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Local Solutions of the Optimal Power Flow Problem
W. A. Bukhsh, Student Member, IEEE, A. Grothey, K. I. M. McKinnon, and P. A. Trodden, Member, IEEE

Abstract—The existence of locally optimal solutions to the AC
optimal power flow problem (OPF) has been a question of interest
for decades. This paper presents examples of local optima on a
variety of test networks including modified versions of common
networks. We show that local optima can occur because the
feasible region is disconnected and/or because of nonlinearities
in the constraints. Standard local optimization techniques are
shown to converge to these local optima. The voltage bounds
of all the examples in this paper are between ±5% and ±10%

off-nominal. The examples with local optima are available in
an online archive [1] and can be used to test local or global
optimization techniques for OPF. Finally we use our test examples
to illustrate the behaviour of a recent semi-definite programming
approach that aims to find the global solution of OPF.

Index Terms—Optimal Power Flow; Local optima; global
optimum.

I. INTRODUCTION

Optimal power flow (OPF) is a well studied optimization

problem in power systems. This problem was first introduced

by Carpentier [2] in 1962. The objective of OPF is to find a

steady state operating point that minimizes the cost of electric

power generation while satisfying operating constraints and

meeting demand. The problem can be formulated as a nonlin-

ear programming (NLP) problem, in which some constraints

and possibly the objective function are nonlinear. In the usual

polar coordinate formulation of OPF the major nonlinearity in

the constraints is in Kirchhoff’s voltage laws (KVL), which

gives the flow of power in a transmission line as a nonlinear

function of bus voltages and phase angles. The presence

of the nonlinear equality constraints results in the feasible

region of the OPF problem being nonconvex [3] and hence

raises the possibility of the existence of local OPF solutions.

However in the 1997 paper [4] one of the authors states

that in practice OPF solutions are unique, and this remains

a common perception.

The first solution method for the OPF problem was proposed

by Dommel and Tinney [5] in 1968, and since then numerous

other methods have been proposed. A good literature survey of

classical optimization techniques as applied to OPF over the

last 30 years is given in [6], [7]. None of these methods are

guaranteed to find the global minimum if a local one exists.

The issue of the possible existence of local optima to

the OPF problem is an important one, but one that is not

well covered in the literature. A recent literature survey [8]
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of OPF covers evolutionary algorithms as well as classical

local nonlinear techniques. Evolutionary algorithms are global

optimization techniques that attempt to find global optima.

Global techniques are much slower than the local ones so

should only be used for problems where local optima may

exist. The authors of [9] discuss the role of metaheuristic

techniques to solve the OPF problem and give the possible

convergence to local solutions as a major drawback of classical

optimization techniques applied to OPF. However, none of

these surveys give any reference to examples of local optima

of OPF or estimate how often these occur in practice.

The OPF problem has been extended in various ways. For

example security constrained OPF and risk based OPF deal

with the problem of ensuring the network operates securely.

However if local optima exist for the original OPF problem

they will in principle also exist for extensions, so in this paper

we restrict attention to the standard OPF problem.

In [10] the authors give an interesting semi-definite program

(SDP) formulation of a dual of the OPF problem. They show

that if there is no duality gap a globally optimal solution

to the OPF can be recovered from the SDP dual, and they

give a condition, which can be tested after solving the SDP

dual, that guarantees there is no duality gap. It is however not

obvious just from the properties of a general network whether

or not there will be a duality gap and it is not clear how

often the method works in practice. Sufficient conditions for

there to be no duality gap that rely only on network properties

are given in [11] and [12]. These apply to tree networks

and networks with lossless loops and require fixed voltage

magnitudes, limits on the angle difference across lines and/or

significant flexibility in the real and reactive power balance

at buses. However these conditions are not met in general

networks or in any of the examples in this paper. Some of the

shortcomings of the SDP approach are discussed in [13]. In

[14] examples are given of modified IEEE test cases where the

SDP recovery strategy fails, and a branch and bound strategy

using the SDP formulation for the relaxations is proposed that

find the global optima in these cases. However none of these

cases have documented local OPF solutions.

In order to support the current research interest in optimiza-

tion techniques for OPF problem, it is important to have test

cases with known local optima. It is well known that the power

flow equations can have solutions with very low voltages

at some buses. By relaxing the voltage bounds in standard

test networks we have found corresponding low voltage local

solutions for the OPF problem. These low voltage solutions

however are not of practical interest and are excluded in OPF

problems by reasonable voltage bounds. In this paper, we

give examples of local solutions of OPF within reasonable

voltage bounds: all examples either have ±5% bounds or

the same bounds as the standard cases from which they are
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derived (where the most extreme voltages are within ±10%).

The modifications made to the standard test cases are either

to reduce demand or change the generator power limts. All

other system properties are unchanged. Some of the changes

in generator power limits are significant, but in no cases are

the optimal generator outputs unrealistic. The data for the test

cases, their network diagrams and all the local solutions we

have found are available in the online archive [1].

The layout of the paper is as follows. In Section II the

OPF problem is introduced and its relation to the load flow

problem is described. In Section III we show the existence

of local OPF solutions for four specially constructed simple

networks. Section IV investigates the occurrence of local

solutions on IEEE and other standard networks and shows

that local solutions are not found but do occur after suitable

changes to load levels or generator limits. In Section V the

reasons for occurrence of local solutions are discussed. Section

VI illustrates the behaviour of the SDP optimization method

of [10] on 2- and 3-bus cases and reports its success or failure

on the other test cases. Conclusions are given in Section VII.

II. OPTIMAL POWER FLOW (OPF)

The OPF problem can be formulated using either polar or

rectangular coordinates. In polar coordinates the variables are

the voltage magnitude and phase angle at each bus and the

real and reactive power flows. Any angle can be changed by a

multiple of 2π without changing the other variables, so these

give equivalent solutions and are not counted as distinct local

solutions. In the rectangular coordinates the bus voltages are

represented by their real and imaginary components. Since the

voltage magnitudes must be positive for a feasible solution the

mapping between polar and rectangular coordinates is one to

one and continuous in the neighbourhood of any feasible point.

Consequently local solutions in polar coordinates give rise to

local solution in rectangular coordinates and vice versa, so

the number of local optima in rectangular coordinates is the

same as the number of non-equivalent local solutions in polar

coordinates. In this paper the polar formulation is used.

A. OPF in polar coordinates

Consider a power system network with the set of generators

G. Let Gb and Db be the set of generators and demands at bus

b, let Bb be the set of buses connected by a line to bus b, and

let b0 be the reference (or slack) bus. Parameters vLB
b and vUB

b

are the lower and upper bounds on variable vb, the voltage at

bus b; parameters P LB
g and PUB

g are the bounds on variable

pG
g , the real power output of generator g; parameters QLB

g and

QUB
g are the bounds on variable qG

g , the reactive power output

of generator g; and parameters PD
d and QD

d are the real and

reactive power consumed by load d, which are assumed to be

independent of voltage. Variables pL
bb′ and qL

bb′ are the real and

reactive power flowing into line bb′ from bus b, and parameter

Smax
bb′ is the apparent power line rating of the line bb′. Variable

θb is the voltage phase angle at bus b.

The OPF problem is to minimize the cost of generation

while supplying all the load and satisfying the bus voltage

limits, the apparent power line limits and the real and reactive

generator output power limits. It can be written as:

min
∑

g∈G

f(pG
g ), (1)

subject to

∑

g∈Gb

pG
g =

∑

d∈Db

PD
d +

∑

b′∈Bb

pL
bb′ +GB

b v
2
b , (2)

∑

g∈Gb

qG
g =

∑

d∈Db

QD
d +

∑

b′∈Bb

qL
bb′ −BB

b v
2
b , (3)

pL
bb′ = v2bGbb

+ vbvb′(Gbb′ cos(θb − θb′) +Bbb′ sin(θb − θb′)),
(4)

qL
bb′ = −v2bBbb

+ vbvb′(Gbb′ sin(θb − θb′)−Bbb′ cos(θb − θb′)),
(5)

θb0 = 0, (6)

vLB
b ≤ vb ≤ vUB

b , (7)

P LB
g ≤ pg ≤ PUB

g , (8)

QLB
g ≤ qg ≤ QUB

g , (9)

pL
bb′

2
+ qL

bb′
2
≤ (Smax

bb′ )
2, (10)

where (1) is the objective function, equations (2)–(3) are

Kirchhoff’s Current Law (KCL) enforcing real and reactive

power balance, (4)–(5) are KVL, (6) removes the degeneracy

in the bus voltage angles by fixing it to zero at the arbitrary

reference bus, (7)–(9) are constraints on voltage and power

generation, and (10) are the line flow constraints. The line

conductance gbb′ and susceptance bbb′ are defined by

gbb′ =
rbb′

r2bb′ + x2
bb′

, bbb′ =
−xbb′

r2bb′ + x2
bb′

,

where rbb′ , xbb′ are the line resistance and reactance, and

parameters Gbb′ and Bbb′ are defined by

gbb′ = −τbb′Gbb′ = −τbb′Gb′b = Gb′b′ = τ2bb′Gbb, (11)

bbb′ + 0.5bCbb′ = Bb′b′ = τ2bb′Bbb, (12)

−bbb′ = τbb′Bb′b = τbb′Bbb′ , (13)

where bC is the line charging susceptance and τbb′ = 1 except

in transformer “lines”, where it is the tap ratio and (as in the

MATPOWER [15] convention) the ideal transformer is at the

b end of the line. Also we assume none of the transformers

have a phase shift, which is true for all examples in the paper.

The constraints (6)–(10) are convex, and in all the exam-

ples referred to in this paper the generator costs are convex

(linear or quadratic). However (2)–(5) are nonlinear equality

constraints and therefore nonconvex. Consequently the polar

coordinate formulation is nonconvex and so local optima

cannot be ruled out. With a slight redefinition of pL
bb′ and

qL
bb′ it is possible to transfer the nonlinear terms in the KCL

to the KVL equations leaving the KCL equations linear. It

is also possible to eliminate equations (4)–(5) and instead use

them to eliminate pL
bb′ and qL

bb′ from (4)–(5) and (10). However

neither of these reformulations change the solutions in terms

of the bus voltages and angles and generator outputs, so they

do not change the number of local optima present.
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Fig. 1. WB2 2-bus system.

B. OPF in rectangular coordinates

In the rectangular OPF formulation the bus voltages are rep-

resented by the real and imaginary voltage components [16],

and the real and reactive power flows are quadratic functions of

these. This results in the generator limits, the fixed loads and

the apparent power line limits being nonconvex constraints,

and in addition the lower limits of bus voltage magnitudes

are nonconvex. Hence the rectangular formulation is also

nonconvex, so once again local optima cannot be ruled out.

C. Relation of OPF to load flow problems

If we fix all demands, and the voltages at all generator buses,

and the generator outputs at all generator buses except one

(referred to as the slack bus), and also fix the phase angle at

the slack bus, then we can use equations (2)–(5) to solve for

the remaining variables. This is the load flow problem [16] and

it is well known that it can have 0, 1 or multiple solutions [17],

[18]. Provided a load flow solution satisfies all the line limits

and the bounds on voltages and generator outputs imposed

in OPF it will be a feasible solution for OPF. We shall now

present a simple load flow example with multiple solutions,

and in the following section extend this to illustrate one reason

for local solution of OPF existing.

Consider the 2-bus network shown in Fig. 1. Bus 2 is the

load bus, and bus 1 is the generator bus and slack bus, and

for it we set v1 = 0.95 and θ1 = 0. If we know the load

at bus 2 then it is possible to find the remaining variables

(pg, qg, v2, θ2). There are at most two possible load flow

solutions. Fig. 2 shows these solutions when the load at Bus

2 is (PD
2 , Q

D
2 ) = t(350,−350) for 0.1 ≤ t. Note the load

here is capacitative and so reactive power is injected from the

load into bus 2. For a load corresponding to t < 1.004 there

are two alternative solutions. The solid branch corresponds to

lower real power generation (the better case) and to higher

voltage at bus 2, and the dotted branch corresponds to higher

real power generation and lower voltage. Moreover, we can

see that as the load increases the two solutions get closer

and eventually coalesce at a point. Beyond this there are no

solutions – i.e., the line loading limit has been reached.

In this example the solutions come together at a voltage that

is feasible, however if the load is changed from capacitative

to inductive the voltage at the coalescing point drops to an

infeasibly low value. The solution space of a general 2-bus

system is discussed in [19].

III. CONSTRUCTED OPF NETWORKS WITH LOCAL OPTIMA

In this section we present examples, WB2, WB3 and

WB5, of simple radial and meshed/loop networks we have

0.2 0.4 0.6 0.8 1

0

0.5

1

t

v
2

0.99 1.0 1.01

0.95

1

1.05

Fig. 2. Alternate load flow solutions as the demand parameter, t, varies.

constructed to illustrate local optima. These examples have no

line limits and have voltage limits within ±5% off-nominal,

and WB2 and WB3 have no generator limits. However all

the optimal solutions have reasonable generator outputs and

line flows. We also document local optima in a contrasting

example, LMBM3, which is the 3-bus example in [13] but

with a different line limit.

A. Local solutions in 2-,3- and 5-bus networks

Consider first a 2-bus OPF example, WB2, based on the

network in Fig. 1 with t fixed at the value 1.0, which gives

fixed real and reactive loads of 350.0 MW and −350.0 Mvar

respectively. This is close to the nose of the curve in Fig. 2.

In Section II-C, the slack bus voltage was fixed at v1 = 0.95
to obtain Fig. 2. In OPF problems this voltage is one of the

degrees of freedom, and in a one generator example it is the

only degree of freedom. Now set the voltage limits on both

buses to [0.95, 1.05].
The feasible region is shown by the thick lines in Fig. 3.

It consists of two disconnected sections. The objective is the

real power generated, pG, and the global minimum is at S1

on the solid (blue) curve, at which point v1 = 0.952. Higher

values of v1 would reduce the objective but would cause v2 to

rise above 1.05, which is its upper limit. On the dotted (red)

section of the feasible region the optimal point is S2. This is a

local optima as it is the best point in its neighbourhood. Both

solutions are given in Tab. I.

This 2-bus example shows that OPF problems can have local

solutions with reasonable voltages. However as with the load

flow case this relies on there being a net injection of reactive

power at the load. This could be due to a fixed capacitor,

or a generator with positive lower bound on reactive power

TABLE I
OPF SOLUTIONS FOR THE WB2 2-BUS PROBLEM.

Cost Bus v (p.u.) θ (deg) pG (MW) qG (Mvar)

S1 877.78 1 0.952 0.00 438.89 94.44
2 1.050 −57.14

S2 905.73 1 0.950 0.00 452.86 164.32
2 0.976 −64.94
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S1

S2

0.95

1

1.05

v
2

S1

S2

0.950 0.955 0.960

440

450

460

v1

p
G
(M

W
)

Fig. 3. WB2 2-bus system. Dependency of bus 2 voltage, v2, and generator
real power pG on bus 1 voltage v1. Feasible region shown by thick lines.

generation. A more common cause of excess reactive power

is cables injecting reactive power when their flow is low. This

motivates the next example.

:

(PD, QD)

1

2

3

(164, 20)
(175, 10)

0.04 + 0.02

bC
12 = 0.0

0.0139 + 0.0605

bC
23 = 2.25

Fig. 4. WB3 3-bus system.

A 3-bus network, WB3, in which bus 2 and bus 3 are

connected via a cable is shown in Fig. 4. The cable is identical

to one in the 24-bus IEEE test case. Loads are in MW and

Mvar and neither is capacitative. Results are given in Tab. II:

S1 is the global solution and S2 is the local solution.

In each of the above examples the objective values are

proportional to the real power output of the single generator,

and in both cases the local and global optimum are very

close. This is because the difference in cost is due only to

the different power losses in the lines and these losses are

small compared to the power transferred.

To get a bigger difference in the objective values there needs

to be more than one generator with different costs. A 5-bus

TABLE II
OPF SOLUTIONS FOR WB3 3-BUS PROBLEM WITH CABLE.

Cost Bus v (p.u.) θ (deg) pG (MW) qG (Mvar)

S1 417.25 1 0.951 0.00 208.62 8.93
2 0.950 −27.25
3 0.981 −30.36

S2 418.14 1 0.950 0.00 209.07 −20.79
2 1.011 −26.36
3 1.050 −29.23

: :

SC(PD, QD) [CL, CQ]

:

1

3

2

(110, 40)
(95, 50)

(110, 40)

0.042 + 0.9

bC
12 = 0.3

0.065 + 0.62

bC
13 = 0.7

0.025 + 0.75

bC
23 = 0.45

[5, 0.11] [1.2, 0.085]

Fig. 5. LMBM3 3-bus system.

network, WB5, with two generators with different costs is

given in the archive [1]. This system has two optimal solutions,

the local being 14% more expensive than the global. The lower

limits on the generators reactive power output are active at one

generator in both solutions.

In the above examples, in all the standard test cases and in

the cases derived from them in this paper, the line limits are

large and are inactive at all optimal solutions. Also in most

cases with local optima there is an excess of reactive power in

the network. In contrast, the 3-bus example LMBM3 in [13],

shown in Fig. 5, has an apparent power limit Smax
32 on line

3–2 but no other line limits. There are no positive or negative

limits on the reactive power outputs of the generators at buses

1 and 2 or the synchronous condenser at bus 3. The real power

output of the generators can be any nonnegative value (and is

0 for the synchronous condenser). Voltage limits are ±10%
off-nominal. The cost of generator g is CLpG

g + CQ(pG
g )

2,

independent of reactive power output. Since there is unlimited

reactive power available at every bus, the reactive power

constraints are redundant and the results are independent of the

reactive loads. When Smax
32 = 186 there are 5 optimal solutions;

see Tab. III. If the voltage limits are tightened to ±5% the

perturbation of S3 becomes infeasible leaving 4 solutions.

TABLE III
OPF SOLUTIONS FOR LMBM3 3-BUS SYSTEM WITH Smax

32
= 186.

Total Cost Bus v (p.u.) θ (deg) pG (MW)

1 1.100 0.00 128.46
S1 5694.54 2 1.100 9.00 188.22

3 1.100 −11.64 0.00

1 0.900 0.00 124.78
S2 6833.94 2 0.900 128.59 223.07

3 0.900 −35.81 0.00

1 1.033 0.00 186.45
S3 7684.42 2 0.900 125.81 178.68

3 0.900 −69.79 0.00

1 0.900 0.00 181.17
S4 7966.67 2 0.900 32.18 194.54

3 0.900 −132.22 0.00

1 0.900 0.00 231.75
S5 9677.11 2 1.100 −108.01 168.32

3 1.047 173.27 0.00
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Fig. 6. Solutions in n-bus loop network (showing only real flows).

B. Local solutions in loop networks

In power transmission networks there is usually more than

one path between pairs of buses, and such networks contain

loops. It has been shown that for networks containing loops

there can be multiple load flow solutions corresponding to

different integer multiple of 2π for the phase shift round the

loop [20], [21], and this phenomenon has been repeatedly

observed to occur in real power systems [21]. We now present

an example of this that gives rise to local OPF solutions.

The network shown in Fig. 6 consists of single loop with an

even number n of buses. The loads are at the even buses and

the generators at the odd. Every load is the same and every

line has the same impedance. If all generators have identical

real and identical reactive power outputs, then in the solution

of the load flow the voltage magnitudes at all generator buses

are equal and the voltage magnitudes at all load buses are

equal. For each integer value of m there is a solution with

voltage angle at bus k given by

θk =















2πm

n
(k − 1) k = 1, 3, . . . , n− 1

2πm

n
(k − 2) + α k = 2, 4, . . . , n

(14)

where α is the voltage angle at bus 2. The corresponding real

power flows are shown in Fig. 6. If m = 0 then the circulating

flow, pm, is 0, the voltage angles at the generator buses are

all 0 and the angles at the load buses are all α. If m 6= 0 then

pm is nonzero and there is a circulating flow.

In the corresponding OPF problem different generators can

have different outputs. If all the generators have the same cost

then it is optimal (verified computationally in Sec. IV) for all

generators to have the same output. Hence the above flows

are optimal. Fig. 6 with pm = 0 is the global solution. When

pm 6= 0 there is a circulating flow which results in extra line

losses, so this gives a local solution. For the network where

n = 22, z = 0.01 + 0.05, (PD, QD) = (204.25, 43), ±5%
voltage limits and all generators with the same cost, the m = 0
case gives the global solution and m = ±1 cases give the

only local solutions, which are 31% more expensive. Tab. IV

gives the solutions and Fig. 7 shows the complex voltages.

If the voltage bounds are widened to ±10% off-nominal the

m = ±2 case is also feasible and the local optima are 28%
and 132% more expensive than the global solution.

IV. SEARCHING FOR LOCAL OPF SOLUTIONS

In this section we report the results of a computational

search for local OPF solutions in standard test networks and

in slightly modified versions of them, as well as in the cases

described in Sec. III. The standard cases tested were the IEEE

14-, 24-, 30-, 57-, 118- and 300-bus cases as specified in the

archive [22] and the 9 and 39 bus case from the MATPOWER

test library [15]. In these examples most of the voltage limits

are either 5% or 6% above or below nominal and all limits

are within 10%. In our modifications of the standard cases the

only change to the voltage limits is to tighten the limits in the

39 bus case from ±6% to ±5%.

It is important to be aware that an NLP solver may converge

to a point that is not a local optimum, either by reaching (or by

chance being started at) a stationary but non-optimal point or

simply through an unreported solver error. For example MAT-

POWER with MIPS or fmincon-IPM falsely identifies a local

optimum in the network in [23]. In order to avoid mistakenly

classifying a point as a local optimum we check that the first

order optimality conditions are satisfied and also that several

NLP solvers converge to it when started from several random

points in a small box surrounding it. The optimization systems

used were MATPOWER [15] using fmincon with default

settings, and the NLP solvers IPOPT [24], KNITRO [25]

and SNOPT [26] each called from an AMPL model. For the

problems in this paper we found no cases where any of these

solvers converged to a solution that was non-optimal.

A second common mode of failure for any nonlinear solver

is for it to converge to an infeasible point. This occurs in some

of the cases reported later, however were such a case to occur

in a real world OPF case then it would be identified and the

search repeated from a different starting point. This is therefore

not such a serious problem as finding a local optimum without

realizing there is a better global solution.

To find local solutions we generated a random point within

the bounds of each variable using a uniform distribution, and

solved the OPF problem starting from this initial point. For

each test case this process was repeated over 2000 times. There

is however no guarantee even with such a large number of

searches that all optima have been found.

When applied to the examples in Sec. III the method found

all the reported solutions (and no others). When applied to

the unmodified standard test cases no local solutions were

found, and this was true also if the quadratic terms in

the objective were omitted. However after scaling down the

demand, modifying the generator bounds or tightening the

voltage bounds the local optima described below were found.

Full specifications of all the solutions are available at [1].

TABLE IV
TWO OPF SOLUTIONS FOR THE 22-BUS LOOP NETWORK.

Bus v (p.u.) α (deg) pG (MW) qG (Mvar)

S1 k odd 1.050 206.31 53.30
k even 1.029 −2.60

S2 k odd 1.015 269.519 369.28
k even 0.950 13.33
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A. 9-bus case

When the reactive power generation lower bounds on all

three generators were raised from −300 Mvar to −5 Mvar

and all loads scaled to 60%, then 4 optimal solutions were

found. The cost of the worst local solution is 37% more than

the cost of global solution.

B. 39-bus case

When the loads were halved and the voltage limits tightened

from ±6% to ±5%, two OPF solutions were found. The local

solution cost was 115% above the global solution. When in ad-

dition only the linear cost coefficients were used, 16 solutions

were found. These solutions have very different generation

levels, however they are all within 0.5% in objective value.

The reason for this is that the generators have identical cost

functions so in the linear case, the difference in the objective

values is due only to the different losses in the network.

C. 118-bus case

When the generators’ real and reactive power bounds were

all relaxed by scaling them by a factor of 7, then three optimal

solutions were found. The cost of the local solutions were 38%
and 51% greater than the global solution.

D. 300-bus case

The 300-bus case was modified as in the 9-bus case (i.e.,

the lower limits on generator reactive power are changed to

−5 Mvar and load scaled down to 60%). This change in the

generator bounds tightens some and relaxes others. Then 7
optimal OPF solutions were found, and the worst local solution

had a cost 2.5% above the global solution.

E. Starting point in local search

In all the above cases random starting points were used to

find different local optima. If solving an OPF problem only

once then it is more natural to start from a flat start: i.e., the

point with all voltage angles 0, all bus voltage magnitudes 1
and all generator injections at the mid point of the bounds.

From a flat start IPOPT found the global optimum in all the

cases in this paper, but MATPOWER with MIPS (the default

solver) converged to a local optimum for WB5. To investigate

further we took the modified 9-, 39-, 118- and 300-bus cases

(which have local optima) and for each generated 200 cases

by randomly perturbing their costs. This yielded 649 cases

with local optima and for these cases we tested how often the

global minimum was found starting from the flat start and from

random points. This showed that the flat start was significantly

better than random points: from a flat start IPOPT converged

to a local but not global minima in 2.6% of cases and to an

infeasible point in 0.3% of cases, compared to 23.2% and

1.4% respectively from the random points.

−1 −0.5 0 0.5 1

−1

−0.5

0

0.5

1
·10−2

Fig. 7. Real and imaginary voltages (in p.u.) for the 2 solutions of the 22-bus
loop case. The loop flow solution has red solid lines and the non loop flow
has the black dashed line. The two circles show the ±5% voltage limits.

V. REASONS FOR LOCAL OPTIMA

In this section we analyse reasons for the occurrence of the

local optima reported in Sec. III and IV. All the examples of

local optima in this paper have one or more of the following

features: disconnected feasible region, loop flow, an excess

of real or reactive power, or large voltage angles differences

across lines. Each of these features is discussed below.

Local optima of optimization problems may lie within

a connected part of the feasible region or be in different

disconnected parts. When the feasible region is disconnected

then the optima within each region must be a local optima for

the whole problem, so there are at least as many optima as

disconnected feasible regions.

A disconnected feasible region occurs because of the in-

teraction of the nonlinear KCL and KVL equations with the

remaining constraints (which are convex). It can be seen from

Fig. 3 that the feasible space of the 2 bus case is disconnected,

and that this is due to the interaction of the lower voltage

limit on v1 with the other constraints. If this lower limit is

relaxed to below 0.948, then the solid and dotted curves in

Fig. 3 join within the feasible region. The feasible region is

then connected and the local optimum disappears. A similar

analysis shows this is also the reason for the local optima in

the 3-bus example.

Whenever there is a loop in a network there is the possibility

of load flow solutions analogous to alternative solutions in the

loop network example of Sec. III-B. Fig. 7 shows the complex

bus voltages in rectangular coordinate for the loop (solid) and

non-loop (dotted) solutions of the loop network of Fig. 6 with

n = 22 and with ±5% off-nominal voltage limits. The edges

correspond to lines in the network. In the non-loop optimal

solution the voltages at generator buses are all the same and

the voltages at the load buses are all the same, so there are

only two distinct bus voltages on the plot and all the edges

coincide. For the loop flow there is a closed connected path

surrounding the origin whereas for the non-loop flow this is

not the case. If the bus voltages are moved continuously from
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their values in the loop flow to their values in the non-loop

flow (with the straight edges following) there must be a stage

where the closed path moves from surrounding to origin to

not surrounding it. At that stage the origin lies on one of the

(straight) edges and so the angle across the corresponding line

is π.

This is the point of maximum line loss and in most practical

cases this will be excluded by a some constraint, for example

on apparent power, that limits the phase angle difference

across the line. When such constraints exists then the loop

and non-loop flows are in disconnected parts of the feasible

region (and so local optima must exist). Even if there are

no constraints that limit line angles, it is likely that other

constraints on generation level or voltage will prevent line

angles passing through π. This is the situation in the 22-bus

loop network (which has loops with phase cycles of 2π and

4π) and the 118-bus case (in which the more expensive local

solution has has loops with a 2π phase cycle). As a result

these are disconnected from the global optima. In LMBM3

the voltage plots of S3 and S5 surround the origin but the

voltage plots of S1, S2 and S4 do not. The feasible region

has two disconnected parts, with all except S3 in one of them.

When S5 is moved continuously to S1, then line 1–3 passes

through π, but this is possible because line 1–3 has no limit.

However the combination of the line limit on 3–2 and the bus

voltage limits make it impossible to move continuously from

S3 to a feasible solution with a line angle of π on either of

the other lines, so the feasible region is disconnected.

In the other cases of local optima it is not obvious whether

or not they lie in the same connected region. To check this

we used the method described in the Appendix to try to find a

continuous path connecting the local optima. If a path is found

the local optima must lie in the same connected part of the

feasible region. Paths were found between S1, S2, S4 and S5

in LMBM3 and between all the local optima in each of the 39-

and 300-bus cases, so showing they lie in the same connected

region. However in all other cases no path was found between

the local optima. This is consistent with the previous analysis

of WB2, WB3, LMBM3, and the 22-bus loop and 118-bus

cases which we know have disconnected feasible regions. This

leaves WB5 and the 9-bus case as the only uncertain cases.

In Sec. III we noted that in WB2 a local solution within

reasonable voltage limits required the load to be capacitative

(which injects reactive power), and in WB3 a cable was needed

(which also generates reactive power). Also in WB5 the

lower limits on generator reactive power output were active.

No local solutions were found in the 9-, 39- and 300-bus

networks with the default loads, but were found once the loads

were reduced and/or the generator reactive power lower limits

were increased. Since loads normally absorb reactive power,

reducing loads leaves more reactive power in the network.

Also lower loads lead to lower line flows and this results in less

reactive power being absorbed by lines and eventually results

in most lines becoming sources of reactive power. These two

effects together can result in an excess of reactive power in the

network and reactive power marginal prices that are negative.

When there is an excess of reactive power it would improve

the solution if lines were able to absorb more reactive power.

However in a line with phase angle ∆θ the reactive power

absorbed and the real power lost are each proportional to 1−
cos(∆θ). It is therefore not possible by varying only voltage

angles to increase the reactive power absorbed in a line without

also increasing the real power lost. In situations where the

reactive power excess is not high there is no advantage in

increasing both the absorption and loss, however when the

reactive power excess is high this can be an advantage. There

is then an advantage in having a high value of 1 − cos(∆θ),
which occurs with either small or large ∆θ, and this dichotomy

is a potential cause of local optima.

A related though rarer situation is when there is an excess

of real power in the network with corresponding negative

real power marginal prices (making it worthwhile to pay

consumers to increase their demand or suppliers to reduce

their generation). This occurs for example in the local optima

of WB2 and WB3, and could occur in any network due to the

loss of a large load. It is then again advantageous to increase

1− cos(∆θ), in this case so as to lose real power in the lines.

When negative generation costs are introduced to the standard

test problems most of them then have many local optima. In

[13] it is observed that the situation of negative real power

marginal price is one in which the SDP method can fail.

Finally in some networks the generator and line limits are

so wide that they allow very large voltage angles across lines

and bus voltages that spread over a wide area of the voltage

diagram. The feasible region is then significantly nonconvex

and local optima can occur. This is the situation in LMBM3

and in the modified 118 bus case (in which the generator limits

were relaxed). In every local optima for these cases some line

angle is greater than 145◦. In contrast the line angles for all

the optima in WB2 are less than 65◦, in WB5 are less than

49◦ and in all other cases are less than 30◦.

VI. PERFORMANCE OF SDP METHOD ON TEST CASES

The authors of [10] propose a semi-definite programming

(SDP) relaxation of the OPF problem. They show that if a

certain sufficient condition is satisfied, there is no duality gap

between the original problem and the convex SDP dual, and

that the globally optimal OPF solution can be recovered. The

sufficient condition states that a certain matrix, Aopt, must have

exactly two zero eigenvalues. The value of Aopt depends on

the dual solution and it is not clear from the properties of the

system alone whether or not the condition will hold, nor is it

clear how often it holds in practice. We now investigate how

well the method works on the examples in this paper.

Consider the family of problems for the 2-bus network

of Fig. 1 obtained by varying vUB
2 , the upper bound on v2,

over the range [0.95, 1.06]. When vUB
2 ≥ 1.035 there are

two solutions with the global one lying on the solid branch.

(Tab. I and Fig. 3 show these solutions when vUB
2 = 1.05).

When vUB
2 < 1.035 the S1 solution is excluded and the global

optimum now lies on the dotted branch. As vUB
2 decreases from

0.976 the optimal solution moves from S2 to the right along

the dotted curve. The optimal objective value is the primal

curve in Fig. 8(a).

When the SDP dual method is applied to this problem with

vUB
2 ≥ 1.035 it correctly identifies S1 as the global solution,
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Fig. 8. Performance of SDP optimization method on 2-bus problem.

and for vUB
2 ≤ 0.976 it correctly identifies the global solution

lying on the dotted branch. In both of these ranges exactly

two of the four eigenvalues of Aopt are nonzero (which is the

sufficient condition for the SDP dual method to give the global

solution). However when 0.976 < vUB
2 < 1.035 the SDP

method returns an objective value which is an average of the

values at vUB
2 = 0.976 and vUB

2 = 1.035, all four eigenvalues

are zero and the process of recovering a primal solution fails.

The SDP dual objective value is the dotted curve in Fig. 8(a).

The gap between the primal and dual curves is positive for

the same range of vUB
2 values for which the SDP dual method

fails to recover the optimal solution. Fig. 8(b) shows how the

magnitude of the eigenvalues of Aopt depend on vUB
2 . Two of

the eigenvalues are always zero and the other two are equal.

The number of local optima in LMBM3 depends on the

value of Smax
32 , the apparent power limit on line 3–2. The

objective values of the 5 solutions over the ranges where

they are feasible are shown in Fig. 9. The × on the graphs

show where (as it increases) the line limit becomes inactive.

The maximum apparent power that can enter a line with the

properties of line 3–2 occurs when the line angle is close to π.

When the voltages are 0.9, the minimum, the corresponding

apparent power is 187.55 Mvar, so when Smax
32 is larger than

this it does not prevent the line angle passing through π.

With this limit removed S3 and S4 stop being local optima so

their graphs disappear. The minimum possible apparent power

entering a line with the properties of line 3–2 is 28.33 Mvar

and so if Smax
32 is below this there are no feasible solutions.

The reason for the lower limit of the ranges of S2, S3 and S5

is that the curvature changes and the local optima disappears

below the limit. Fig. 9 also shows the solution of the SDP dual.

The method recovers the global solution for all value of Smax
32

above 52.7, and fails for all lower values. This is consistent

with [13] where it was shown to fail when Smax
32 = 50 and

succeed when Smax
32 = 60.

In WB5 the lower bound on reactive power of generator

2, QLB
2 , affects both the number of local solutions and the

success of the SDP method. The SDP method succeeds for

SDP dual fails succeeds
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Fig. 9. Primal and dual objectives of the LMBM3 3-bus problem.

TABLE V
NUMBER OF LOCAL SOLUTIONS AND OUTCOME OF SDP METHOD.

Case nB # of solutions SDP Method

WB2 2 2 Succeeds/Fails
WB3 3 2 Succeeds
WB5 5 2 Succeeds/Fails

LMBM3 3 5 Succeeds/Fails
case9mod 9 4 Fails
case22loop 22 2 Succeeds
case39mod1 39 2 Fails
case39mod2 39 16 Fails
case118mod 118 3 Fails
case300mod 300 7 Fails

for QLB
2 < −30.8 and fails otherwise. Local optima exist for

−40 ≤ QLB, so for −40 ≤ QLB
2 ≤ −30.8 local optima exist

and the SDP method works.

The SDP method successfully found the global minimum in

all the standard test cases except for the 39-bus case. However

these problems do not have local optima. When applied to

the problems with local optima the SDP approach worked

successfully or WB3 and the 22-bus loop case with default

bounds and for some parameter values for WB2, WB5 and

LMBM3, but it failed in all other cases. As suggested in

[10] we have added a positive resistance to all transformer

lines which have zero resistance. (We tested values from 10−5

to 10−3 per unit.) Without this modification the sufficient

condition for zero duality gap cannot hold, however in the

above failure cases it is not enough to ensure the sufficient

condition holds. Tab. V gives a summary of the results when

applied to the problems with local optima.

VII. CONCLUSION

In this paper, we have shown the existence of local solutions

of OPF problems. All examples have either ±5% voltage

bounds or the same bounds as standard cases from which they

are derived. The data for the examples and the local solutions

are publicly available at [1] and can be used in testing local and

global optimization techniques for OPF problems. We have

observed that cases of local solutions are hard to find: indeed

none was found in any of the standard test cases. However

after modifying load or generator bounds local optima were
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found for the 9-, 39-, 118- and 300-bus cases. The examples of

local optima presented in the paper are associated with either

circulating flows, high line angles or an excess of reactive

power. An excess of reactive power can occur when load

is reduced in a network that has been designed for peak

loads. A related but less common situation that results in

local optima is an excess of real power in the network. We

have shown that in some cases the local OPF solutions lie

within a connected feasible region, and in some cases they

lie in different disconnected regions which result from the

interaction of the nonlinear power flow equations with the

bounds on voltage magnitudes, generator outputs or apparent

power flows in lines. The SDP method of [10] worked in all

except one of the standard test cases (which have no local

optima), but failed in most cases in which there are local

optima.

APPENDIX

The following method was used to find paths between local

optima. Let F be the OPF feasible region in the space of all

OPF variables, let S be an OPF solution and let H(u∗
i ) be a

(very small) hypercube centered on u∗
i . Starting at an initial

point u∗
1 solve

u∗
i+1 = arg min

u∈H(u∗

i
)∩F

‖u− S‖2

iteratively until a point u∗ is reached where there is no further

reduction in the distance from S. If at this point u∗ = S, a

path has been found between u∗
1 and S, showing that points

u∗
1 and S lie in the same connected region. If however u∗ 6= S

a path was not found. This will always occur if u∗
1 and S are

in different disconnected regions, but it could also occur even

if they are in the same region as a result of the path getting

trapped in a local minimum of the distance to S. We chose u∗
1

to be the central point of the constraints (as found by solving

the OPF problem by interior point without an objective).
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