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Abstract A three-dimensional structural integrity analysis using the eX-
tended Finite Element Method (XFEM) is considered for simulating the crack
behaviour of a chopped fibre-glass-reinforced polyester (CGRP) cruciform spec-
imen subjected to a quasi-static tensile biaxial loading. This is the first time
this problem is accomplished for computing the stress intensity factors (SIFs)
produced in the biaxially loaded area of the cruciform specimen. A static crack
analysis for the calculation of the mixed-mode SIFs is carried out. SIFs are
calculated for infinite plates under biaxial loading as well as for the CGRP cru-
ciform specimens in order to review the possible edge effects. A ratio relating
the side of the central zone of the cruciform and the crack length is proposed.
Additionally, the initiation and evolution of a three-dimensional crack are suc-
cessfully simulated. Specific challenges such as the 3D crack initiation, based
on a principal stress criterion, and its front propagation, in perpendicular to
the principal stress direction, are conveniently addressed. No initial crack lo-
cation is pre-defined and an unique crack is developed. Finally, computational
outputs are compared with theoretical and experimental results validating the
analysis.
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1 Introduction

Advanced composite materials (ACM) are widely used in many industrial sec-
tors such as aircraft industry, automobile industry, etc. Fundamentally, their
interest is attributed to its properties: high strength-weight ratio, excellent
resistant to fatigue and corrosion, satisfactory durability. However, because of
the complex mechanical behaviour of these high-performance materials many
experimental tests are required for designing safe components [6]. As an al-
ternative for reducing the high number of experimental tests computational
modelling is a remarkable approach.
Nowadays, by means of computer simulations, many phenomena of interest
have already been successfully simulated e.g. car crash, a human aorta with
an aneurysm, etc [15]. Nevertheless, other computational applications in the in-
dustry and the scientific community remain unsolved. In computational terms,
a well-known numerical method is the Finite Element Method (FEM)[3]. Most
of structural integrity analyses using FEM have been based in continuum dam-
age mechanics, see for instance some works applied to composites in [10] [9] [5].
This paper is proposing a discontinuous approach as explained below. When
using FEM for simulating moving cracks throughout a material, several lim-
itations are observed [7]. To accurate represent discontinuities with FEM it
becomes necessary to conform the discretization to the discontinuity. Then, in
the case of crack propagation the mesh is re-generated at each crack-growth
increment with a considerable computational cost.

Over the last decades several approaches for modelling material disconti-
nuities have been proposed based on the partition of unity method [14], as the
GFEM [11] or the XFEM [4] developed by Belytschko and Black in 1999. In
particular, XFEM permits the representation of discontinuities independently
of the mesh. This characteristic makes this method able to model moving
cracks with no update of the mesh during crack propagation. New develop-
ments in analysis of crack growth modelling are carried out since XFEM came
up [1], for instance the implementation of XFEM in 3D [22], the implementa-
tion of XFEM in ABAQUSTM [12], the delamination of GLARE [8], etc. For
interested readers, a detail understanding of XFEM is presented in the work
of Mohammadi [21].
In industrial applications using ACM, different complex loading cases are per-
ceived. For instance, in the fuselage of an aircraft multi-axial loadings are
observed during working conditions. Then, it is required a better understand-
ing of these materials under multiple loading in different directions [20]. In
this article a 3D CGRP composite specimen is studied submitted to in-plane
biaxial loading. A static analysis for the calculation of the mixed-mode SIFs
into infinite plates is carried out. The values of SIFs obtained by XFEM into
the infinite plates are compared with the theoretical solution from literature.
This analysis serves to validate the 3D XFEM capabilities for the calculation
of SIFs into the composite considered. Once it is demonstrated that XFEM is
able to accurately obtain the SIFs with a known case, SIFs are calculated for
the cruciform specimens within the region where a biaxial loading is localized.
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The calculation of SIFs into the cruciform specimen are influenced by the edge
effects of the specimen. A ratio relating crack size and the dimensions of the
cruciform is proposed. The proposed ratio allows edge effects to be minimized
with the smallest cruciform design possible. In the best authors knowledge,
the SIFs calculation into a CGRP cruciform submitted to biaxial loading by
means of XFEM has never been undertaken. Additionally, a 3D moving crack
initiation and propagation into the structure is simulated. The crack is devel-
oped as a natural outcome for all geometries based on the maximum stress
criterion. Computational results are validated with experimental tests.
The studied cruciform is designed for reproducing a pure biaxial loading in its
central zone where shear is negligible. The CGRP composite under study be-
haves in a quasi-isotropic manner. This fact is justified because of the random
distribution of the fibres throughout the matrix [18],[19].
The article is organized as follows. In section 2, an introduction to XFEM
is presented briefly. In section 3, the numerical model considered for repre-
senting the crack behaviour of the CGRP structure is described. Section 4.1
compares computational and experimental results for three different cruciform
geometries analysed under different biaxial in-plane loading cases. In Section
4.2 a static analysis of the cruciforms is completed and mixed-mode SIFs are
calculated for infinite plates and the cruciform specimens under consideration.
Finally, in section 5, the conclusions of the work are explained, summarizing
the main achievements as a result of the research process.

2 A discontinuous approach/model based on the eXtended Finite
Element Method

The general idea of the XFEM is based on including discontinuous enrichment
functions to the approximation of displacements. For a 3D case, a single crack
is considered (see Figure 1). The point x∗ defines the crack front as depicted
in Figure 1. It is defined also n as the normal to the crack plane. Then, the
Heaviside function H(x) takes value +1 if (x − x∗) · nnn ≥ 0 and -1 otherwise,
i.e.

H(x) =







1 if (x− x∗) ·nnn ≥ 0

−1 otherwise
(1)

The isotropic near-tip asymptotic functions ψj(r, θ) are included in the
displacement approximation in order to represent the asymptotic crack-tip
field.
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Thus, once the Heaviside and the near crack-tip enrichment functions are
considered in the element approximation of displacements, uuu(e) it is obtained:
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Fig. 1 Cordinate system for the crack front in 3D

uuu(e) =
nnodes
∑

i=1

NNN i(x)(uuui +HHH(x)aaai +
4

∑

α=1

ψψψα(x)bbb
α
i ) (3)

Where NNN i(x) are the shape functions and nnodesnnodesnnodes the number of nodes per
element. uuui corresponds with the nodal displacement vector used in FEM; aaai
is the nodal enriched degree of freedom vector,HHH(x) is the Heaviside function,
bbbαi are nodal enriched degrees of freedom and ψψψα(x) the elastic asymptotic
crack-tip functions for representing the crack singularity. For the calculation
of SIFs the software considers full enrichment in order to represent the dis-
placement field ahead of the crack-tip. Instead, during 3D crack propagation
analysis partial enrichment is considered. Particularly, the isotropic crack-tip
enrichment functions are not taken into account and the only enrichment func-
tion is the Heaviside function HHH(x). Thus, during crack propagation the crack
crosses at once a whole element without need of enriching nodes with crack-tip
enrichment functions. Then, Eq.(3) becomes:

uuu =

nnodes
∑

i=1

NNN i(x)(uuui +HHH(x)aaai) (4)

In this work, SIFs are calculated for infinite plates and CGRP cruciforms. SIFs
are extracted from the J-integral calculation [2]. This integral is a contour
integral for bi-dimensional geometries and its definition in this application is
extended to three-dimensional geometries. The relation between the J-integral
J and SIFs for linear elastic material [13] is given by the following equation:

J =
1

8π
KKKTPPP−1KKK (5)

where KKK = [KI ,KII ,KIII ]
T and PPP the pre-logarithmic energy factor tensor.

Interested readers for a better understanding of fracture mechanics concepts
can consult fracture mechanics references such as [2].

3 Numerical model

Three different cruciform geometries A, B and C (Figure 2) are studied. The
ACM tested owns a polymer matrix with 20% volume of glass fibre reinforce-
ment. This CGRP composite is considered as a quasi-isotropic due to the
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uniformly random distribution of the fibres. The material properties are de-
picted in Table 1. In that table, E represents the modulus of elasticity, υ the
Poisson ratio, ϵyeild the yield strain and σyield the yield strength which are
obtained in [19].

A B C

Central zone

Pure biaxial stress 

Fig. 2 CGRP cruciform specimens under analysis: geometry A, B and C. Notice a detailed
view of geometry A in the central zone where pure biaxial loading state is observed.

Experimentally different biaxial loading cases are applied in each geometry.
These loading cases cause failure through the diagonal of the central zone.
1/8 of the model for each geometry is simulated due to the symmetry. The
boundary conditions applied to the three different geometries are depicted in
Figure 3. Also, the cruciform specimen is fixed in the out-of-plane direction.

Fig. 3 Boundary conditions considered in the simulations for the three different cruciform
geometries under biaxial loading: A,B and C.

For the finite element discretization, eight node hexahedral elements with
reduced integration and three degrees of freedom per node are chosen (C3D8R).
Reduced integration may provoke spurious zero-energy modes that provides an
unreal solution. Therefore, hourglassing control is considered. A mesh conver-
gence analysis is carried out for obtaining an adequate size mesh. Two different
average size meshes are defined: 1.5 mm in the arms of the cruciform specimen
and 0.5 mm in the central zone.
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Table 1 Material parameters

E(MPa) υ σyield(MPa) ϵyield GC
I (N/m)

6500 0.37 90 0.0138 6210

4 Computational and experimental crack behaviour of the CGRP
cruciform specimen

In previous work, the authors presented a two-dimensional crack initiation and
propagation analysis [17]. The computational results were validated by means
of comparison with experimental results. In this paper, the main objective is
focused in the calculation of SIFs for the real cruciforms submitted to biaxial
loading as well as quantify the edge effects into each geometry. For making that
possible, previous computational tests are needed. It is important to notice
that in this work a 3D model is simulated. This model has not been validated
before and higher numerical complexity is expected compare with the 2D case.
Therefore, in Section 4.1 crack initiation and propagation is simulated within
the 3D cruciform and compared with experimental outcomes. By means of
this first computational analysis the three-dimensional abilities of XFEM are
demonstrated. With the confidence of this analysis, the authors are able to go
further when dealing with a 3D model. In Section 4.2, a 3D static crack analysis
is carried out. This section can be divided into two main parts. The first
part, Section 4.2.1, considers a quasi-infinite plate subjected to biaxial loading.
Those plates are equivalent to the central zone of the cruciforms and SIFs are
obtained using XFEM and afterwards compared with the theoretical solution.
This analysis serves to show that XFEM is capable of accurately obtain SIFs
in a biaxial loading context. The second part, Section 4.2, it is focused in the
calculation of SIFs within cruciform specimens once the capabilities of XFEM
has been validated in previous sections.

4.1 Crack initiation and propagation

4.1.1 Constitutive Model

The constitutive model for modelling crack initiation and propagation into the
cruciform is defined by means of three characteristic steps (see Figure 4) and
it needs to represent the fragile fracture process of the CGRP cruciform:
- Linear elastic traction-separation behaviour (point 1 to 2 in Figure 4). The
elastic behaviour is defined in terms of elastic constitutive matrix that relates
normal and shear stresses with nominal strains.
- Damage initiation (point 2 in Figure 4). It is connected with the begin-
ning of the degradation of the cohesive response in an enriched element.
The criterion of initiation selected is based on maximum principal stresses
σmax = σyield ± σtol. Therefore, when the maximum principal stresses σmax



Title Suppressed Due to Excessive Length 7

achieve a value that it is the sum of yield stress σyield and a certain value of
tolerance σtol (define by the user) the damage process starts.
- Damage evolution (point 2 to 3 in Figure 4). Once the initiation criterion is
satisfied, damage evolution defines the degradation of the stiffness (softening).
The constitutive relation is written as follows σ = (1 − ω)Cδ, where ω is a
scalar variable that is responsible for the degradation of the stiffness. Initially
this variable is zero (full load-carrying capability) and at the end of the degra-
dation process this variable takes value 1 (no load-carrying capability). For a
proper definition of that variable, it is requested a critical fracture energy GC

for each pure failure mode. Based on experimental observations, the dominant
mode of fracture in the cruciform specimen is mode I. Then, it is assumed
that the mode I of failure defines the fracture process and consequently it is
defined the critical energy for pure mode I of failure GC

I . This energy G
C
I refers

to the energy dissipated during the damage process per unit area and its value
is estimated by means of uniaxial testing. Therefore, the energy dissipated
per unit volume during damage evolution is GC

I =
σyield0.01ϵyield

2 (Table 1). In
this case, GC

I is equal to the critical fracture energy per unit area because the
traction-separation model considered a unitary cohesive thickness. Due to the
brittle material behaviour of the composite, it is assumed that the fracture
strain ϵu is 1% higher than the yield strain ϵyield.
Difficulties of convergence using implicit solver are detected when strain-

1

�  

2

 

yield

yield

�

 
u3  

Fig. 4 Segment form by point 1 to 2: Undamaged liner elastic behaviour, point 2: damage
initiation and segment form by point 2 to 3: softening.

softening behaviour is modelled. For solving this difficulty, a viscous regulariza-
tion of the constitutive equations defining the cohesive behaviour is adopted. In
the regularization scheme a viscous damage variable is defined ωv = (ω−ωv)/η,
where η is the viscosity coefficient that represent the relaxation of time of the
viscous system and ω the damage variable in the inviscid model. The viscous
coefficient η increments the rate of convergence of the model when it is deal-
ing with strain-softening material behaviour. Then, using a small coefficient
(small compared with a characteristic time tc of the system) convergence can
be improved. For this application, the characteristic time is calculated based
on the stress wave velocity of propagation and its value is 2.1 µs. It is no-
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Table 2 Simulation parameters

Figure Geometry Loading case σtol[Pa] η[s] Initial crack

Figure5(b) A 1/2 1 10−7 No
Figure5(a) A 1/1 1 10−7 No
Figure6(a) B 1.5/1 1 10−3 No
Figure7 C 0.5/1 1 10−3 No

ticed that one of the viscous coefficient considered during crack propagation is
higher than the characteristic time of the system. However, the viscous energy
involved during simulations is a 0.16 % of the total internal energy stored in
the system, then, the viscous regularization does not compromise the solution
and realistic results are consequently provided. It is noticed that during this
research the damage tolerance σtol and viscous parameter η have a consid-
erable influence on the progression of the crack and the convergence of the
solution. It is assumed that the specimen is in elastic equilibrium during the
loading process so quasi-static simulations are developed employing an im-
plicit solver for solving the momentum equation. An automatic time stepping
is chosen. Maximum and minimum values of the time step are 10−2 and 10−20

respectively. 10000 increments per time step are used.

4.1.2 Validation of the 3D model by comparison with experimental tests

Experiments showed two main outcomes: the first is that the correct failure
within the cruciform is when the crack transverse the central region submitted
to biaxial loading in geometries A, B and C [18] and the second one is that
each geometry owns a certain biaxial loading case where a crack is localized in
the central zone. Considering that, simulations were carried out and the simu-
lation parameters to aim a crack path crossing the central zone are presented
in Table 2. In the current work, non a-priori crack location is defined for all ge-
ometries, thus, the crack is initiated and propagated as a solution-dependent.
Damage initiation is properly predicted by XFEM and all geometries initiated
a crack at 90 MPa in the rounded zone. Geometry A is submitted to a loading
case 1/1, which means that the same load is applied in both arms. As a result
of this loading condition, simulation results show a crack throughout the cen-
tral zone of the geometry (figure 5 (a)) and the crack-path followed is similar
to the experimental case. In geometry A, when the loading case is different
to 1/1 an incorrect failure is detected (failure in the arm with bigger load).
This fact is also predicted by XFEM. In Figure 5 (b), geometry A is submit-
ted to a loading case 1/2 (double load in the vertical arm). Thus, the crack
is developed in the arm suffering a higher load which is in good agreement
with experiments. In the case of geometry B, the in-plane biaxial loading case
applied is 1.5/1. As the previous example for geometry A, no pre-definition
of the crack location is necessary, so as a natural outcome crack is initiated
and propagated throughout the central zone. In figure 6 (a), it is depicted a
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Crack path

(a) (b)

Fig. 5 (a) View of the crack propagation in geometry A under loading 1/1 without definition
of a priori crack (b) View of the crack propagation in geometry A under loading 1/2 without
definition of a priori crack

translucent view where the surface of the crack is appreciated in the 3D ge-
ometry. In Figure 6(b) it is illustrated the experimental results for geometry
B under biaxial loading 1.5/1. That figure serves to illustrate the pattern of
failure to achieve the correct collapse of the cruciform i.e. across the central
zone. Geometry C is under a biaxial loading 0.5/1. Experimental results are
accurately predicted by the simulations, therefore the computational crack is
developed crossing the central zone (Figure 7).

(a) (b)

Fig. 6 (a) Computational crack propagation in geometry B under loading case 1.5/1 with-
out definition of a priori crack location (b) Experimental path failure in geometry B for a
biaxial loading 1.5/1 [18].

Fig. 7 Crack propagation in geometry C under loading 0.5/1 without definition of a priori
crack.
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4.2 Biaxial static crack analysis

In this section, a static crack analysis is carried out into the CGRP composite.
Firstly, three different quasi-infinite plates are simulated with the objective of
validating XFEM for the calculation of SIFs in a biaxial contest. The size of
these quasi-infinite plates is proportional to the central zone of the cruciform
specimens. Secondly, SIFs are also obtain for the real cruciforms and com-
pared with the analytical solution for infinite plates. A 3D model is needed
for studying static crack analysis [13] within the quasi-infinite plates and the
cruciform specimens. The edge effects into the SIFs calculation are studied.

4.2.1 Inclined crack in a biaxial stress field

In this section, the objective is to validate XFEM for calculating the mixed-
mode SIFs in a 3D biaxial scenario. Therefore, the part of the structure with
interest is the central zone of geometry A,B and C because it is where a biaxial
loading is located. To study independently these regions, rectangular plates are
considered for simulations (see Figure 8). The dimensions of the plates (Table
3) are one order of magnitude higher that the original central zone on the
cruciforms to consider the study of an ideal quasi-infinite plate respect to the
real critical area. Thus, the solution of the SIFs in mode-I and mode-II is
admissible and its expression is [16]:

KTheo
I = σ

√
πa(sin2β + αcos2β) (6)

KTheo
II = σ

√
πa(1− α)cosβsinβ (7)

where β is the angle form by the crack and the vertical direction, σ is
the stress, a is half-crack length, KTheo

I and KTheo
II are the first and second

theoretical mode SIF, respectively. α is defined as the ratio between the major
and minor stress into the plate.

As it is illustrated in Figure 8, a centre crack is defined in each plate under
analysis. This crack is 2 mm long for all geometries. The crack size chosen for
this analysis is relatively small compared with the dimensions of the quasi-
infinite plates considered. Therefore, the quasi-infinite plate can be considered
as a infinite respect to the crack size and edge effects are then minimized. The
crack under analysis is inclined with an angle β. This angle is the angle form
between the crack and the vertical direction. This angle is subtracted from
experiments and corresponds with the failure angle observed in the rounded
zone for each geometry. The crack path is almost constant throughout the
cruciform so the crack angle observed in the rounded zone is approximately
the same as the central zone. Thus, for geometry A this angle is 45◦, for B
33.69◦ and C 63.43◦. The values of the load applied to the plates in each
direction are depicted on Table 3. These values of stress correspond with the
stress failure in the central region observed during experiments. Boundary
conditions and loading directions in the plate are depicted in Figure 8. Note
that plates are also constrained in the out-of-plane direction. In Figure 8, W
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Table 3 Dimensions and loading in the infinite plates considered

Geometry A B C

Dimensions plate(W|H)[mm] 220x220 220x330 220x110
Loading (σx-σy)[MPa] 84-84 81.8-49.9 48-103.5

represent the width and H the hight of the plates. Thus, different values of W
and H are considered for simulations as shows Table 3.

W

2
a

H

�

��

 

Fig. 8 Boundary conditions of the centre crack under biaxial loading

In the neighbourhood of the crack location, it is considered a square area
of 4x4 mm around a centre crack where 2500 elements are stacked in order to
capture the crack-tip stress field. The major edges of the plate are partitioned
into 80 equal subdivisions for each plate. The thickness of the plate is 2 mm
and two mesh subdivision are considered throughout the thickness. SIFs obtain
by simulations are presented in Table 3. The analytical solution is compared
with the results obtained with XFEM.

Computationally, the J-integral is considered for the SIFs calculation. It
is well-known that in theory the J-integral is path independent. However,
computationally this is not true. Therefore, different contours give different
solutions of SIFs. In this study five contours are taken into account. Because
of numerical singularities, the first contour is not considered as it is suggested
in [13]. Then, the SIFs depicted on Table 4 have been obtained as the mean
of the five consecutive values starting from the second value of KI and KII

calculated.
The theoretical values of SIFs are compared with the numerical ones ob-

tained by means of XFEM. The small relative error appreciated between the-
oretical and numerical solutions confirms that XFEM is able to predict the
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Table 4 SIFs for a 2 mm crack in the central zone of the plate

Geometry β KTheo
I KTheo

II KNum
I KNum

II |errorKI |(%) |errorKII |(%)

A 45 4.70 0 4.56 0 3.06 0
B 33.69 3.34 0.82 3.36 0.85 5.68 3.01
C 63.43 5.17 1.24 5.13 1.29 0.9 3.74

mixed-mode fracture process here considered and validates its use for SIFs
calculation considering a biaxial loading.

4.2.2 SIFs into the real cruciforms

In this section, SIFs are calculated for the real cruciform specimens and then
compared with the theoretical solution. 1/8 of each cruciform is simulated
with inclined cracks in the central zone. Different values of a i.e. half-size of
the crack length, are considered, a = 0.5, 1, 1.5, 2mm. The angle of inclination
β considered is the same as for the quasi-infinite plate analysed in previous
section. Three different mesh regions can be distinguished with different ele-
ment size in the structure. The first one defined is in the central zone with
a 0.5 mm size, the second one defined in the arms with 1.5 mm size and the
third one in the proximity of the static crack as depicted in Figure 9. For the
third mesh refinement, a 4x4mm square is defined surrounding the crack with
1600 elements. The loading applied in this case is on the arms of the cruci-
form. Then, for geometry A, 54MPa are applied in each arm, in geometry B,
61MPa and in geometry C, 44.25MPa. These values of load in each arm are
responsible for the final fracture of the structure. The values of SIFs obtain
with the quasi-infinite plates presented on Table 4 show that the values of KI

obtained by XFEM are higher than the ones KII. This fact is also observed
on Figure 10 for the cruciform structures. These results allow us to demon-
strate numerically that the dominant mode of fracture is mode I. Comparing
Table 4 and Figure 10 for a = 1mm (2 mm of crack length), it is observed
that the values of SIF calculated for quasi-infinite plates are closer than the
SIF obtained for the cruciform specimen to the theoretical solution for an infi-
nite plate. This fact it is explained because the quasi-infinite plates represent
a similar configuration than the theoretical solution for an infinite plate. As
mentioned previously, a pure biaxial loading is located on the central zone of
the cruciform structure (see Figure 9). The magnitude of the horizontal and
vertical stresses in this zone is the same as the ones applied in X and Y di-
rection to the quasi-infinite plate depicted on Figure 8. Hence, in Figure 8 it
is considered a quasi-infinite plate with loading conditions, angle of the crack
and material properties identical as the central zone of the cruciform. There-
fore, when considering these plates, the theoretical solutions for an infinite
plate (Equations 6 and 7) provide SIF values close to values of SIF obtained
numerically using XFEM (see Table 4). However, in the cruciform structure,
when calculating SIF the theoretical solution for an infinite plate is not able to
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provide results close to the ones computed numerically (see Figure 12 and 13).
This is justified because the length of the area loaded biaxially is not infinite
if it is compared with the size of the crack

a

4 mm

4
 m

m

Fig. 9 Crack location in cruciform A for SIFs calculation. Note a 4x4 quadrilateral area
where a special refinement is required to accurately represent the crack-tip behaviour.

In Figure 10 and 11 it is depicted the values of KI and KII obtained. These
values calculated by means of XFEM are represented against the half-crack
size considered for each cruciform. In theory, under a biaxial loading any in-
crement of the crack length a (maintaining all other parameters constant) will
always contribute to increment the values of SIFs. This tendency is observed
numerically in Figure 10 and 11. However, it is noticed a reduction in the ac-
curacy of the SIF calculation when the crack size is incremented within each
geometry. This is due to the edge effects that influence the SIFs calculation
when using XFEM. The influence of the edge effects for the SIFs calculation
depends of the size of the central zone of each geometry as shows Figure 12
and 13. In these figures, the absolute value of the relative error between theo-
retical and numerical solution is presented. Higher values of error for KI and
KII are found in geometry C while geometry B is noticed a less influence of
the edge effects. This fact is explain because geometry B has bigger central
zone than geometry C, then the edge effects are mitigated when considering a
crack with the same length into both geometries. In other words, the central
zone on geometry B is closer to the quasi-infinite plate than the central zone of
geometry C. Considering the last outcome, a possible alternative to minimize
the edge effects is to stablish a new ratio α between the crack size a and the
dimensions of the central zone that will minimize the edge effects. In Equation
8 it is proposed a ratio considering a square central zone of side L and the
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half-crack length a as follows:

α =
L

a
= 66 (8)

According to Equation 8, for a crack size bigger than L
66 not negligible edge

effects into the SIF calculation are appreciated compared with the theoretical
solution. Obviously, considering a specimen with a higher α edge effects are
reduced. Additionally, this analysis serves to give us a first idea of the relation
between central zone and the crack size and allow future experiment tests to
by oriented according to the ratio presented. It is important to notice that the
values of KI are higher than KII in the cruciform specimens. Therefore, taken
into account the SIFs calculation with XFEM, for geometry A only mode I is
observed and the shear does not exist. However, for geometry B and C it is
noticed a mixed mode failure. The values of shear in geometries B and C are
small compared with the normal stress. In previous studies, the shear has not
been considered nevertheless here it is demonstrated computationally that it
has its influence within geometry B and C.
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Fig. 10 KI obtained by means of XFEM is represented against the half-crack length a
defined for geometry A,B and C.

5 Conclusions

An investigation on the utility of the relatively novel numerical method XFEM
applied to biaxial loading of composites has been presented. A static crack
analysis is completed in order to determine the mixed-mode SIFs into CGRP
cruciforms. Initially, SIFs are determined for infinite plates subjected to biax-
ial loading. Once the 3D XFEM model is validated, SIFs are also calculated for
the whole cruciform specimens. By means of this analysis, it has been noticed
that the edge effects into the cruciform specimens affects the SIFs values. The
variation of SIFs values between the cruciform and the analytical solution are
quantified. A ratio between the side of the central zone and the crack length is
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Fig. 11 KII obtained by means of XFEM is represented against the half-crack length a
defined for geometry A,B and C.
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Fig. 12 The absolute relative error for mode-I |errorKI |(%) is represented against the
half-crack length a for geometries A,B and C.
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Fig. 13 The absolute relative error for mode-II |errorKII |(%) is represented against the
half-crack length a for geometries A,B and C.

proposed in order to minimize edge effects and specimen size simultaneously.
The dominant fracture mode into the cruciform structure is mode I according
to the comparison between the numerical value of KI and KII . In other words,
the nominal stress is higher than the shear stress during loading in the neigh-
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bourhood of the crack tip. In the authors best knowledge, this is the first time
that SIFs are calculated for this kind of CGRP cruciform specimens. Modelling
initiation and propagation was not straightforward as has been shown above
and challenges that are not an issue indeed becomes critical in a 3D context,
overall when dealing with fracture. The following points were addressed during
this research:
- Propagation of a 3D crack front without pre-notching.
- Criteria for crack initiation.
- Although re-meshing was not carried out, no deterioration of the solution
was observed in terms of validation against experimental tests.
Overall, the application of XFEM here presented contributes to emphasizes
that using XFEM for modelling crack in biaxial loading cases is adequate. Ad-
ditionally, dealing with 3D XFEM a more realistic view of cracks is provided.
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