

This is a repository copy of Thermodynamic modelling of alkali-activated slag cements.

White Rose Research Online URL for this paper: http://eprints.whiterose.ac.uk/90501/

Version: Supplemental Material

Article:

Myers, R.J., Lothenbach, B., Bernal, S.A. et al. (1 more author) (2015) Thermodynamic modelling of alkali-activated slag cements. Applied Geochemistry, 61. 233 - 247. ISSN 0883-2927

https://doi.org/10.1016/j.apgeochem.2015.06.006

Reuse

Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of the full text version. This is indicated by the licence information on the White Rose Research Online record for the item.

Takedown

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

eprints@whiterose.ac.uk https://eprints.whiterose.ac.uk/ Applied Geochemistry 67 (2016) 186

Contents lists available at ScienceDirect

Applied Geochemistry

journal homepage: www.elsevier.com/locate/apgeochem

Corrigendum

Corrigendum to "Thermodynamic modelling of alkali-activated slagbased cements" [Appl. Geochem. 61 (2015) 233–247]

Rupert J. Myers ^{a, b}, Barbara Lothenbach ^c, Susan A. Bernal ^a, John L. Provis ^{a, *}

^a Department of Materials Science and Engineering, The University of Sheffield, Sir Robert Hadfield Building, Mappin St, Sheffield S1 3JD, UK

^b Department of Civil and Environmental Engineering, The University of California, Berkeley, CA, United States

^c Laboratory for Concrete and Construction Chemistry, EMPA, Dübendorf, 8600, Switzerland

The authors regret that the ratio $10(Na_{C-(N-)A-S-H}/Na_{(aq)})$ plotted in Fig. 6B in the original submission was calculated incorrectly; as a result, the plotted result in that paper is erroneous. These calculations have been corrected and the ratio replotted as $0.1(Na_{C-(N-)A-S-H}/Na_{(aq)})$ in Fig. 1.

Fig. 1. Replot of Fig. 6B in the original paper (Myers et al., 2015) after correcting the calculation for the Na_{C-(N-)A-S-H}/Na_(ac) ratio.

This change affects the following sentence on page 241 of the original paper (Myers et al., 2015): "A 50% reduction in the concentration of Na in the pore solution is predicted from 0% to 100% slag reaction extent, although a constant pH of 14 is maintained and >10 times more Na is always predicted to be present in the aqueous phase relative to C-(N-)A-S-H gel", which refers to the original, erroneous Fig. 6B. The quoted text should be changed to the following description of Figs. 1 and 6A in the original paper: "A 50% reduction in the concentration of Na in the pore solution is predicted from 0% to 100% slag reaction extent, although a constant pH of 14 is maintained. More Na is predicted to be in the C-(N-)A-S-H gel at slag reaction extents $\geq 28\%$."

This correction does not affect any other part of the original paper.

The authors apologise for any inconvenience that this has caused.

Acknowledgements

The authors thank Mr. Yibing Zuo (Delft University of Technology) for making us aware of the error.

Reference

DOI of original article: http://dx.doi.org/10.1016/j.apgeochem.2015.06.006.

* Corresponding author.

E-mail address: j.provis@sheffield.ac.uk (J.L. Provis).

http://dx.doi.org/10.1016/j.apgeochem.2016.02.008 0883-2927/© 2015 Elsevier Ltd. All rights reserved. Myers, R.J., Lothenbach, B., Bernal, S.A., Provis, J.L., 2015. Thermodynamic modelling of alkali-activated slag cements. Appl. Geochem. 61, 233–247.