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Resource Allocation for Cognitive Small Cell
Networks: A Cooperative Bargaining Game
Theoretic Approach

Haijun Zhang, Member, IEEE, Chunxiao Jiang, Member, IEEE, Norman C. Beaulieu, Fellow, IEEE, Xiaoli
Chu, Member, IEEE, Xianbin Wang, Senior Member, IEEE and Tony Q. S. Quek, Senior Member, IEEE

Abstract—Cognitive small cell networks have been envisioned
as a promising technique to meet the exponentially increas-
ing mobile traffic demand. Recently, many technological issues
pertaining to cognitive small cell networks have been studied,
including resource allocation and interference mitigation, but
most studies assume non-cooperative schemes or perfect channel
state information (CSI). Different from the existing works, we
investigate the joint uplink subchannel and power allocation
problem in cognitive small cells using cooperative Nash bargain-
ing game theory, where the cross-tier interference mitigation,
minimum outage probability requirement, imperfect CSI and
fairness in terms of minimum rate requirement are considered.
A unified analytical framework is proposed for the optimization
problem, where the near optimal cooperative bargaining resource
allocation strategy is derived based on Lagrangian dual decom-
position by introducing time-sharing variables and recalling the
Lambert-W function. The existence, uniqueness, and fairness
of the solution to this game model are proved. A cooperative
Nash bargaining resource allocation algorithm is developed, and
is shown to converge to a Pareto-optimal equilibrium for the
cooperative game. Simulation results are provided to verify
the effectiveness of the proposed cooperative game algorithm
for efficient and fair resource allocation in cognitive small cell
networks.

Index Terms—Cognitive small cell, cooperative game, fairness,
Nash bargaining, OFDMA, power control, resource allocation.
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I. INTRODUCTION

Driven by the rapid development of wireless terminal
equipments and wide usage of bandwidth-hungry applications
of mobile Internet, wireless data traffic is increasing in an
exponential manner. Traditional deployment of macrocell base
stations (MBS) suffers from poor quality of service (QoS)
and coverage for indoor and cell edge users, especially for
potential use of high carrier frequency in 5G [1]. Therefore,
off-loading the traffic from primary macrocells, improving the
capacity and enhancing the coverage of indoor and cell edge
scenarios are critically needed. In this context, deployment
of low-power, low-cost small access points (e.g., microcell,
picocell and femtocell) becomes a promising technique [2].
Small cells can significantly improve the efficiency of fre-
quency reuse and spectrum sharing. Heterogeneous networks,
comprised of small base stations (SBS) and MBSs, is also an
important candidate technique for 5G mobile communications.
Compared with the orthogonal deployment, spectrum sharing
between macrocells and small cells is more attractive due to
easy implementation and more efficient utilization of spec-
trum. In spectrum sharing, the macrocells can be considered
as the primary network and small cells can be regarded
as the secondary cognitive network [3]. However, cross-tier
interference could be severe in spectrum sharing cognitive
heterogeneous small cell networks. Therefore, the benefits
of cognitive small cell deployments come with a number of
fundamental challenges, which include resource management
and cross-tier interference mitigation.

Game theory based resource allocation and interference
mitigation in small cells have been widely investigated in
existing works [4]-[11]. In [4], non-cooperative power al-
location with signal-to-interference-plus-noise ratio (SINR)
adaptation is used to alleviate the interference from femtocells
to macrocells, while in [5] Stackelberg game based power
control is formulated to maximize femtocells’ capacity under
a cross-tier interference constraint. In [6], a non-cooperative
power and subchannel allocation scheme for co-channel de-
ployed femtocells is proposed, together with macrocell user
transmission protection. In [7], the authors consider a capacity
maximizing power allocation based on a Stackelberg game,
where the MBS is the leader and the FBSs are assumed
as followers. Subchannel allocation in femtocells is formu-
lated into a correlated equilibrium game-theoretic approach
to minimize their interference to the primary MBS in [8].



A unique Nash equilibrium (NE) is achieved and a hybrid
access protocol is designed for the Stackelberg game in [10].
A non-cooperative game based power control algorithm is
proposed in [11] together with a base station association
scheme for heterogeneous networks. In our previous work
[12] [13], resource scheduling (based on uniform pricing and
differential pricing game) and power control were proposed
for small cell networks.

Moreover, game theory based energy efficient resource
allocation has also been investigated for small cells. In [9],
the energy efficiency aspect of spectrum sharing and power
allocation was studied using a Stackelberg game in hetero-
geneous cognitive radio networks with femtocells. While in
[14], NE of a power adaptation game was derived to reduce
power consumption and an admission control algorithm was
proposed. However, most of the aforementioned resource
allocation algorithms are based on non-cooperative game,
where the NEs are not always efficient, while cooperative
bargaining game modeling [15]-[18] is more suitable for
resource allocation in small cell networks. Moreover, most of
the existing works do not consider the fairness for users in
small cells.

Although some works have been done for fair resource
allocation in cognitive radio [20] and femtocell networks [19],
these papers mainly focus on the resource allocation with
the assumption of perfect channel state information (CSI).
However, in practice, it is difficult for cognitive small cell users
to have perfect knowledge of a dynamic radio environment due
to hardware limitations, short sensing durations and network
connectivity issues in cognitive small cell networks. To the
best of our knowledge, interference-aware resource allocation
for small cell networks considering fairness, imperfect CSI and
outage limitations has not been studied in previous works.

In this paper, we investigate the joint subchannel schedul-
ing and power allocation problem for orthogonal frequency
division multiple access (OFDMA) cognitive small cell net-
works based on a cooperative bargaining game model with
consideration of fairness for users in each small cell, cross-
tier interference limitation, QoS in terms of outage constraint,
imperfect CSI and maximum power constraints. The main
contributions of this paper are summarized as follows.

o We formulate the uplink subchannel and power allocation
problem in cognitive small cells as a cooperative Nash
bargaining game, where a cross-tier interference temper-
ature limit is imposed to protect the primary macrocell,
a minimum outage probability requirement is employed
to provide reliable transmission for cognitive small cell
users, a minimum rate requirement is considered to guar-
antee fairness for users in each small cell, and imperfect
CSI is considered.

o We present a unified analytical framework for the op-
timization problem in cognitive small cell networks,
where the near optimal cooperative bargaining resource
allocation strategy is derived by introducing time-sharing
variables and the Lambert-W function. The existence,
uniqueness, and fairness of the solution to this game
are proved analytically. Accordingly, a cooperative Nash
bargaining resource allocation algorithm is developed,

and is shown to converge to a Pareto-optimal equilibrium
for the cooperative game.

o Small cells are enabled with cognitive capabilities, thus
the spectrum sharing primary macrocell can be protected
by cross-tier interference temperature. Moreover, imper-
fect CSI results in outage in the small cells. In our
proposed joint power and subchannel allocation scheme,
the achievable sum rate is maximized subject to not only
the minimum data rate but also an acceptable outage
probability in the cognitive small cells.

o The proposed algorithm is evaluated by extensive simula-
tions, which show that the proposed cooperative bargain-
ing resource allocation algorithm outperforms the existing
centralized maximal rate (MR) approach, and round-robin
(RR) fairness, giving a good trade-off between throughput
and fairness.

The rest of the paper is organized as follows. Section
II presents the system model and the problem formulation.
Section III provides basics for the Nash bargaining solution
(NBS) of cooperative game theory and the utility design of
the cooperative game. Section IV provides the solutions and
algorithm implementation of the cooperative bargaining game
in small cell networks, while in Section V, performance of
the proposed algorithms is evaluated by simulations. Finally,
Section VI concludes the paper.

II. SYSTEM MODEL AND PROBLEM FORMULATION

A. System Model

As shown in Fig. 1, we consider an OFDMA cognitive small
cell network where K co-channel cognitive small base stations
(CSBSs) are overlaid on a primary macrocell. We focus on
resource allocation in the uplink of cognitive small cells. Let
M denotes the numbers of active primary macro users in the
macrocell. Each small cell contains the same I’ number of
users. The OFDMA system has a bandwidth of B, which
is divided into N subchannels. The channel fading of each
subcarrier is assumed the same within a subchannel, but may
vary across different subchannels. We denote g5, and g, ; ,
as the channel power gains on subchannel n from cognitive
small cell user ¢ in cognitive small cell k£ to the primary
MBS and CSBS k, respectively, where k € {1,2,..., K},
i€{1,2,..,F},ne{l,2,..., N}; denote g,iszn as the chan-
nel power gain on subchannel » from user j(j € {1,2,..., M})
in the macrocell to CSBS k; denote pj; ,; , and p}}7, as cognitive
user ¢’s transmit power on subchannel n in cognitive small
cell k£ and primary macro user j’s power on subchannel n,
and P = [pfm] KxFxN 18 the power allocation matrix of
the K cognitive small cells. Denote A = [k, in] KxFxN s
the subchannel allocation matrix, where ay, ; , = 1 means that
subchannel n is assigned to cognitive user ¢ in cognitive cell
k, and ay; , = O otherwise.

Then, the received SINR at the k" CSBS for cognitive
small cell user i occupying the n** subchannel is given by,
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Fig. 1. System model of cognitive heterogeneous small cell networks.
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the primary macrocell, and o2 is the additive white Gaussian
noise (AWGN) power. Note that in (1), co-channel interference
between small cells is assumed as part of the thermal noise
because of the severe wall penetration loss and low power of
CSBSs [21]. This is particularly the case for sparse deployment
of small cells in suburban environments [5], where co-tier
inter-small cell interference is negligible as compared with
cross-tier interference [22], [23].

Based on Shannon’s capacity formula, the achievable ca-
pacity of small cell user ¢ on subchannel n in small cell & is
given by:

Olfnz = log, (1 + ’Ylfzn) (bps/Hz). (2)
The channel-to-interference-plus-noise ratio (CINR) is
S o glg,i,n
Rt qu,i,n + o2

3)

where Iy ;
as

= pitgp'S .. Therefore, eq. (2) can be rewritten

le,i,n 10g2 (1 + pk 7, nh’k: 7 n) (bpS/HZ) (4)
The k" small cell allocates the radio resources based on an
imperfect estimation of the CINR hk i where

h‘k @,n + Ak,i,n (5)

and where Ay ;,, is the channel estimation error, which is
modeled as a zero-mean complex Gaussian random variable
with variance 0 ;. Ay, are independent and identically
distributed (i.i.d.) for different subchannels, different users and
different cognitive small cells. Assuming a minimum mean
square error (MMSE) estimator, the CSI estimation error and
the actual CSI are mutually uncorrelated [25] [24].

The achievable rate of user ¢ on subchannel n in small cell
k can be defined as [32]

Tlf,i,n 10g2 (1 + pk KN nhk i n) (bpS/HZ) (6)

The outage probability [26] imposed by imperfect CSI for
user ¢ on subchannel n is defined as

hk:zn

S S
Poutagek,i,n = Pr{rk,i,n > Ck,i,n}~ @)

Due to the fundamental role of primary macrocells in
providing blanket cellular coverage, a macrocell users QoS

should not be affected by small cell deployments. Therefore,
to implement cross-tier interference protection, we impose
an interference temperature limit to constrain the cross-tier
interference suffered by primary MBS. Let I denote the
maximum tolerable interference level on subchannel n for the
primary macrocell, we have,

F
S MS th
Z Z Ak,i,nPkinIk in <I, ,Vn. (3

k=11=1

B. Problem Formulation

In this paper, our target is to maximize the cognitive small
cells’ utilities while protecting primary macrocell users’ QoS.
We assume that the cross-tier interference temperature limit
is sent by a primary MBS periodically, which requires little
overhead in the primary macrocell. In this case, the subchannel
assignment and power control in primary macrocells are not
part of the optimization. Thus, the corresponding joint sub-
channel scheduling and power allocation problem for uplink
CSBS can be mathematically formulated as,

K
rgfilgcz Uy 9
k=1
s.t. C1: Z ak7i7npf7i7n < Pmamavkai

C2:pf,n>OVk,i,n

Zzaklnpkzngkzsn < Ith vn

k=1 1i=1

C3: (10)

C4:> apin <1,Vkn
i=1
akin € {0,1},VEk,i,n

Poutagek’i,n S g, Vka Z.a n

C5:
6 :

where Uy, is the objective function, which will be designed in
Section III.B. Constraint C1 limits the transmit power of each
cognitive small cell user to be below P,,,,; C2 represents
the non-negative power constraint of the transmit power on
each subchannel; C3 sets the tolerable interference temperature
level on each subchannel of a primary macrocell; C4 and C5
are imposed to guarantee that each subchannel can only be
assigned to at most one user in each cognitive small cell. C6
expresses the outage probability constraint of each cognitive
user in cognitive small cells, where ¢ is the outage probability
limit for user ¢ on subchannel n in small cell k.

III. GAME THEORETIC RESOURCE ALLOCATION IN
SMALL CELL NETWORKS

In this section, we briefly review the basic definition and
concepts of cooperative bargaining games and their application
in resource allocation problems. Then, the utility function is
designed based on the bargaining games.



A. Basics of Bargaining Games

Let K = {1,...,k,..., K} be the set of players, which are
the small cells in this paper. Let S be the resource allocation
strategy of the players, with A,, and P,, being the subchannel
assignment space and the power allocation strategy space,
respectively; Let Si be the resource allocation strategy of the
player k; Let Uy be the utility/payoff function of player £k,
and U™ is the minimum payoff that player k expects, where
Ui is defined as a minimum QoS requirement in terms of
data rate. In a cooperative game, if the minimal payoff U™
is not achieved, player £ would not cooperate.

In non-cooperative games, players do not collaborate with
one another. The stable solution for a non-cooperative game
is the NE, if the NE exists and it is unique. A NE in a non-
cooperative game is defined as,

Un(SYP,SNE) > Ui(Sk, SVE), VS (11)
where SYF is the resource allocation strategy of player k in
NE, and SYF is the strategy of the other K — 1 players under
Nash Equilibrium except for player k. Nash Equilibrium is
defined as the fixed points where no player can improve its
utility by changing its strategy unilaterally [27].

1) Nash Bargaining Solutions: It is known that the NE
in a non-cooperative game is not always efficient, that is,
the strategy under NE may not be efficient. Therefore, we
resort to cooperative bargaining games [29]. Let U be a closed
and convex subset of R” that represents the set of feasible
payoff allocations that the players can get if they all cooperate.
Suppose {U, € U|U, > U™ Vk € K} is a nonempty
bounded set. Define U™ = (U™, ... Um"), then the pair
of (U, U™") constructs a K-player bargaining game. Here,
we define the Pareto efficient point [27], where a player can
not find another point that improves the utility of all the players
at the same time.

Definition 1: (Pareto Optimality) A point is said to be Pareto
optimal if and only if there is no other allocation U ,; such that
U,; > Ug,Vk € K, and U,; > U,k € K, i.e., there exists no
other allocation that leads to superior performance for some
players without causing inferior performance for some other
players [27].

There may be an infinite number of Pareto optimal points
in a game of multi-players. Thus, we must address how to
select a Pareto point for a cooperative bargaining game. We
need a criterion to select the best Pareto point of the system.
A possible criterion is the fairness of resource allocation.
Specially, the fairness of bargaining games is NBS, which
can provide a unique and fair Pareto optimal point under the
following axioms.

Definition 2: u is an NBS in ¢/ for U™™", that is, u =
f(U, U™ if the following axioms are satisfied [27].

1) Individual Rationality: U, > U,;"i", where U, €
u, vk € K.

2) Feasibility: u € U.

3) Pareto Optimality: u is Pareto optimal.

4) Independence of Irrelevant Alternatives: If u € U ‘cu,
o= f(U,U™"), then a = f(U , U™"),

5) Independence of Linear Transformations: For any linear
scale transformation 1,
YU, U™)) = fpU), p(T™T)).
6) Symmetry: If U is invariant under all exchanges of play-
ers (small cells), f;(U, U™") = f;(U, U™"), Vi, j.
Axioms 1), 2) and 3) define the bargaining set B. Hence,
the NBS locates in the bargaining set. Axioms 4), 5), and
6) are called axioms of fairness. Axiom 5) ensures that the
bargaining solution is scale invariant. The symmetry axiom 6)
ensures that if the feasible ranges for all players are completely
symmetric, then all users have the same solution. Axiom 6)
implies that if players have the same QoS requirements and
utility functions, they will have the same utility regardless of
their indices. This represents an important fairness criterion
for our cooperative game that gives incentives to players to
collaborate, as they can rely on the network to treat them
fairly when their utility-resource trade-offs vary over time.

B. Utility Design and Resource Allocation Game Formulation

The following theorem shows the existence and uniqueness
of the NBS that satisfies the axioms 1)-6).

Theorem 1: There is a unique and fair solution function
f(U,U™") that satisfies all the axioms in Definition 2, and
the solution can be obtained by

K

H (Ur = UF™).

k=1

fUu,u™n) ¢ arg (12)

max

Ueld,U>Umin

Proof: The proof of the theorem is omitted due to space
limitations. A similar detailed proof can be found in [28]. B

Here, we relax ay;n to be a continuous real variable in
the range [0,1]. In this case, ay ;. can be interpreted as the
fraction of time that subchannel n is assigned to user ¢ in small
cell k£ during one transmission frame. We first introduce the
following Lemma,

Lemma 1: Define Uy =

> In(Vi i (Sk,i)) = S In (erka;”) =
i=1 i=1

F N
Zl In <( 21 ak,z’,nrlii,n(pf,i,n)>ka,fn)
= n=

Vi,i(Sk,i) = Rk — kaj” is the difference between user
1’ data rate and it’s required minimum data rate, and RZ’Z”
is user ¢’s minimum data rate in small cell k. Sj; is the
resource allocation strategy of user 4 in small cell k. If the
expression of Ry ; is concave over Sy ;, U, will satisfy the
Nash axioms required in Theorem 1.

Proof: As can be seen as a given condition, Ry, ; is concave
over Sy ;, then In(Vj ;(Sk,;)) is concave, and thus Uy, is also
concave in Sy. Therefore, Uy, defined here can satisfy all the
axioms in Definition 2 and Theorem 1. |

Fig. 2 shows a simple example of a two-small-cell case,
where U; and U, are the with different utilities of the two
small cells [29]. Area S is the feasible region for U; and Us.

When U™" = 0, the objective function in (12) is reduced
K . - -
to H (Uk - Uk";nln>|U]znin:O,K:2 - U1U2 - O, Where C iS

where

a constant. The optimal point of the NBS is B at (Uy,Us).
The physical meaning of this is that “after the small cells are
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Fig. 2. An NBS example of the two small cells with two different utilities
[29].

assigned with the minimal rate, the remaining resources are
divided between the two small cells in a ratio equal to the
rate at which the utility can be transferred.” [29]. The optimal
point for the Max-Rate approach is at (U, UJ), which is the
tangent of line U; + Uy = C* and the feasible region S. As it
can be seen from Fig. 2, the sum rate of NBS solution, U 1+
Ty =C ~NBS, 1s smaller than the Max-Rate approach, because
of the tradeoff of sum rate and fairness in NBS. Moreover,
Cnps is much larger at (U{,Ué), which induces the most
fair solution of U; = U,. That is, the NBS solution can well
balance throughput and fairness.

According to Lemma 1 and Theorem 1, the unique Nash
bargaining equilibrium with fairness can be found over the
strategy space. By adopting the objective utility function in
Lemma 1, the optimization problem in (9) under the con-
straints (10) can be rewritten as,

N
s (zm((z <p>) _ m))
7 n=1

(13)

st. C1,02,03,04,C5,C6 (14)

It can be seen that the problem defined in (13) under
the constraints of (14) is a non-convex mixed integer pro-
gramming problem because of the discrete characteristics
of the subchannel constraints in C'4 and C5. The optimal
solution can be obtained by exhaustive search, which has
a high complexity. To reduce the complexity and meet the
requirements in Definition 2, the optimization problem above
should be transformed into a convex problem.

Before Lemma 1, we relax ay ;. to be a continuous real
variable in the range [0,1]. This time-sharing relaxation was
first proposed in [30]. After introducing the time-sharing
method, the transformed optimization problem is regarded as a
low bound of the original problem [30]. Time-sharing method
has been widely used to transform non-convex combinato-
rial optimization problems into convex optimization problems

for multiuser subchannel allocation in multichannel OFDMA
systems [32]. According to [31], it is shown that the duality
gap for a nonconvex optimization problem approaches zero in
multichannel systems when the number of subchannels is large
enough. In the real systems, it’s a typical configuration of 50
resource blocks (RBs) for LTE/LTE-Advanced. Similarly, in
this paper, we assume there are 50 subchannels (/N = 50) in
our considered system. It’s large enough for the dual problem
to have a near-zero-gap. For notational brevity, denote the
actual power allocated to user ¢ in cognitive small cell &
on subchannel n as gy, = akinpf,m. Similarly, denote

S
dk,i,n9k in

kyin — ak,i,nlk,in

pJ ng,w T o2 and rk i = log,

the received interference power and capacity of user ¢ on
subchannel n in small cell k, respectively. Now, the problem
(13) subject to the constraints in (14) can be converted into

N
maX (Z In ( (Z ak,i,nrlf,i,n (Qk,z‘,n)> — Zfzn) )
n=1

15)

st. Cl: ZQk,i,n < Praz, Yk, i

C2 :pf,i,n > 0,Vk,i,n

K F
MS th
Z Z Qk,i,ngk R S I vn
k=11i=1
F

Zak,i,n < 17vkan
i=1

C5:0< agin <1,Vk,i,n
6 : Poutagekyi,n < EaVka i7n

C3: (16)

C4:

where Q = [Qk,i,n]KxeN-

Theorem 2: The problem in (15) under the constraints (16)
is a convex optimization problem.

Proof: 1t can easily be proved that the Hessian matrix of
(15) over ag,;n and g, is negative semidefinite, thus, the
objective function of (15) is concave. Moreover, the feasible
set of the objective function in (15) is convex, and the
corresponding optimization problem is a convex optimization
problem. ]

Therefore, there is a unique optimal solution of problem
(15) under the constraints (16), because the problem and its
feasible set are convex.

Theorem 3: The utility function in (15) meets the Nash
bargaining axioms defined in Definition 2, and the NBS is
reduced into proportional fairness, when R}Jff” = 0 in the
utility function of (15).

Proof: Since the objective function in (15) is concave and
injective, it meets all the Nash Bargaining axioms defined in
Definition 2. When RZ‘;" = 0, the utility function in (15) can

K .

be written as [] In(Ry,; — km;”)|Rmm —o = H In(Ry ;).
k=1

When R"”" = 0, the NBS is the same as proport10nal fairness,

min
(Rk i Rk,z

'lc,i,

which requires that H > ( for the interested

k=1



utility Ry, ;, Vi. [ |

IV. BARGAINING RESOURCE ALLOCATION SOLUTIONS
FOR SMALL CELL NETWORKS

We first substitute (4) and (7) into C'6 and have,

Pr{rkzn 2 1Og’2 (1+pkznhkzvz)} <e (17)
and (17) can be rewritten as
oriim — 1
Prihg,,<——p<e (18)
v pk,i,n

Here, we assume that hfln is a non-central chi-squared
distributed random variable [33]; Following the simplification
used in many previous works on the effects of imperfect CSI
[25], we only consider the case of P,ytqge = €, and have

S
27‘]9,1,’” — 1
FhS - s = E.
k,i,n
' pk,i,n

where Fj,s is the CDF of hfl - Therefore, the data rate

that satisfies the outage probablhty requirement can be given

as
rfzn = log, (1 + pf,i,nF};fli . (5)) .

19)

(20)

Substituting (20) into (15), we transform the optimization
problem in (15)-(16) into

max (Zln((Zakmlog2< qk’_” hfl (5)))— kmz”>>
Y\is kyi,n

st. C1,02,C3,C4,C5 (22)
Since the optimization problem in (15)-(16) is convex, the
transformed problem in (21) and (22) is also convex.

A. Solution of the Cooperative Resource Allocation Game

The solution gap between the primal problem and its dual
problem can be considered zero for most engineering prob-
lems. Since the duality gap is zero, we can solve the problem
in the dual domain. Moreover, the system considered here
is a multi-subchannel network; therefore, dual decomposition
can be an effective method. The Lagrangian function of the
primal problem in (21)-(22) is given by (23) at the top
of next page. Where A = [A;i]lxxr is the Lagrange
multipliers corresponding to the joint power constraint, and
© = [n]nx1 and n = [ ]k xn are Lagrange multipliers
vectors associated with the cross-tier interference limit and
subchannel usage constraints, respectively.

Thus, the dual problem is given by

min Z(\, @, M) (24)

Ap,m>0

where the dual function Z(A, pt,n7) can be given as
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where W(A, Q, A\, u,n) for a fixed set of Lagrange multipliers
A, i, m is given by (26) at the top of next page.

Based on standard optimization techniques and the Karush-
Kuhn-Tucker (KKT) conditions [34], the power allocation for
user ¢ in small cell £ on subchannel n is obtained by taking
the first derivative of (26) with respect to g, ; », Which can be
given as
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According to the KKT conditions,
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Note that (28) is a transcendental algebraic equation over
Qk,i,n» Which can be solved by recursive numerical methods.
The solution of (28) can be obtained as follows. Let

Apin =1+ B0l (o), (29)
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Substituting (29) and (30) into (28), we get,
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Letting ¥ = 2ka,§”, we have
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Multiplying both sides of (32) with =, we have
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Letting ¢ = M we can get
Fk,iJL
@¥ =2%in T, (34)

Using the Lambert-W function properties, ¢ can be given as
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where W () is the Lambert’s W function given by W(-) =
Jim1
oo (i) /Z ). and (29) into

- ven (155

(35), we can obtain
(36)

Therefore, given the optimal subchannel allocation ay ;,p,
the optimal power allocation p7 ; . can be obtained as

k:'L'n.
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where (z)" = max(0, z).

Given the optimal power allocation, the first derivative of
(26) with respect to ay,; ,, is given as
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Subchannel n is assigned to the user with the largest Hy, ; ,,
in small cell k£ [30] [32]; that is,

(Alk’i*’n =1 i*=arg max H,c_’im,,Vk,n. (40)
k2

B. Update of the Dual Variables

Both the ellipsoid and subgradient method can be adopted
in the update of dual variables [34]. Here, we choose the
subgradient method to update the dual variables, as formulated
in Lemma 2

Lemma 2: The subgradient of Ay ; and p, are respectively

given by
ma:z: Z pk i,m (41)
Ith Zzpkzngkzn (42)
k=11i=1
Proof: The proof is provided in Appendix A. ]

According to Lemma 2, the dual variables can be updated
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where ,BY) and ﬁél) are the step sizes of iteration [(I €
{1,2, ..., Lmax})> Lmax is the maximum number of iterations,
and the step sizes should satisfy the condition,

> A" = oo, lim 5 = 0,¥l € {1,2}. (45)
—00
=1

C. Cooperative Bargaining Resource Scheduling Algorithm

Although (37), (40), (43)-(44) give a solution to the joint
subchannel scheduling and power allocation problem of (13)-
(14), it still remains to design an algorithm to provide the
execution structure and the executing entity for the equations.
Therefore, we propose Algorithm 1 as an implementation of
our cooperative bargaining resource scheduling solution. The
proposed iterative Algorithm 1 will guarantee convergence by
using the subgradient method.

Algorithm 1 Cooperative Bargaining Resource Scheduling
Algorithm

1: Initialize I, and Lagrangian variables vectors A, p, set
1=0

2: Initialize py ; , with an uniform power distribution among
all subchannels

3: Initialize ay, ; , with subchannel allocation method in [38],
Vk,i,n

4: repeat

5: fork=1to K do

6: for n=1to N do

7: for : =1 to F do

8: a) Cognitive users update ﬁfm according to
37);

9: b) Calculate Hy, ; ,, according to (39);

10: c) CSBS updates @y, ~ » according to (40);

11: d) CSBS updates A according to (43);

12: end for

13: end for

14:  end for

15: MBS updates p according to (44), and broadcasts those
values to all CSBSs via backhaul link, [ = + 1.

16: until Convergence or | = Ly, x

Note that g%sn required in Algorithm 1 can be estimated
at cognitive user 7 in small cell £ by measuring the downlink
channel power gain of subchannel n from the macrocell and
utilizing the symmetry between uplink and downlink channels,
or by using site specific knowledge [35]. Furthermore, it can be
assumed that there is a direct wire connection between a CSBS
and the MBS for the CSBS to coordinate with the central MBS
[51, [36], according to a candidate scheme proposed for 3GPP
small cell mobility enhancement [37].

Algorithm 1 can be implemented by each CSBS utilizing
only local information and limited interaction with the MBS;
therefore, Algorithm 1 is distributed and the practicality is
ensured.

V. SIMULATION RESULTS AND DISCUSSION

In this section, simulation results are given to evaluate the
performance of the proposed algorithms. In the simulations,

spectrum-sharing CSBSs and primary users are randomly
distributed in the range of MBS, and cognitive small cell users
are uniformly distributed in the coverage area of their serving
small cell; the carrier frequency is 2 GHz, B = 10 MHz,
N = 50, M = 50, and 0> = £N,, where Ny = —174
dBm/Hz is the AWGN power spectral density. The CINR
h . .. is assumed as a non-central chi-squared distributed
random variable. The primary macro users’ maximum transmit
powers are set at 30 dBm. The coverage radius of the MBS
is 500 m, and that of a small cell is 10 m. We assume that all
small cell users have the same QoS requirement.
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Fig. 3. Convergence of the proposed Algorithm 1.

In Fig. 3, the convergence of Algorithm 1 is evaluated
with the outage probability constraint ¢ = 0.01, the cross-
tier interference limit Iflh = 7.5 x 1071* W, minimum data
rate requirement RZ‘}” = 0.5bps/H z, the variance of channel
estimate error d;;, = 0.05, number of users per small
cell ' = 4 and maximal transmit power of small cell user
Pra: = 20dBm. As can be seen from Fig. 3, the total
capacity of the small cells converges after 30 iterations. This
result, together with the previous analysis, indicates that the
proposed Algorithm 1 converges in heterogeneous networks.
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Fig. 4. Total capacity of small cells vs variance of estimation error.

Fig. 4 shows the total uplink capacity of K small cells



when the variance of estimation error Jj; , increases from
0.01 to 0.2 for all k,4,n with the user number per small cell
F = 2,4,6. The simulation parameters are set as K = 10 ,
R}f;" = 0.5bps/Hz for all k,i, € = 0.01, P4, = 20 dBm
and Ith = 7.5x1074 W (-101.2 d Bm) for all n. The capacity
of all small cells decreases with the increase of the variance of
estimation error, because of the imperfect estimation of CSI.
We also observe that a higher capacity is obtained with a larger
number of F' because of the multi-user diversity.
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Fig. 5. Total capacity of small cells vs number of small cells.

Fig. 5 shows the total uplink capacity of K small cells
when the number of small cells K increases from 10 to 40,
for the outage probability constraint ¢ = 0.01,0.05,0.1. The
simulation parameters are set as F' = 4 , jog’" = 0.5bps/Hz
for all k,i, 0in = 0.05 for all k,i,n, Pynee = 20 dBm
and It" = 7.5 x 107 W (-101.2 dBm) for all n. The
total capacity of small cells increases with the increase of
the number of small cells. It also can be seen from Fig. 5
that a higher outage probability limit € induces a higher total
capacity of small cells, because a larger value of ¢ enlarges the
feasible region of the variables in the original problem defined
in (13)-(14), etc.
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Fig. 6. Total capacity of small cells vs number of users in each small cell.

Fig. 6 shows the total uplink capacity of K small cells when
the number of users per small cells F' increases from 2 to 6,

for the outage probability limit € = 0.05,0.1,0.2. The other
simulation parameters are set as K = 10, R}C”Z" = 0.5bps/Hz
for all k,14, 0, = 0.05 for all k,4,n, Ppa, = 20 dBm and
It = 7.5x107'* W (-101.2 dBm) for all n. The capacity of
all small cells increases with the increase of F’ because of the
multi-user diversity. Similar to the results in Fig. 5, a higher
outage probability limit £ induces a higher total capacity of
small cells.
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Fig. 7. Total capacity of small cells vs minimum rate requirement of each
cognitive user.

Fig. 7 shows the total uplink capacity of K small cells
when the minimum rate requirement of each cognitive user
Ry"™ increases from 0.2 bps/H z to 1 bps/H z, for the outage
probability limit ¢ = 0.01,0.05,0.2. The other simulation
parameters are set as K = 10, dx; , = 0.05 for all k,¢,n,
Praz = 20 dBm and I*" = 7.5 x 10714 W (-101.2 dBm) for
all n. The capacity of all small cells increases with increasing
R%”, because larger R enlarges the feasible region of
the optimizing variable. Similar to the results in Fig. 5 and
Fig. 6, a higher outage probability limit € induces a higher
total capacity of small cells. In this figure, we also compare
the proposed Algorithm 1 with existing cooperative resource
allocation methods when the CSI is perfectly known. The
existing scheme is composed of cooperative power allocation
in [39] and subchannel allocation in [38]. As can be seen from
Fig. 7, proposed Algorithm 1 has better performance in terms
of capacity than the existing schemes with the assumption
of perfect CSI. With the assumption of perfect CSI, Fig. 7
also showed about 1% 2% performance loss from the original
solution of (13) to the convex optimization solution of (15),
where the original solution is solved by exhaustive method
with high complexity.

Fig. 8 shows the total uplink capacity of K small cells when
the maximum transmit power per cognitive small cell user
P, increases from 25 dBm to 40 dBm, for the interference
temperature limit 7" = 7.5 x 10713 W, 7.5 x 10714 W, 7.5 x
10~1'5 W. The other simulation parameters are set as K = 10

min — (0.5bps/Hz for all k,i, ¢ = 0.01, &, = 0.05
for all k,i,n, and P, = 20 dBm. The total capacity of
the small cells increases with the increase of P,,,,, because
higher P, . enlarges the feasible region S. It also can be seen
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from the figure that higher interference temperature limit 7"
induces higher total capacity of the small cells.

In order to evaluate the fairness of users in small cells, we
use the fairness index (FI) [40], which is defined as

(S5 () /(e (B85 ()

1i=1
This fairness index is widely applied in the literature to
evaluate the level of fairness achieved by resource allocation
algorithms.
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Fig. 9. Fairness index vs number of small cells.

Fig. 9 shows the fairness among all the users in K small
cells when the number of small cells increases from 10 to 50,
with the outage probability limit € = 0.01, I!* = 7.5 x 10713
A RZ‘;" = 1bps/Hz, F = 4, 6} ;. , = 0.05 for all k,i,n, and
Priae = 30dBm. As can be seen from the figure, Algorithm
1 achieves a higher fairness index than the centralized MR
approach, while round-robin(RR) method has the highest fair-
ness index among the three schemes. Here, the centralized MR
approach is composed by exhaustive method of subchannel

allocation and waterfilling power allocation. RR method is
composed of round-robin subchannel and the proposed power
allocation proposed in this paper. Therefore, it’s verified that
the cooperative bargaining resource scheduling algorithm can
achieve higher fairness index with the cost of small reduction
in throughput, compared with the centralized MR approach.

600
550 — e - MR /a
500 ‘24~ AR -7
5 L e .
Y <4 - NBS e
a8 .
8 4501 - R
%) 0,/ -,
= L d
[}
9 400 ,\z \’\z . 4>
© s ," f\’
5 350} PO R Pte
© Kd " ’\f
- \/ " v
Z 300} : R 4
= .
g ,0’ ~’\¢ P -
© b d L d -
O 250 o’ . "\/
= 'l " .
% s’ ’\4 e
= 2001 7 R 2
s’ R s
- -, :‘f‘
1 .
SQ \’\:\,
‘-
10 (e L L L L L
10 15 20 25 30 35 40

Number of Small Cells

Fig. 10. Capacity vs number of small cells.

Fig. 10 shows the capacity of K small cells when the
number of small cells increases from 10 to 40, , with the
outage probability limit ¢ = 0.1, I!* = 7.5 x 10713 W,

}fg” = lbps/Hz, F = 4, 0yin = 0.05 for all k,i,n,
and P,,,; = 30dBm. As can be seen from the figure, the
Algorithm 1 achieves a lower capacity compared with the
centralized MR approach, and higher capacity than the RR
scheme. As one can conclude from Fig. 9 and Fig. 10, the
proposed Algorithm 1 achieves a better trade-off between
capacity and fairness than existing known algorithms. ~ The
complexity of proposed Algorithm 1 is compared with the
existing MR and RR schemes. In Algorithm 1, the calculation
of (39) for every small cell user on each subchannel in
every small cell entails K F'N operations, and a worst-case
complexity of solving (40) needs K F'N operations in each
iteration. Suppose the subgradient method used in Algorithm
1 needs A iterations to converge, updating A and v needs
O(KF) operations each [31] [34], and the computation of
calls O(N) operations, therefore, A is a polynomial function
of K?F?N. The total complexity of Algorithm 1 is thus
O(K?F2N?A). The complexity of RR is O(NA). MR ap-
proach use exhaustive search of subchannel allocation and
waterfilling power allocation with subgradient update [32].
Therefore, the complexity of central MR approach is extremely
high of O(KFNA). Compared with the exhaustive search
for subchannel allocation, which has a worst-case complexity
of O(KFY), the proposed Algorithm 1 has a much lower
complexity than MR approach and higher complexity than RR
approach. In other words, the proposed Algorithm 1 (NBS
approach) can also achieve a tradeoff between capacity and
complexity.
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VI. CONCLUSION

In this paper, we have investigated the joint subchannel and
power allocation problem in cognitive small cell networks. The
resource allocation problem was formulated as a cooperative
Nash bargaining game, where a cross-tier interference temper-
ature limit is imposed to protect the primary macrocell, a min-
imum outage probability requirement is employed to provide
reliable transmission for cognitive small cell users, a minimum
rate requirement is considered to guarantee intra-small cell
fairness, and imperfect CSI is considered in the analysis and
algorithm design. The near optimal cooperative bargaining re-
source allocation solutions are derived by relaxing subchannel
allocation variables and using the Lambert-W function. The
existence, uniqueness, and fairness of the solution to this game
model were proved analytically. Accordingly, a cooperative
Nash bargaining resource allocation algorithm was developed,
and was shown to converge to a Pareto-optimal equilibrium
for the cooperative game. Simulation results showed that the
proposed algorithms not only converge within a few iterations,
but also achieve a better trade-off between capacity and
fairness than the existing algorithms.

APPENDIX A
PROOF OF LEMMA 2

Based on (25), we can get (47) on the top of this page.
From (29), we get (48) on the top of this page.
Therefore, we have

K F
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(49)

Eq. (49) verifies the definition of subgradient and completes
the proof. ]
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