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A B S T R A C T 
_________________________________________________________________ 

To characterise a transversal crack evolution in a cross-ply [0/90]s fibre reinforced composite laminate, the 
associated energy release rate (ERR) was calculated by means of the J-integral embedded into the Finite Element 
Method (FEM). The ERR values computed for the propagation of the transversal crack were correlated to the 
ones obtained by using the Virtual Crack Closure Technique (VCCT) embedded within the Boundary Element 
Method (BEM). In addition, the results were compared with analytical values. The results correlated well except 
when the crack length was approximately 80% of the ply thickness. In such case, ERR values showed some 
discrepancies between FEM and BEM. The reason stems from the fact that in the VCCT used not all components 
of the stresses are considered, resulting in smaller ERR values. In addition, the results proved that transversal 
cracks can influence each other only in a limited distance.  

 

1. Introduction  

Matrix cracks often appear prior to other damage modes in composite materials. It is well known that the fracture 
process starts at micro-level as soon as the laminate is subjected to loading. In cross ply fibre reinforced laminates 
subjected to unidirectional loading micro-cracks appear immediately in the 90 plies. Increasing the load can lead to 
their coalescence and formation of macro-transverse cracks [1],[2]. Propagation of transverse cracks toward the 
interface can lead to other failure modes such as delamination or fibre fracture [3]. To assess the integrity of the 
laminate, transversal cracks can be modelled; although this has proved challenging due to shortcomings such as 
gradual redistribution of stress during fracture and degradation of mechanical properties [4], [5].   

Characterizing the conditions which lead to failure of a composite laminate due to transversal cracks triggering 
delamination between laminae is a long-standing research topic [6], [7], [8], [9]. Studies on related engineering 
applications such as helicopter rotor blades prone to matrix cracking preceding fibre breaking [10], [11], cracking of 
large laminates used in wind turbines [12], damage created by hail ice impacts on leading-edge, control surfaces, 
engine nacelles, fan blades of aircrafts [13], and soft body impact [14] can be found in the literature. εodelling 
progressive damage [15] and [16], and prediction of fracture in composite laminates with different techniques, such 
as extended Finite Element εethod (XFEε) [17], is another area of interest for obvious critical-safety reasons.  

Researchers have attempted to predict different modes of failure in composite materials by using the energy release 
rate (ERR) as a fracture criterion. The modes of failure include but not limited to: compressive and inter-laminar 
shear failure in aerospace laminates [18], delamination growth due to buckling [5] and inter-ply cracking in 
adhesive-bonded aircraft composite joints [19].  

There are several methods used for ERR evaluation and comprehensive study on these methods can be found in 
reference [20]. Xie et al [21] used VCCT in order to calculate the ERR using finite element method. Similarly Zou et 
al [5] implemented VCCT using the laminate theory instead of linear elastic fracture mechanics to express the energy 
released in terms of stress-jumps and relative displacements for modes I, II, and III. This approach allows individual 



ERR calculation for delamination and the singular stress at the crack tip is represented in terms of the stress resultant 
jumps across the delamination front. This approach can eliminate the oscillations in stress when incorporated in a 
finite element framework [5].  Conversely, VCCT with solid finite elements results in oscillatory stresses and 
displacements in front of the crack tip, which may cause divergence [22].  The use of VCCT within a boundary 
element framework (BEε) is deemed more appropriate because the boundaries of the problem are directly related to 
the problem features such as fracture parameters (see París et al.[1]). París and co-workers [1] considered different 
conditions (e.g. models with and without delamination) and calculated the ERR for different crack lengths. Their 
results were in good agreement with the analytical results by εcCartney [23]. 

The J-integral approach as a measure of the energy release rate associated with crack propagation whereby a criterion 
can be introduced in terms of a bounding limit value has been studied in [24], [25] among others. One of the 
advantages of using J-integral is that under quasi-static conditions, it is equal to the energy release rate G for linear 
elastic materials. For two dimensional problems in a mixed fracture mode (mode I and mode II) loading the relation 
between stress intensity factor and J-Integral is 

ܬ ൌ ሺͳ െ ܧଶሻߥ ሺܭூଶ ܭூூଶሻ (1) 

where J denotes J-integral and, KI and KII are the stress intensity factors corresponding to mode I and mode II 
fracture, respectively. E and v denote elastic modulus and Poisson’s ratio respectively. The domain integral method is 
often integrated in commercial packages, e.g. Abaqus, to take advantage of J-integral path independency.  

In this paper, parametric studies by finite element analysis with different specimen and crack lengths are conducted 
and compared with results by VCCT-BEε and analytical means. Results showing the stress distribution in the 
composite laminate are provided for better assessment of the structural integrity of the composite. In addition, 
discussion about finite element modelling features for ERR calculation is presented. 

2. Background: J-integral 

2.1 Finite element J-Integral calculation 

J. R. Rice in 1968 [25] formulated Eshelby’s [26] contour integral for crack problems. For an edge crack in a 
nonlinear elastic body the J-integral equals the rate of change (with respect to crack growth, da) in potential energy 
Up: 

ܬ ൌ െ݀ ܷ݀ܽ  
 

(2) 
 

By definition, J-integral is equal to ERR if the material behaviour is linear and elastic. This definition is between 
Griffith’s model of fully elastic and that of Irwin’s with a small crack tip plasticity [27]. Fig.1. shows the contour ī 
surrounding crack tip singularity in a semi-infinite two dimensional body.  

 

Fig.1. Integration path around crack tip 
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The change in potential energy for infinitesimal crack extension is: 

െܷ݀݀ܽ ൌ lim௱՜ ͳܽ߂ ቌන തܶ௰ ݏ݀ݑ߂ െ න ܣܹ݀߂ ቍ  

 

(3) 

Where ܽ߂ is the crack growth and A is the area encompassed by the contour, W is the elastic strain energy, ui is the 
displacement, തܶ is the traction and ds is an infinitesimally small section of contour ī.  

Applying the Green’s theorem, it is possible to write Eq. (3) in the form of a line integral:  

ܬ ൌ ර ൬ܹ݀ݔଶ െ തܶ݅ ଵݔത߲݅ݑ߲ ൰௰ݏ݀  

 
with 
 തܶ ൌ ߪ ݊ 
 

(4) 
 
 

 
 

(5) 

nj is the normal vector to the integration path and ı is the stress component on ī. The density of energy is expressed 
as: 

ܹ ൌ ܹሺݔǡ ሻݕ ൌ ܹሺߝሻ ൌ න ఌೖߝ݀ߪ  
(6) 

For linear elastic material elastic strain energy is related to stress and strain as: ܹ ൌ  Ȁʹ (7)ߝߪ

The material within the contour integral is assumed homogeneous and the process is time independent. δine integrals 
have difficulty of implementation in FE and domain integrals are preferred [28]; unlike VCCT which uses nodal 
values for ERR calculation. δi et al [29] showed that line integral can be transformed into an equivalent area integral 
as shown in Fig.2.  

 

Fig.2. Domain definition for area integral 

For linear elastic materials Atkinson and Eshelby [30] proposed the domain integral expressed as follows,  



 ൌ lim՜න൫ Ɂଵ୧ െ ɐ୧୨ ୨ǡଵ൯ n୧    (8) 

The process is assumed isothermal and body forces are neglected. n is the unit vector normal to ī and į1i is the 
Kronecker delta. This formula can be rewritten in the form 

ܬ ൌ නൣߪݑଵ െܹߜଵ൧ ݉ݍଵ݀ݏ െ න శାషݏଵ݀ݍǡଵ݉ଶݑଶߪ  (9) 

C is the closed curve C=C1+C++C--ī and q1 is a smooth function in C domain which is unity on ī and 0 on C1, m1=0 
and m2=±1 on the crack surfaces and mj=-nj on ī. The second integral vanishes because of traction free surfaces of 
the crack. By applying the divergence theorem to the close contour (9): 

ܬ ൌ නൣ൫ߪݑǡଵ െܹߜଵ൯ݍ൧ǡ  (10) ܣ݀
 

A is the area enclosed by C. To implement this integration within the FEε, Shih et al [28] formulated the discretized 
form of Eq.(10) by means of Gaussian integration: 

ܬ ൌ  ቈቆߪ ଵݔ߲ݑ߲ െܹߜଵቇ ݔଵ߲ݍ߲ ଼ݓߟ߲ݔ߲ݐ݁݀
ୀଵ௧௦၊  

(11) 

 

Where 

ଵݍ ൌ  ூܰ ଵܳூସ
ூୀଵ  (12) 

For a quadrilateral element. ζI are the shape function and Q1I is the nodal value for Ith node. Q1I is zero on C1 and 1 
on ī. Using the chain rule we have: 

డభడ௫ೕ ൌ σ σ డேడఎೖ డఎೖడ௫ೕ ܳଵூଶୀଵସூୀଵ   (13) 

where 
డఎೖడ௫ೕ  is the inverse Jacobean matrix of transformations: ݔ ൌ σ ܰ ܺସୀଵ ǡ ݑ ൌ σ ܰ ܷସୀଵ , i=1,2 (14) 

Nk are the shape functions. 

 

3. Modelling of Transverse Crack in [0/90]s laminate 

A schematic view of the tested laminate composite HexPly8552 is shown in Fig.3. The thickness of each lamina is 
0.55mm with a defining the crack length. 2δ is the distance between two transversal cracks. The interface between 
the two plies is modelled without potential discontinuity and, therefore, there is no possibility of replicating 
delamination at this time. 



When the [0/90]s laminae is under uniaxial loading, transversal cracks appear on the 90º ply and, then, progress 
towards the interface with the 0º ply. Further details of this can be found in the works by Dvorak and δaws [31] and 
Wang [32]. As the crack is assumed to be through the width [1]. A two dimensional model is justified for analysis. 

             
Fig. 3. Transverse crack in [0/90]s laminate 

The properties for the laminate used are extracted from Hexcel datasheets  [33]. This toughened epoxy resin system 
is made of unidirectional glass fibres. It is used in aerospace structures present in commercial airplanes, helicopters 
and jet engine parts. 
 

Table1. Material properties for Hexeply8552. All the values for E and G are in GPa. E11 represents fibre direction elastic module. 

E11 E22 E33 G12 G23 G13 Ȟ12 Ȟ13 Ȟ23 

141.3 9.85 9.58 5 3.5 5 0.3 0.3 0.32 

 

The fibre tensile strength is 2207 εPa. The transversal –resin- strength is 81 εPa. The laminate thickness is much 
smaller than the other two dimensions, i.e. width and length. Therefore, the strain in perpendicular direction can be 
neglected and, hence, a plane strain state can be assumed. 

εcCartney proposed the ERR analytical solution for the [0/90]s laminae. His calculation is based on the Gibbs free 
energy [1]: 

ο ൌ ͳʹන ܸ݀ߝߪ ൌ ͳʹ ݄ܮ  (15) ߝߪ

By substituting ɂ = ɐȀE, renders that, 

οܩ ൌ ͳʹ ݄ܮ ቆߪଶܧ ቇ (16) 

The ERR is calculated as the infinitesimal variation of G respect to the crack propagation (∂a): ܴܴܧ ൌ ଵଶ ݄ܮ డడ ቀఙమா ቁ        (17) 

In εcCartney’s solution, ı, E and İ are axial components of stress, Young’s modulus and strain in the first principal 
direction respectively. In this case, the principal direction is denoted as y-direction.  París et al [1] calculate ERR by 
means of VCCT-BEε. VCCT calculates the ERR by multiplying the displacement of crack face nodes by the force 
required for crack closure at each node [1]. The interested reader is referred to reference [34] for further details. 

4. 2D Cross-ply Laminate Model 

The cross section of the laminate is modelled as two sections with separate material definition. ζo adhesive layer 
exists at the interface. The model represents half of the specimen in both vertical and horizontal directions where 

y 

z x 

2h 



symmetric boundary conditions can apply. In this case only one surface of the crack is drawn, Fig.4. The analysis is 
quasi static and Abaqus standard solver is used. 

  

Fig.4. Boundary conditions and crack illustration. 

 

In order to evaluate the results, the work by Blázquez et al [1] using VCCT-BEε and the work by εcCartney [23] 
using analytical methods are used for comparison. Four contours were used in the test to check the consistency of the 
results. As the model dimension relatively large in to z direction, plain strain element is used. Furthermore, it is 
necessary to define the mesh such that the contour does not overlap the adjacent ply and to remain neatly 
homogeneous. The crack length was varied between 0 and 0.55 mm (which is 90 plies thickness) at 0.1mm intervals 
(smaller intervals were used near the interface as the mesh had to be refined). Four different model lengths, δ, were 
tried (0.5mm, 1mm, 2mm, and 4 mm).  

 

5. Results and Discussion 

5.1 ERR for Different Crack δengths  

Fig.(5) shows the ERR calculated for δ=2mm from three different methods (FEε, theoretical and Bδε). J-integral 
values are slightly higher than those of BEε and analytical solutions. FE solver considers transverse stresses which 
are not considered in VCCT. Therefore g higher value of ERR is achieved. The maximum value is observed 
approximately at a=0.4 mm. Theoretically, the crack progresses if ERR is beyond the critical value Gc.  

 

 

Fig.5. ERR for L=2 mm. The crack will extend unstably after a = 0.1 mm 
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For Hexply8552 Gc is equal to 0.3 KJ/m2 for mode one crack opening [33]. For this load setting Gc is attained  
approximately a=0.1mm. When this value is reached the crack extends until somewhere between the maximum ERR 
and the interface where ERR becomes zero [1]. Theoretically because the ERR decreases to very small amount near 
the interface the crack must stop just before reaching the 0 ply. In the stress analysis it is clearly visible that for 
cracks so close to the interface the normal tension at the interface is much larger than the material strength and 
delamination might happen prior to the crack reaching the interface.    

5.2 Transverse Crack Separation Length  

Fig.(6) shows the variation of J-integral at similar strain for different model lengths (δ=0.5mm, 1mm, 2mm and 4 
mm). At δ=2 mm, which is twice as large as the model thickness, the neighbouring cracks do not have influence on 
each other and larger specimens have the same ERR curve (Fig.6). This means that the crack existence does not 
affect the stress distribution on distances twice as large as the models’ thickness. 

 
Fig.6. Comparison of ERR for different specimen length. If L greater than 2mm, the ERR for different lengths have small difference 

There is a specific pattern for transverse cracks in composite materials which is related to the geometry and material 
that also constrains the number of cracks that can develop in the matrix. This limit is known as upper limit or 
“saturation state” [3] which can be related to the separation length. The stress releases because of the crack 
occurrence can only influence within certain distance. 

5.3 Effect of mesh size and contour path 

ABAQUS uses the contour integral method to calculate J-integrals. It automatically selects a node at the crack tip for 
the inner contour and the outer contours that pass through adjacent nodes. The contour should be confined within the 
homogeneous area. Fig.(7) depicts distinct contour . εesh size analysis showed that for mesh sizes as large as 0.2 
mm to very small mesh sizes (mesh size 0.01mm) convergence is attainable. It also showed independence of J-
integrals to mesh size.  

 
Fig.7. Contours around crack tip singularity in ABAQUS.  
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The first contour shows slightly higher value compared to the larger contours. ζo matter what the mesh size is 
Fig.(9). ABAQUS help suggests mesh refinement for accurate results and neglecting the first two contour outcomes. 
The approximation of FEA slightly affects the results of J-integrals but it must be noted that mesh refinement should 
not be related to contour integral accuracy. For the first contour, the error stem from crack tip singularity definition. 
This means mesh refinement does not increase the J-Integral accuracy anyway. This was also argued by Brocks and 
Scheider [35]. 

ABAQUS can use quarter-node element to create r-1/2 singularity at crack tip by shifting the mid node of quadrilateral 
element toward the singularity (Fig.9). Barsoum [36] proposed this method for elastic and plastic crack tip region but 
Carka and δandis [37] suggested it is more suitable for linear elastic material. 

 

 
Fig.8. Quarter-point element technique shifts mid-node in 8 node quadrilateral element toward the crack tip to model singularity 

The stress distribution close to the singularity is strongly dependant on the distance between the singularity and the 
mid-element node. In order to clarify the effect of quarter-point element on the J-integrals a test was run by changing 
the position of mid-element node along element side. The results show that the optimum position for the shifted node 
is around 25% of the element side length (Fig.9). 

This might also show that this distance gives more accurate stress distribution for singularity, as it produced closer 
results for the J-integral. 

 

Fig.9. First contour integral result is ruled by the position of mid-node. lqp is the mid-node distance to singularity and le is the length of the element. 

5.4 Stress Distribution  

When the crack progresses toward the interface, the normal stress and shear stress are changed significantly and can 
trigger other forms of failure including delamination. Figs.10a and 10b show the change in normal stress at the 
interface as the crack tip gets closer. The crack tip exerts large tensile force on the interface ahead of the crack. 
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  (a)   (b) 

Fig.10. (a) Normal stress distribution along the interface for L=2mm and crack very close to the interface (b) Zoom in normal stress close to the crack tip area 
along interface for L=2mm and the crack near the interface 

 

(a) (b) (c) 

 

(d)  (e)   (f) 

Figure 11 (a) Strain in transverse direction (zoomed) (b) Strain in loading direction (zoomed) (c) von Mises stress (zoomed) (d) Maximum in-plane principal 
strain (e) Stress in normal direction to loading and (f) Stress in loading direction for L=2 mm and a=0.5mm 

 

The normal stress has a sudden increase when the crack is about to reach the interface and pushes normal stress to 
above the yield strength of the resin (approximately 81εPa). Concurrently, the normal stress decreases moving away 
from y=0 axis and between 0.1mm and 1mm, it is mostly compressive force at the interface. For cracks this close to 
the interface the specimen is experiencing large stresses but the J-integral does not predict crack propagation. 
Fig.(11) provides stress and strain contours as well as von εises stress for a=0.5mm.  
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For shear stress (Fig.12) there is an alteration of direction at distances close to y=0.  For a=0.54 mm (Fig.12), the 
shear stress is not zero at y=0 -unlike other crack lengths- because of the singularity definition.  

As the tensile stress is far greater than the strength of resin at the interface, it is not realistic to consider a transverse 
crack without addressing delamination. París et al. investigated ERR for transverse crack when there is a 
delamination and the results showed that the ERR is the same for most of the crack lengths for cases when the crack 
tip is further than 0.1mm from the interface [1]. Also in an experimental study, París et al. verified their results on the 
transverse crack arresting just before reaching the interface and the effect of such cracks on delamination [42]. 

 

Fig.12. Shear stress at interface 

 

 

 

6. Conclusion 

ERR is a key factor in fracture analysis and, therefore, there is a genuine interest by engineers in developing accurate 
tools for its evaluation. The present study has compared three different methodologies for the calculation of the ERR 
associated to transversal crack in a [0/90]s laminate. Those are: 

- The J-integral embedded into FEε. 
- The VCCT embedded within BEε and, 
-  Analytical means. 

The following remarks can be highlighted: 

 ERR values were well-correlated by all three methodologies except when the crack length was 
approximately 80% of the ply thickness, i.e. to a 20% distance of the interface between distinct plies. VCCT 
neglects the transversal stress in this implementation of BEε and also the analytical expression that is the 
possible reason for smaller value of ERR. Therefore, it results in a certain difference only at the 
aforementioned distance in which that neglected component is significant.  
 

 ζo mesh dependence was observed with the FEε for the calculation of the J-integral, although the number 
of contours used can effect at some point. 
 

 The effect of displacing the mid-element node was investigated in this work. It was showed that the 
inaccuracy of the J-integral first contour is due to the definition of the singularity. The first contour provided 
the closest result when the mid node is placed at ¼ element length from the singular point.  
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 The stress distribution at the interface was also presented. It was observed that the stress reaches the 
maximum allowable at the interface between distinct plies when the transverse crack is very close to the 
interface.  
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