwitz rationals pq−1, rs−1, where κn ≤ |q|2, |s|2 < κn+1 and

κ > 1. By Lemma 4·1,

|pq−1 − p′q′−1
| " |q|−1

2 |s|−1
2 > κ−2(n+1),

so that θB(n) contains at most one Hurwitz rational pq−1 with κn ! |q|2 < κn+1. Thus

such a point pq−1 can be in at most one ball 2θB(n+1) ∈ C(n+1). Hence for quaternions,

the inequality (10·2) reduces to

#
{

2θB(n+1) ⊂ θB(n) : pq−1 ∈ 2θB(n+1), κn
! |q|2 < κn+1

}

! 1 <
π2

212
κ8

for κ " 3, so that we can choose K2 = π2/212 < K1. Finally, since the resonant sets pq
−1

are points, dimH({pq
−1}) = 0. It now follows from Theorem 10·1 that dimH(BH) = 4,

i.e., BH ⊂ H has full Hausdorff dimension.

As in the classical case, Theorem 6·1 can be used to show that BH is null. Indeed since

Ψ(m) = m−2, the sum
∑

m∈N
Ψ(m)4m7 =

∑

m∈N
m−1 diverges. Hence the set of β ∈ ∆

satisfying the inequality

|β − pq−1|2 "
1

|q|22

for all but finitely many pq−1, say p(m)(q(m))−1, m = 1, 2, . . . , N = N(ξ), is null. Let

c(β) := min{1, |β − p(m)(q(m))−1|2|q
(m)|22 : m = 1, 2, . . . N}.

Then the set of β ∈ ∆ satisfying the inequality

|β − pq−1|2 "
c(β)

|q|22

for all pq−1 is null. This completes the proof of Theorem 6·7, the analogue of Jarńık’s

theorem for the set BH of badly approximable quaternions.
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[33] A. Hurwitz. Über die angenäherte Darstellung der Irrationalzahlen durch rationale Brüche.
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[69] A. Speiser. Über die Minima Hermitescher formen. J. Reine Angew. Math., 167:88–97,

1932.
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